the radical ring-opening polymerization of cyclic ketene

103
doi.org/10.26434/chemrxiv.12022767.v1 The Radical Ring-Opening Polymerization of Cyclic Ketene Acetals Revisited: An Experimental and Theoretical Study Antoine Tardy, Noémie Gil, Christopher M. Plummer, Didier Siri, Didier Gigmes, Catherine Lefay, Yohann Guillaneuf Submitted date: 24/03/2020 Posted date: 24/03/2020 Licence: CC BY-NC-ND 4.0 Citation information: Tardy, Antoine; Gil, Noémie; Plummer, Christopher M.; Siri, Didier; Gigmes, Didier; Lefay, Catherine; et al. (2020): The Radical Ring-Opening Polymerization of Cyclic Ketene Acetals Revisited: An Experimental and Theoretical Study. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12022767.v1 Radical Ring-Opening polymerization (rROP) of Cyclic Ketene Acetals (CKAs) combines the advantages of both ring-opening and radical polymerization thereby allowing the robust production of polyesters. In this article we investigate in detail the radical ring-opening polymerization of model CKA monomers and demonstrate by the combination of DFT calculations and kinetic modeling using PREDICI software that we are now able to predict in silico the ring-opening ability of CKA monomers File list (2) download file view on ChemRxiv Guillaneuf-CKA.docx (3.76 MiB) download file view on ChemRxiv ESI-FinalOK.pdf (6.62 MiB)

Upload: others

Post on 03-Apr-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

doi.org/10.26434/chemrxiv.12022767.v1

The Radical Ring-Opening Polymerization of Cyclic Ketene AcetalsRevisited: An Experimental and Theoretical StudyAntoine Tardy, Noémie Gil, Christopher M. Plummer, Didier Siri, Didier Gigmes, Catherine Lefay, YohannGuillaneuf

Submitted date: 24/03/2020 • Posted date: 24/03/2020Licence: CC BY-NC-ND 4.0Citation information: Tardy, Antoine; Gil, Noémie; Plummer, Christopher M.; Siri, Didier; Gigmes, Didier; Lefay,Catherine; et al. (2020): The Radical Ring-Opening Polymerization of Cyclic Ketene Acetals Revisited: AnExperimental and Theoretical Study. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12022767.v1

Radical Ring-Opening polymerization (rROP) of Cyclic Ketene Acetals (CKAs) combines the advantages ofboth ring-opening and radical polymerization thereby allowing the robust production of polyesters. In thisarticle we investigate in detail the radical ring-opening polymerization of model CKA monomers anddemonstrate by the combination of DFT calculations and kinetic modeling using PREDICI software that weare now able to predict in silico the ring-opening ability of CKA monomers

File list (2)

download fileview on ChemRxivGuillaneuf-CKA.docx (3.76 MiB)

download fileview on ChemRxivESI-FinalOK.pdf (6.62 MiB)

The Radical Ring-Opening Polymerization of Cyclic Ketene Acetals Revisited: An Experimental and Theoretical StudyAntoine Tardy, Noémie Gil, Christopher M. Plummer, Didier Siri, Didier Gigmes, Catherine Lefay,* Yohann Guillaneuf*

Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France.

ABSTRACT: Radical Ring-Opening polymerization (rROP) of Cyclic Ketene Acetals (CKAs) combines theadvantages of both ring-opening polymerization and radical polymerization thereby allowing the robustproduction of polyesters coupled with the mild polymerization conditions of a radical process. rROP wasrecently rejuvenated by the possibility to copolymerize CKAs with classic vinyl monomers leading to theinsertion of cleavable functionality into a vinyl-based copolymer backbone and thus imparting(bio)degradation. Such materials are suitable for a large scope of applications, particularly within thebiomedical field. The competition between the ring-opening and ring-retaining propagation routes is amajor complication in the development of efficient CKA monomers, ultimately leading to the use of onlyfour monomers that are known to completely ring-open under all experimental conditions. In this articlewe investigate in detail the radical ring-opening polymerization of model CKA monomers anddemonstrate by the combination of DFT calculations and kinetic modeling using PREDICI software thatwe are now able to predict in silico the ring-opening ability of CKA monomers.

IntroductionRecently, the final outcome of synthetic polymershas become a major issue due to theaccumulation of wastes that are damaging theenvironment.1-3 To overcome this problem the useof biodegradable polymers such as polyesters, inparticular polylactides, has been widelyinvestigated.4-6 These polymers are commonlyprepared by polycondensation or Ring-OpeningPolymerization (ROP).7 Nevertheless, the majorityof commodity and specialty polymers areproduced by radical polymerization techniquesthat impede the introduction of ester linkagesinto the backbone of the polymer chains.8

Relatively few studies,9, 10 initiated by thepioneering work of Bailey et al.,11 havedemonstrated that various cyclic monomers

bearing vinyl or exomethylene groups could bepolymerized radically through a ring-openingprocess (Scheme 1a).

Radical Ring-Opening Polymerization (rROP)presents the advantages of both ring-openingpolymerization and radical polymerization,specifically the production of (co)polymers withthe possibility to insert heteroatoms and/orfunctional groups into the main chain by facilepolymerization procedures (Scheme 1a).10 Thering-opening polymerization of Cyclic KeteneAcetals (CKAs) by free radical or controlled radicalmechanisms has attracted considerable interestsince it presents an alternative route for thesynthesis of functionalized aliphatic polyesters12-15

and is a powerful tool for imparting degradabilityto vinyl polymers16-20 by introducing ester linkagesinto their backbone (Scheme 1b).9, 10

Scheme 1. a) Mechanism of Radical Ring-Opening Polymerization (rROP). b) rROP of Cyclic Ketene Acetals(CKAs) and their use in the preparation of functionalized polyester or segmentable vinyl-based polymers.

Even though the rROP has been known since theeighties, very few mechanistic studies have beenperformed and no clear structure–reactivityrelationships have been established for thosemonomers.10, 21 Indeed, the major drawback ofthis family of monomer is related to thecompetition between the ring-opening processand the undesired direct vinyl propagation thatleads to polyacetal (Scheme 2). Thus, for themajority of CKA monomers, the resultant polymeris a random copolymer of ester and acetal units.

R

OO OO

R

R

O

O

O

O

Ring-Opening

-scission

Vinyl propagation

m

Addition

R

O

OOO

n

RO

O

Polyacetal Polyester

O

O

p

x y

/

O O

Scheme 2. Competition between ring-opening anddirect vinylic propagation leading to either esterunits or acetal units.

This situation leads to the predominant use oftwo cyclic monomers in all of the literature; 2-methylene-1,3-dioxepane (MDO, C7, Scheme 3)and the 5,6-benzo-2-methylene-1,3-dioxepane(BMDO, C7B, Scheme 3), both known to undergocomplete ring-opening polymerizationindependent of the conditions.10 Promising resultshave been obtained for biomedical applicationswith these two monomers (gene transfection,etc.).10 The development of new CKA monomersthat can extend the properties of thecorresponding polyester by tuning themechanical properties, degradation rate, etc. is

paramount. To design a monomer for radical ring-opening polymerization, originally two factorswere taken into account in order to improve theselectivity of the ring-opening process: (i) thering strain and (ii) the stabilization of the ring-opened radical. For example, 6-membered ringmonomers are recognized to be difficult topolymerize via a ring-opening process. This isusually explained by the low ring-strain ofmonomers analogous to cyclohexane (whosering-strain is set to zero). The addition of anaromatic ring close to one oxygen (2-methylene-4-phenyl-1,3-dioxane, C6P, Scheme 3) was alsoexpected to increase the ring-opening ability viathe stabilization of the released alkyl radical, butthe radical polymerization of such monomers,under both UV at 25−50 °C and thermal initiationat 80 and 120 °C, gave polyacetals of high molarmass.22 On the contrary, an analogous chemicalmodification of the 5-membered monomer (2-methylene-4-phenyl-1,3-dioxolane or MPDL, C5P,Scheme 3) increases the ring-opening ability.23, 24

There are many similar examples showing thatthe aforementioned factors were not keyparameters for rationalizing the reactivity of suchmonomers.10

These results demonstrate why only a few knownmonomers are used within the literature and whythe versatility of the rROP technique to prepare awide range of functionalized polyesters has notbeen extensively investigated. In order toefficiently design new monomers, it would beuseful to be able to predict the efficiency of agiven monomer in rROP before its synthesis andpolymerization. Herein, we propose a theoreticalapproach that combines quantum calculationsand kinetic modeling based on the competitiveprocess described above (scheme 2) to achievethis goal.

More precisely, our strategy is to use DifferentialFunctional Density (DFT) to calculate the variousrate coefficients that will be later implementedinto a kinetic model to obtain the theoreticalcomposition of ester and acetal units in apolymer backbone. These theoretical results werethen experimentally confirmed by studying the

radical polymerization of C5, C5H, C6 and C7CKA monomers (Scheme 3). Such an approachallows the in silico prediction of the behavior ofnew CKA monomers.

O O O OO O

C5PC5 C5H

O O O O

R7BR7

O O O OO O

R5PR5 R5H

O O O O

C7BC7

O O O O

R6PR6

O

O

O

R8O

O O O O

C6PC6

O

O

O

C8O

Scheme 3. Structures of CKA monomers and theircorresponding intermediate acetalyl radicals

Results and discussionExperimental StudyA significant problem when rationalizing thereactivity of CKA monomers arises from the manyexperimental conditions that have been reportedwithin the literature (initiator nature andconcentration, temperature, etc.). Additionally,since many of the published studies wereperformed in the 80-90s, some non-reliablecharacterization methods have been used toassess the ratio between acetal and esterrepeating units. To ensure the validity of theexperimental data before implementing themodeling, we performed the polymerization ofmonomers C5, C5H, C6 and C7 coupled withcareful microstructure analysis to obtain anaccurate ratio between the acetal and ester unitsfor these model CKA polymers.

As was previously stated by Bailey et al.11 in theirpioneering studies, CKA monomers with 5- and 6-membered rings are prone to cationicpolymerization initiated by contact with glassmaking purification steps particularlyproblematic. This is a crucial issue whenattempting to quantify the ester percentageobtained by radical polymerization as cationicpolymerization typically results in a high quantity

of acetal units, or even pure polyacetal (see ESIFig. S1). Thus, in order to prevent spontaneouscationic polymerization contamination duringmonomer purification, storage, radicalpolymerization and subsequent analysis, allglassware was prior rinsed with triethylamine.11

Additionally, the storage of the monomers at-18°C over sodium allows the preservation of themonomer for multiple months. Finally, to avoidcationic processes during the radicalpolymerization, 10 wt % pyridine11 was added tothe mixture and only liquid initiators were usedsince they are readily soluble and therefore allowprompt polymerization. Under such conditions weare confident that the obtained polymers wereprepared from exclusively radical polymerization.

After the polymerization of monomers C5, C5H,C6 and C7 and purification by precipitation, thefour polymers were analyzed by 1H and 13C NMR.All 1H and 13C NMR signals can be assigned andare consistent with the data reported within theliterature. 2D NMR techniques also confirmedthese assignments (see ESI for details, Figure S2and S3 for PC5 for example). The analysis of the13C NMR spectra (Fig. 1 for the polymerization ofmonomer C5, other NMR spectra are provided inESI) confirmed the presence of two repeatingunits within the copolymers. These spectradisplay peaks in the characteristic zones of bothacetal and ester units, at 100 and 170 ppm,respectively. We also noted a change in thenumber (i.e. the presence of diads, see Figure 1)and intensity of these peaks corresponding withthe temperature of polymerization. The acetalpeaks were more intense at low temperatures,while there was an inversion in the intensity ofthe two main ester peaks with temperature. It isclear that an increase in temperature promotesthe presence of ester units, which are highlyprevalent at 150 °C.

After full assignment of the 1H NMR spectrum,quantification of the percentage of ester units inPC5 can be performed by focusing on theprotons c and q in the region 3.7-4.2 ppm usingthe formula proposed by Pittman et al.25 whoperformed a similar study but instead usingcationic polymerization.

(1)

From this formula and others (see ESI for details)using either 1H or 13C NMR, we can calculate thepercentage of ring-opening at differenttemperatures. The results are extremely closeregardless of the applied method (ESI, Table S2).It should be noted that the difference betweenthe values is almost negligible at 120 and 150 °C, while it is less than ± 5% at low temperatures.Accordingly, there is a perfectly linear trend ofring-opening percentage and temperature,allowing a change in ester unit percentage fromca. 50% to 80% by increasing the temperaturefrom 50 to 100 °C. Extrapolating these

conditions, the polymerization of monomer C5should be performed beyond 200 °C to obtainpure polyester, which is not relevant. Theseresults are in good agreement with thosepreviously reported in the literature concerningthe trend, but also with ring-opening percentagevalues.

Figure 1. 1H and 13C NMR spectra and structure ofPC5 obtained at different temperatures.

In the case of the C5H polymerization, onlyacetal units were observed in the polymer chainsby both 1H and 13C NMR (see Figure S4 and S5),as was previously reported within the literature.26

Moreover, unlike the other CKA monomers, molarmasses were found to be very high (>30,000g.mol-1).

The six-membered ring monomer (C6) was thenpolymerized at the same temperatures. Thequantity of precipitated polymer was lower thanin the previous cases and therefore theuncertainty was higher, and thus a samplepolymerized at 100 °C was added to compensate.The obtained molar masses were also relativelysmall when compared to PC5. We noted that the13C NMR spectra had the same basiccharacteristics as those presented in Figure 1(the presence of peaks corresponding to bothester and acetal units at all temperatures; an

increase in the temperature leading to betterring-opening ability). However, whereaspreviously the ester peak intensity significantlyexceeded the intensity of acetal peaks attemperatures above 120 °C, the intensities aremuch closer in this case. Moreover, the peak b isalmost absent at low temperatures (Figure S6-S8), demonstrating a lower ring-opening ability ofsuch 6-membered CKA monomer when comparedto their 5-membered analogues. Nevertheless,the results still demonstrated a linear evolution inthe ring-opening percentage in relation totemperature. At 130 °C we calculate 50-60%ester units, which is significantly below the valueof 85% reported within the literature (Figure 2).11

Figure 2. Ring-opening percentage as a function oftemperature for the bulk polymerization ofmonomers C5-C7.

As expected from the literature data, the 7-membered ring monomer (MDO, C7) provided onlypolyester regardless of the temperature used (seeESI Figure S9-S10 for details). All of the obtainedexperimental data is in good agreement with theliterature data. Indeed, the order for obtainingpolyesters follows the trend: C5H << C6 < C5 <<C7. Nevertheless, we are now able to examinethese results in detail. The 5- and 6-memberedmonomers both have the ability to form aliphaticpolyester, their ring-opening ability increasing alsolinearly with temperature, with an almost identicalslope, whatever the monomer. It was alsodemonstrated that there is a clear difference in thering-opening ability of the 5- and 6-membered ringCKA monomers, with the 6-membered CKA beingless prone to ring-opening. These obtained datawere subsequently used as a reference set for thefollowing theoretical modeling.

Computational studyThe different structures of the monomer andadduct radicals have been optimized by the DFTmethod B3LYP / 6-31G (d), commonly used for itsexcellent quality of results and calculationtimes.15, 27, 28 Moreover, this method has alreadybeen efficiently used in conformational studies ofvarious heterocyclic rings.29, 30 The acetalylpropagating macroradicals has been optimized

by simulating the polymer chain using a methylgroup (Scheme 3, R5-R7 radicals) to mimic sterichindrance without requiring significantcalculation costs, while simultaneously reducingenergy errors due to free rotation of the chains.In each case, the two C–O bonds susceptible tofragmentation were broken to find the transitionstate of lowest energy. Here we only show thevalues for the selected transition state.Concerning the various cyclic radicals having anaromatic substituent (R5P, R6P and R7P) thehomolysis is always located on the same side asthe substitution, as expected.

There is only scarce experimental data for the β-scission of CKA monomers on which we can basea theoretical approach. The only values originatein a 1982 study where Barclay, Grilling andIngold31 studied I1 and I2 (Scheme 4)intermediates by EPR and measured theirfragmentation rate constant (kfrag,I1 (75°C)=7.6.103 s-1 (with Ea=61 kJ.mol-1 and log(A/s-

1)=13.0); kfrag,I2 (75°C) =1.0.103 s-1 (with Ea=67kJ.mol-1 and log(A/s-1)=13.0).31 To determine theactivation energies we used different quantummethods (i.e., UB3LYP, MO6-2X and G3(MP2)RAD)since it was shown that the particular methodapplied could lead to drastic differences whencompared with experimental data. The results ofthe calculations are displayed in Figure 3.Importantly, it was observed that calculationsperformed using the UB3LYP method led to alower Ea than the experiment, while calculationsmade with G3(MP2)RAD and MO6-2X are slightlyand exceedingly higher than the experimentaldata, respectively. This result is not surprising asthe UB3LYP method is known to generallyunderestimate the energy of structures.32 It isadditionally important to note that a difference of5-8 kJ.mol-1 between the energies of activation forthe two species I1 and I2 is correctly assessed byall techniques (difference between 3 and 6.5kJ.mol-1).

Figure 3. Influence of the quantum method on theactivation energies of the β-scission reaction ofacetalyl-based radicals and their comparison withexperimental data.

The values obtained with the method UB3LYP/6-31G(d) are very close but lower than the

experimental values with a 3 kJ.mol-1 deviation.On the other hand, the use of a larger base (i. e.6-311++G(3df, 2p)) is not interesting as it furtherunderestimates the energies with a deviation of5-6kJ.mol-1. The G3(MP2)RAD method,32, 33 knownfor the quality of its absolute values, is less closeto the experimental data than UB3LYP (10-11kJ.mol-1 higher deviation). As the G3(MP2)RADcalculations require much longer and are limitedto a few atoms, the UB3LYP/6-31G(d) methodappeared to present the best compromise inspeed/performance. We already utilized the sameDFT method for other quantum calculations ofCKA monomers.15, 34, 35

The activation energy values of β-scission allrange between 35 and 70 kJ mol-1 (Figure 4a). Allof the 7-membered CKA monomers known topolymerize exclusively by the ring-openingmechanism have an activation enthalpy lowerthan 40 kJ mol-1, in agreement with the previouscalculations of Ochiai and Endo.21 This study alsoconfirmed that the stabilization of the releasedradical is not a key parameter since there is nodirect link between the percentage of ring-opening and the presence of an aromatic ring inthe β position to the cyclic acetal functionality.Moreover, these calculations also do not allow adiscrimination between a partial and the absenceof ring-opening. Thus far, only β-scissionreactions have been studied; here and within theliterature. This is only a part of the completemechanism since radical ring-openingpolymerization is characterized by thecompetition between the β-fragmentation andthe direct addition. The reactions involved are notof the same order (unimolecular andbimolecular), and thus they are not comparablein terms of thermodynamics or activation energy,such comparisons usually being performed toidentify the most-favorable reaction mechanism.

Scheme 4. Complex mechanism to theoreticallydetermine the ester/acetal ratio in a polymerbackbone.

The correct method to understand the role of thedifferent reactions is to achieve a kinetic modelusing not only the energy of activation but alsothe rate coefficients kβ and kadd,closed (Scheme 4).

Figure 4. Enthalpies of activation ΔH‡ and reaction ΔHr for the ring-opening reaction (left) and thedifferent radical addition (acetalyl-based radical, middle) and open-type radical (right).

Indeed, to describe the macroscopic result (theratio between the acetal and ester units in thepolymer backbone) we need to compute thenumber of the two propagation events thatoccurred during the polymerization process, andthus the addition reaction after opening kadd,open isalso mandatory. Since our interest is focussed onthe propagation steps, we used classic initiationand termination steps and disregarded all sidereactions such as chain transfer reactions that areknown to occur during the polymerization ofMDO, as an example.36

To make an accurate estimate of the addition rateconstant of macroradicals onto monomers it isrecommended to model dimers or trimers insteadof unimers.37 However, this work involvesrelatively large molecules that have between 15and 33 atoms, which after addition can go up tomore than 60 atoms. Thus, we chose to directlyuse the rate constant of simple addition reactionsto limit computing time. In addition, in the case ofthe addition of radicals after ring-opening, thepenultimate effect was not envisioned since theprevious unit is at minimum 5 atoms away. In thecase of the radical addition of acetalyl-basedradicals, it is assumed that the effects of sterichindrance and the specificity of such radicals arewell above any potential penultimate effect.

Concerning the addition of ring-opened radicals,the growing number of possible rotations alongthe length of the aliphatic chains gives access toa very large amount of possible geometries. Inthis way, there is too great an uncertainty in thevalues of calculated energies. To avoid thislimitation, simple representative radicalsmimicking the macroradical were modelled i.e.the ethyl radical for monomers C5-C7 and thestyryl- or methyl-benzyl-type radical for the C5P-C7B monomers (Figure 4b). The work of Fisherand Radom27 which was dedicated to modelingadditions of radical reactions by DFT indicatesthat in the case of relatively large systems theB3LYP method is appropriate and has a goodcompromise between time and result, also laterconfirmed by Moscatelli.28 Thus, and also to beconsistent in the various calculations (additionand β-scission), this method was chosen to beapplied.

The results for the addition of ring-openedradicals onto the CKA monomers are described inFigure 3b. Since in all cases the polarity of bothadding radicals and CKA are similar, thus the rateof addition is dependent only on the stabilizationof the alkyl radical (primary, secondary or tertiaryalkyl radicals or the presence of a stabilizingaromatic ring). For example, the activationenthalpies of primary alkyl radicals are centered

around 28 ± 5 kJ.mol-1, while are higher in thecase of secondary radicals (35,5 kJ.mol-1 for C5H).For aromatic-based monomers, the benzylic typeradical has a lower activation enthalpy (43 kJ.mol-

1 for C7B) than styryl-based radicals (48±1kJ.mol-1 for C5P and C6P). These obtained valuescan be compared to the values described byFischer and Radom27 dealing with the addition ofmethyl and benzyl radicals onto vinyl ethers. Inthis case, activation energies of 25 and 40 kJ.mol-

1 were given, respectively, that are both 3 kJ.mol-1

lower than the values that we obtained for CKA,which are vinyl ethers in which an additionaloxygen atom is located in the α position to thevinyl functionality. Moreover, for the C5 monomerCoote and coworkers38 proposed a value of 30 ± 5kJ.mol-1 via high level ab initio calculations for thepropagation rate constant that is coherent withour value. From all these results we couldconclude that the ring-size does not greatly affectthe activation enthalpies for similar structures(C5-C6-C7 and C5P and C6P).

To our knowledge, there is no data within theliterature reporting the radical addition ofacetalyl-type radicals, especially onto cyclicketene acetals. The obtained results aresummarized in Figure 4c. The data shows that thecalculated energy values do not differsignificantly, i.e. all the activation enthalpiesbeing centered around 27 ± 5 kJ.mol-1 and thereaction enthalpies around -66 ± 8 kJ.mol-1. It canbe observed that only the ring size seems toinfluence such values since C5, C5H and C5P aresimilar, and such behavior holds true for 6- and 7-membered ring CKA monomers. It should benoted that these values are of the same order ofmagnitude as the addition of primary alkylradicals on the CKA while the acetalyl radicalshere are tertiary, showing the specific reactivityof such radicals.

The activation energies calculated for differentreactions are not directly comparable to knowwhether a monomer is more likely to propagatedirectly or undergo β-scission. Indeed, there aredifferent order reactions; i.e. monomolecular andbi-molecular. Therefore, kinetic modeling isrequired. Kinetic modeling is performed from therate coefficients of the various reactions. Theserate coefficients k can be obtained precisely byknowing the free energy of activation ∆G‡ orfrom the Eyring equation through the variouscomponents of enthalpy and entropy of activation( ∆ H ‡ and ∆ S‡ , respectively). However,DFT methods are known to give erroneousevaluations of entropy.39, 40

Indeed, the Gaussian software treats all vibrationslike harmonic oscillators. This is correct for certainvibrations, but the entropy associated withcertain hindered rotations is not properly takeninto account. In the cyclic ketal intermediate,such hindered rotations are important and thus

∆ S‡ leads to erroneous results. The use of theArrhenius equation simplifies the problem.Indeed, the pre-exponential factor A contains thecomponent of entropy and its value is rathersimilar for the same type of reaction in a narrowrange of temperatures.27 For the addition of openradicals, the values of log A that arerecommended are 7.5, 8, and 8.5 depending onwhether the groups are tertiary, secondary orprimary, respectively.27 However, no value for theaddition of tertiary acetalyl-based radicals exist inthe literature, the presence of more oxygenatoms appears to increase the value of log A indifferent cases.27 Therefore, we chose to use theaverage value of 8 for such acetalyl radicals. Inthe case of the ring-opening reaction, it isrecommended to take a log A value of 13.31, 41

Kinetic modeling was then performed usingPREDICI software. This software is based on thedeterministic Galerkin h-p-method has beenwidely used for describing molecular weightdistributions and polymer reaction kinetics for alarge range of polymer processes.34, 35, 42 Thekinetic scheme and the coefficients used areshown in Scheme 5 and Table S7 and S8,respectively.

OO OO

R

O

O

OO

R

R

Initiator R R+

R R+ R R

R +

OO+ OO

R O

O

OO

R

OO+

O

OR

kdism

kd

kadd

closed

closed

closed

closed

closed

open

open

kt, mixed

kt, closed

kt, open

Dead Polymer chains

closed + open

closed +

open

closed

+ open

O

O

O

OR

k

kadd, closed

kadd, open

Scheme 5. Kinetic model used in the PREDICIsoftware.

For the different reactions of the initiating step,(dissociation rate constant kd, dimerization of twoinitiating radicals kdim and first radical additionkadd) we used conventional values. Indeed, theinitiation theoretically has no influence on thecompetition between the different propagationreactions, and thus values corresponding to atypical radical polymerization were selected. Allthe termination reactions that could occur were

additionally modeled. As the propagating radicalsare alkyl or aromatic derivatives, recombinationrate constants of 1.0 × 109 and 1.0 × 106 L.mol-1.s-1 were chosen, respectively.34 Terminationreactions by disproportionation have not beenincluded as there is no data on the terminationmode of these monomers and this parameterdoes not influence the structure of the polymerchains. To simplify the model, chain transferreactions have not been taken into account.Although such reactions should occur for alkyl-based propagating monomers36 it was considerthat transfers do not interfere in the kineticcompetition, which is the main focus of this study.

A final approximation relates to the monomerconcentration in the polymerization medium. Byweighing a defined volume of the monomer C7B,we determined that the molar concentration ofthe monomer should be approximately 7.5 mol.L-

1. Not having the density data of all the variousmonomers, and to compare the simulation resultswithout changing several parameterssimultaneously, we set the concentrationidentical for all the monomers, to an average of 8mol.L-1. This value appeared to be a suitableintermediate for other more or less densemonomers. For comparison, the molarconcentration of styrene is 8.7 mol L-1.

The propagating species are simply either closedor open type. The assumption is made that therate coefficients are independent to the chainlength because we consider propagation as beingequal to the addition of simple molecules. It hasbeen already stated that the chain length was nottaken into account because the larger molecularsize requires too much computation time.Moreover, by modeling propagating radicals inthe form of dimers or trimers, the penultimateunit would be different according to the previousaddition (e.g. closed-closed, open-closed, closed-open or open-open dimers), which wouldcomplexify the system and thus would requiremany additional calculations that are notnecessarily useful in this particular case.

Counters have been inserted into the model toquantify the amount of ester and acetal functionsintroduced in the copolymer. The acetal counterwas increased when there is an addition of aclosed-type radical. The ester counter increasedwhen ring-opening occurred. In that way, it doesnot include counting when there is an addition ofan open-type radical since the resulting chain endis then of a closed type and can therefore react inboth ways. At the end of the modelling, thenumber of acetal and ester counters wererecorded and compared to determine thepercentage of ester units in the final polymerbackbone.

The result of the modeling is depicted in Figure 5.A good agreement between the experimentally

obtained values and those obtained from themodel can be observed in the case of simplemonomers C5, C6 and C7. Indeed, Figure 5shows relatively identical behavior between thesimulation and the experimental observations forthese monomers; C7 monomer gives only esterunits at 50 °C while C5 and C6 form copolymers.Moreover, the difference in ability between C5and C6 to form polyesters is also in goodagreement with the experimental results, with75% and 45% polyester at 100 ° C, respectively,(on average 20% more for C5 than C6) and anincrease in percentage of polyester with anincrease in temperature. In contrast, the slopedefining the increase in ester percentagedepending on the temperature is slightly steeperfor the simulation results in comparison to theexperimental data. This discrepancy couldoriginate from the assumptions made regardingchain length independency of the various kineticrate constants. Nevertheless, this modelingapproach provides an interesting and relativelyaccurate tool to describe the reactivity of CKAmonomers.

We additionally performed such modeling onmore complex monomers. With C5P, C7B andC8O the model gives complete ring-opening, inaccordance to the literature data.10 In contrast toexperimental data, the model predicts that C5Hshould contain some ester units even if such amonomer has a lower tendency to ring-open.26

The results obtained for C6P (Figure 6) is not inagreement with the literature data22 since themodeling showed an enhancement in the ring-opening ability in comparison to the C6 CKAmonomer (75 instead of 25% at 70 °C).

Figure 5. Theoretical (plain symbol and straightline) and experimental (empty symbol and dashed-dotted line) ring opening percentage as a function ofthe temperature for top: the bulk polymerization ofmonomers C5 (), C6 () and C7 (); bottom: thebulk polymerization 0f C5H () and C6P ()monomer.

The discrepancy between the theoretical resultsand the literature data can be explained bycationic polymerization that was not inhibited.22

This explanation is further supported by a study36

on C6 CKA derivatives bearing methyl groups onthe carbon in the α position relative to the cyclicacetal functionality. In that case, using base toprevent cationic polymerization, they obtained89% ester units at 120°C.43

Another parameter that could be used to increasethe ring-opening ability of CKA monomers is todecrease the monomer concentration in order tofavor the unimolecular reaction compared to theundesired bimolecular acetal propagation. Tosimulate the monomer dilution, the ring-openingpercentage of the C6 monomer at differentconcentrations and temperatures was modeled(Figure 6). As expected, an evolution towards theproduction of more polyester at high dilution wasobserved. On the other hand, the curves level outat the limit values of around 10 and 50%polyester at 50 and 120 °C, respectively for aconcentration of 8 mol.L-1,confirming that thevalue we used in previous simulations isrepresentative of the bulk polymerization.

Figure 6. Theoretical ring-opening percentage as afunction of temperature and monomer concentrationfor the C6 monomer.

Although relatively simple, the kinetic model wehave developed appears robust enough to allowan approximation of the behavior of a CKAmonomer. The model requires the determinationof three activation energies to investigate thereactivity of new CKA monomers. According to thecalculations performed for the addition reactions,it appeared possible to approximate the rate ofacetal-based addition according to the monomerring size and the rate of addition of open-typealkyl radicals by using previously determinedvalues for the addition of model alkyl radicalsonto simple CKA monomers. Using such anapproach, only the β-scission of the intermediateacetalyl-radical has to be calculated. Secondly,we performed the modeling using the parametersused for C6 and C8O monomers (i.e. themonomers that have the highest and lowestactivation energies for ring-opening) anddetermined the percentage of ester units in thepolymer backbone versus a constant K that isdetermined by the ratio kβ/kadd, closed (Figure 7).

Figure 7. Theoretical ring-opening percentage as afunction of the K parameter.

Interestingly all the data followed a master curve.A threshold value of 1 × 103 seems mandatory toobtain pure polyester. Using this threshold andthe values of the pre-exponential factors, we canestimate that a CKA monomer should have adifference between the activation energies ofring-opening and addition of the ring-retainingacetalyl lower than 13-15 kJ.mol-1 to efficientlyobtain polyester. If we assume that the radicaladdition of the acetalyl intermediate is onlydetermined by the ring size, this approach givesan upper limit for the β-scission reactiondepending of the ring size (Table 1).

Table 1. Upper values for the enthalpy ofactivation for the ring-opening reaction to obtainpure polyester according to CKA ring size

CKAMonomerSize

AverageΔH‡

add, closed

(kJ.mol-1)

ΔH‡β max

(kJ.mol-1)

5 27 40

6 24 37

>7 31 44

CONCLUSIONThe competitive process of ring-retainingpropagation is a major obstacle in thedevelopment of efficient CKA monomers. In thisstudy we investigated this key parameter by acombination of experimental and theoreticalapproaches. First, it was demonstrated that theratio between ester and acetal units in thepolymer backbone is linearly correlated to thepolymerization temperature, with the ease ofring-opening following the order C7 > C5 > C6.DFT calculations of the ring-opening reactionshowed that complete ring-opening behaviorcould be obtained with a ΔH‡ below 40 kJ.mol-1 butit was not possible to discriminate or quantify thebehavior for other monomers. By further utilizingthe kinetic modeling software PREDICI thebehavior of all CKA monomers was able to berationalized by considering the impact of theaddition of acetalyl and open-type radicals ontothe CKA monomer.

Although relatively simple, the developed kineticmodel is based on relevant values and seemsrobust enough to allow for an approximation ofthe behavior of a CKA monomer after completingthe necessary energy calculations. Furthermore,this model allows an attempt at therationalization of behavioral differences betweenthe monomers through structure-reactivityrelationships. The analysis of molecular orbitals isalso predicted to be an excellent method for thisbecause it can separate the contributions due tohyper-conjugation and those due to other energycontributions such as steric and electrostatic

interactions. This will be the subject of asubsequent study.

ASSOCIATED CONTENT

Supporting InformationThe Supporting Information is available free ofcharge on the ACS Publications website. 1H NMR and13C NMR spectra of the various polymers, kinetic rateconstants used in the modeling part, DFT Calculationdetails

AUTHOR INFORMATION

Corresponding Author* [email protected]

Author ContributionsThe manuscript was written through contributions ofall authors.

ACKNOWLEDGMENT We thank the French Ministry of Research for thefinancial support of the PhD thesis of A.T and theCNRS and the French National Research Agency(ANR-15-CE08-0019 and ANR-11-JS08-0005). Thiswork was also supported by the ‘Centre Régional deCompétences en Modélisation Moléculaire deMarseille’. Arkema is acknowledged for providingDEAB.

REFERENCES1. Cole, M.; Lindeque, P.; Halsband, C.; Galloway,

T. S., Microplastics as contaminants in the marineenvironment: A review. Marine Pollution Bulletin 2011,62 (12), 2588-2597.

2. Eriksen, M.; Lebreton, L. C. M.; Carson, H. S.;Thiel, M.; Moore, C. J.; Borerro, J. C.; Galgani, F.; Ryan,P. G.; Reisser, J., Plastic Pollution in the World's Oceans:More than 5 Trillion Plastic Pieces Weighing over250,000 Tons Afloat at Sea. Plos One 2014, 9 (12).

3. Geyer, R.; Jambeck, J. R.; Law, K. L.,Production, use, and fate of all plastics ever made.Science Advances 2017, 3 (7).

4. Nampoothiri, K. M.; Nair, N. R.; John, R. P., Anoverview of the recent developments in polylactide(PLA) research. Bioresource Technology 2010, 101(22), 8493-8501.

5. Vilela, C.; Sousa, A. F.; Fonseca, A. C.; Serra,A. C.; Coelho, J. F. J.; Freire, C. S. R.; Silvestre, A. J. D.,The quest for sustainable polyesters - insights into thefuture. Polymer Chemistry 2014, 5 (9), 3119-3141.

6. Castro-Aguirre, E.; Iniguez-Franco, F.;Samsudin, H.; Fang, X.; Auras, R., Poly(lactic acid)-Massproduction, processing, industrial applications, and endof life. Advanced Drug Delivery Reviews 2016, 107,333-366.

7. Albertsson, A. C.; Varma, I. K., Aliphaticpolyesters: Synthesis, properties and applications.Degradable Aliphatic Polyesters 2002, 157, 1-40.

8. Delplace, V.; Nicolas, J., Degradable vinylpolymers for biomedical applications. Nature Chemistry2015, 7 (10), 771-784.

9. Agarwal, S., Chemistry, chances and limitationsof the radical ring-opening polymerization of cyclicketene acetals for the synthesis of degradablepolyesters. Polymer Chemistry 2010, 1 (7), 953-964.

10. Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.;Guillaneuf, Y., Radical Ring-Opening Polymerization:Scope, Limitations and Application to (Bio)DegradableMaterials. Chem. Rev. 2017, 117, 1319-1406.

11. Bailey, W. J.; Ni, Z.; Wu, S. R., Synthesis ofpoly-epsilon-caprolactone via a free-radical mechanism- free-radical ring-opening polymerization of 2-methylene-1,3-dioxepane. Journal of Polymer SciencePart a-Polymer Chemistry 1982, 20 (11), 3021-3030.

12. Maji, S.; Zheng, M.; Agarwal, S., FunctionalDegradable Polymers via Radical Ring-OpeningPolymerization and Click Chemistry. MacromolecularChemistry and Physics 2011, 212 (23), 2573-2582.

13. Undin, J.; Finne-Wistrand, A.; Albertsson, A.-C.,Copolymerization of 2-Methylene-1,3-dioxepane andGlycidyl Methacrylate, a Well-Defined and EfficientProcess for Achieving Functionalized Polyesters forCovalent Binding of Bioactive Molecules.Biomacromolecules 2013, 14 (6), 2095-2102.

14. Hedir, G. G.; Bell, C. A.; O'Reilly, R. K.; Dove,A. P., Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and VinylBromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules 2015,16 (7), 2049-2058.

15. Tardy, A.; Honore, J. C.; Tran, J.; Siri, D.;Delplace, V.; Bataille, I.; Letourneur, D.; Perrier, J.;Nicoletti, C.; Maresca, M.; Lefay, C.; Gigmes, D.;Nicolas, J.; Guillaneuf, Y., Radical Copolymerization ofVinyl Ethers and Cyclic Ketene Acetals as a VersatilePlatform to Design Functional Polyesters. AngewandteChemie-International Edition 2017, 56 (52), 16515-16520.

16. Delplace, V.; Tardy, A.; Harrisson, S.; Mura, S.;Gigmes, D.; Guillaneuf, Y.; Nicolas, J., Degradable andComb-Like PEG-Based Copolymers by Nitroxide-Mediated Radical Ring-Opening Polymerization.Biomacromolecules 2013, 14 (10), 3769-3779.

17. Shi, Y. F.; Schmalz, H.; Agarwal, S., Designedenzymatically degradable amphiphilic conetworks byradical ring-opening polymerization. Polymer Chemistry2015, 6 (35), 6409-6415.

18. Dai, G. X.; Xie, Q. Y.; Chen, S. S.; Ma, C. F.;Zhang, G. Z., Biodegradable poly(ester)-poly(methylmethacrylate) copolymer for marine anti-biofouling.Progress in Organic Coatings 2018, 124, 55-60.

19. Guegain, E.; Michel, J. P.; Boissenot, T.;Nicolase, J., Tunable Degradation of CopolymersPrepared by Nitroxide-Mediated Radical Ring-OpeningPolymerization and Point-by-Point Comparison withTraditional Polyesters. Macromolecules 2018, 51 (3),724-736.

20. Wais, U.; Chennamaneni, L. R.; Thoniyot, P.;Zhang, H. F.; Jackson, A. W., Main-chain degradable starpolymers comprised of pH-responsive hyperbranchedcores and thermoresponsive polyethylene glycol-basedcoronas. Polymer Chemistry 2018, 9 (39).

21. Ochiai, B.; Endo, T., Computational Evaluationof Radical Ring-Opening Polymerization. J. Pol. Sci.: PartA: Polym. Chem. 2007, 45, 2827-2834.

22. Schulze, T.; Klemm, E., Investigations on freeradical polymerization of phenyl-substituted 2-methylene-1,3-dioxanes. Angew. Makromol. Chem.1995, 229, 123.

23. Bailey, W. J.; Wu, S.-R.; Ni, Z., Synthesis andFree Radical Ring-Opening Polymerization of 2-Methylene-4-phenyl-l,3-dioxolanae). Makromol. Chem.1982, 183, 1913-1920.

24. Cho, I.; Gong, M. S., Exploratory ring-openingpolymerization .5. radical ring-opening and cationicpolymerization of 2-methylene-4-phenyl-1,3-dioxolane.

Journal of Polymer Science Part C-Polymer Letters1982, 20 (7), 361-364.

25. Liu, Y.; Charles U. Pittman, J., Cationic Ring-opening Polymerizations of Cyclic Ketene AcetalsInitiated by Acids at High Temperatures. Journal ofPolymer Science: Part A Polymer Chemistry 1997, 35,3655-3671.

26. Schultze, T.; Letsch, J.; Klemm, E.,investigation on Radical polymerization of 2-Methylene-1,3-dioxolanes and 2-Methylene-1,3-oxazolidines.Journal of Polymer Science: Part A Polymer Chemistry1996, 34, 81-87.

27. Fischer, H.; Radom, L., Factors Controlling theAddition of Carbon-Centered Radicals to Alkenes—AnExperimental and Theoretical Perspective. AngewandteChemie International Edition 2001, 40 (8), 1340-1371.

28. Moscatelli, D.; Dossi, M.; Cavallotti, C.; Storti,G., Density Functional Theory Study of AdditionReactions of Carbon-Centered Radicals to Alkenes. TheJournal of Physical Chemistry A 2011, 115 (1), 52-62.

29. Taskinen, E., Relative Stabilities of theGeometrical and Conformational Isomers of 2-Alkylideneoxacycloalkanes. A DFT Study. StructuralChemistry 2000, 11 (5), 283-291.

30. Taskinen, E., Quantum Chemical Study of thePreferred Conformations, Molecular Geometries, andRelative Thermodynamic Stabilities of 2-Substituted 4-Methylene-1,3-Dioxolanes and 4-Methyl-1,3-Dioxoles.Structural Chemistry 2001, 12 (6), 419-429.

31. Barclay, L. R. C.; Griller, D.; Ingold, K. U.,Kinetic applications of Electron ParamagneticResonance Spectroscopy. 38. Rearrangement of b-(Acyloxy)alkyl and b-(Benzoyloxy)alkyl radicals. Journalof the American Chemical Society 1982, 104, 4399-4403.

32. Izgorodina, E. I.; Brittain, D. R. B.; Hodgson, J.L.; Krenske, E. H.; Lin, C. Y.; Namazian, M.; Coote, M.L., Should contemporary density functional theorymethods be used to study the thermodynamics ofradical reactions? Journal of Physical Chemistry A 2007,111 (42), 10754-10768.

33. Izgorodina, E. I.; Coote, M. L.; Radom, L.,Trends in R-X bond dissociation energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A surprisingshortcoming of density functional theory. Journal ofPhysical Chemistry A 2005, 109 (33), 7558-7566.

34. Tardy, A.; Delplace, V.; Siri, D.; Lefay, C.;Harrisson, S.; de Fatima Albergaria Pereira, B.; Charles,L.; Gigmes, D.; Nicolas, J.; Guillaneuf, Y., Scope andlimitations of the nitroxide-mediated radical ring-opening polymerization of cyclic ketene acetals.Polymer Chemistry 2013, 4 (17).

35. Tardy, A.; Honoré, J.-C.; Siri, D.; Nicolas, J.;Gigmes, D.; Lefay, C.; Guillaneuf, Y., A comprehensivekinetic study of the conventional free-radicalpolymerization of seven-membered cyclic keteneacetals. Polymer Chemistry 2017, 8 (34), 5139-5147.

36. Jin, S.; Gonsalves, K. E., A Study of theMechanism of the Free-Radical Ring-OpeningPolymerization of 2-Methylene-1,3-dioxepane.Macromolecules 1997, 30 (10), 3104-3106.

37. Izgorodina, E. I.; Coote, M. L., Accurate ab initioprediction of propagation rate coefficients in free-radical polymerization: Acrylonitrile and vinyl chloride.Chemical Physics 2006, 324 (1), 96-110.

38. Roberts, G. E.; Coote, M. L.; Heuts, J. P. A.;Morris, L. M.; Davis, T. P., Radical Ring-OpeningCopolymerization of 2-Methylene 1,3-Dioxepane andMethyl Methacrylate: Experiments Originally DesignedTo Probe the Origin of the Penultimate Unit Effect.Macromolecules 1999, 32, 1332-1340.

39. Lin, C. Y.; Izgorodina, E. I.; Coote, M. L., Howaccurate are approximate methods for evaluatingpartition functions for hindered internal rotations?Journal of Physical Chemistry A 2008, 112 (9), 1956-1964.

40. Cramer, C. J., Essentials of ComputationalChemistry. Theories and Models. J. Wiley & Sons: 2004;pp 375-377.

41. Benson, S. W., Thermochemical Kinetics. Wiley:New York, 1976.

42. Wulkow, M., Macromolecular ReactionEngineering 2008, 2, 461-494.

43. Zhende, N.; Bailey; W, J., Synthesis and freeradical polymerization of 2-methylene-1,3-dioxanederivatives. Acta Polymerica Sinica 1987, 1 (5), 379-383.

SYNOPSIS TOC

4

Supporting Information

The Radical Ring-Opening Polymerization of Cyclic Ketene

Acetals Rationalized: An Experimental and Theoretical Study

Antoine Tardy, Noémie Gil, Christopher M. Plummer, Didier Siri, Didier Gigmes, Catherine

Lefay*, Yohann Guillaneuf*

Aix-Marseille Univ., CNRS, ICR UMR 7273, 13397 Marseille, France

E-mail: [email protected]

Fax: +33 (0)4 91 28 87 58; Tel: +33 (0)4 91 28 28 10

Table of contents

I - General Information

II - Analysis of the polymers

II.1 - Cationic polymerization of the C5 monomer

II.2 – Free radical polymerization of the C5 monomer

II.3 – Free radical polymerization of the C5H monomer

II.4 – Free radical polymerization of the C6 monomer

II.5 – Free radical polymerization of the C7 monomer

III - Theoretical calculations

III.1 - DFT calculations: monomers and radicals

III.2 - Kinetic rate constants used for the PREDICI modeling

I - General information

Temperature Time range Initiator 10 h Half-life

50 °C 24-50 h AIBN

DEAB

64.8 °C

66 °C

70 °C 6-24 h

100 °C 16 h TBEC

99.6 °C

120 °C 6-20 h Vam111

DTBP

111 °C

129.4 °C

150 °C 1-2 h

II.1 - Cationic polymerization of the C5 monomer

Figure S1: 1H and 13C NMR spectra of the cationic polymerization of the C5 monomer

AT179_Tscel-solP-S_13C.1r.esp

AT179_Tscel-solP-S_13C.1r.esp 1D NMR

180 160 140 120 100 80 60 40 20 0Chemical Shift (ppm)

CDCl3

p

q

r

n

(ppm)

AT179_Tscel-solP-S.001.001.1r.esp

AT179_Tscel-solP-S.001.001.1r.esp 1D NMR

7 6 5 4 3 2 1 0Chemical Shift (ppm)

qn

r

(ppm)

CDCl3

II. Free radical polymerization of the C5 monomer

T (°C) Initiator Time (h) Conv. Mp (g/mol)

50 DEAB

45 ~0.30 2900

70 24 0.55 3000

120 DTBP

19 0.73 2100

150 2 0.43 3400

Table S1: Experimental details for the polymerization of the C5 monomer

Figure S2 : HMBC spectra showing the specific regions for acetals (top section) and esters (bottom section) for PC5 carried out at 50°C (a) and 150°C (b)

AT189_50-PS-HMBC.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5 1.0ppm

101

102

103

104

105

106

107

108

109

110

111

112

113

114

ppm

2.58, 108.85

2.76, 107.5

2.12, 109.54

2.12, 107.51

1.83, 108.862.19, 108.85

3.91, 108.85

a

e

d gm

c q

a.h n

o'

op

w w'

AT190_150-PS.HMBC.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5ppm

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

ppm

2.58, 108.83

a

ed

gm

c

q

o

b.

AT189_50-PS-HMBC.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5 1.0ppm

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ppm

2.58, 169.25

2.34, 172.68

2.76, 169.7

1.91, 172.68

1.2, 176.61

2.52, 171.13

4.06, 169.25

2.52, 176.61

4.06, 172.68

a

e

d gm

c q

a.h n

b

DEAB

ff'

w

AT190_150-PS.HMBC.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5ppm

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179pp

m2.33, 172.61

1.9, 172.64

2.58, 169.24

4.06, 172.61

ae d

gm

c

qb.

h n

f

b

Figure S3: HSQC-ED for PC5; 50°C (a, c) and 150°C (b, d); in red the CH2, in blue the CH and CH3

AT189_50-PS-HSQC.2rr.esp

4.2 4.1 4.0 3.9 3.8 3.7ppm

56

57

58

59

60

61

62

63

64

65

66

67

68

69

ppm

3.92, 65.154.04, 64.55

4.06, 63.52

4.08, 60.533.66, 60.1

a.j

q1

j

c1

c2

q1

q2

c1, c2q2

AT190_150-PS.HSQC.2rr.esp

4.2 4.1 4.0 3.9 3.8 3.7 3.6ppm

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

ppm

4.06, 63.49

3.93, 65.124.03, 64.44

4.07, 60.45

4.22, 62.02

b. j q1, q2

j

c1

c2

q1

q2

c1 c2

AT189_50-PS-HSQC.2rr.esp

2.5 2.0 1.5 1.0ppm

10

15

20

25

30

35

40

45

ppm

2.59, 42.64

1.85, 33.94

1.69, 22.77

2.34, 30.64

1.91, 24

2.76, 42.16

1.2, 25.34

2.12, 42.15

1.2, 14.13

1.36, 25.051.15, 26.47

c.a

e

i

g

m

d gm

d

a

e

h

h

n

n

i

AT190_150-PS.HSQC.2rr.esp

2.5 2.0 1.5 1.0ppm

10

15

20

25

30

35

40

45

ppm

2.33, 30.6

1.9, 23.97

2.58, 42.56

1.2, 14.18

1.83, 33.92

1.68, 22.75

1.17, 27.26

1.49, 21.65

d. a

e

i

g

m

d

gmi

d

a

e

Quantification of the ester/acetal ratio in the copolymer backbone

From the 13C NMR spectra an attempt can be made to estimate the relative proportions of the two motifs by the integration of the observed peaks using the following formula:

%𝑒𝑠𝑡𝑒𝑟 = 𝐼!"#!$

𝐼!"#!$ + 𝐼%&é#%( (I)

According to this calculation, the percentage of ester is approximately 45% at 50 °C and 85% at 150 °C (Table S2). Nevertheless, a specificity of 13C NMR is that the relaxation of carbon atoms in chemically different environments is not identical. Consequently, only an estimate of the ester percentage is possible, an accurate quantitative analysis being unfeasible. To perform a quantitative analysis it is necessary to utilize the 1H NMR spectra, which is more complicated to analyze due to its complexity.

We first assigned the 13C NMR spectra in the 90–180 ppm range, subsequently assigning corresponding 1H NMR peaks using 2D NMR to complete the 1H NMR assignments in correspondence with the expected structure:

As ester units are the predominant unit created within the polymer backbone during high temperature polymerization, it follows that there are more pure polyester blocks than alternating acetal-ester units. Thus, according to Figure S5, at 150 °C the signal at 172.7 ppm is more intense than the signal at 169.3 ppm and therefore corresponds to carbonyl b of the pure polyester segments, while the signal at 169.3 ppm corresponds to carbonyl f, an ester unit preceded by an acetal unit. Using the same logic, at high temperature the inserted acetal units are less numerous and therefore predominantly of the type situated between two ester units. Consequently, the single acetal peak remaining at 150°C, which has a chemical shift of 109.9 ppm, corresponds to carbon o. The two remaining peaks at 109.6 ppm and 107.6 ppm therefore correspond to homopolyacetal units (carbon p) and to acetal-acetal-ester triads (carbon o’), without differentiation being presently possible.

Thus, quantification of ester percentage can be achieved by integration of the c and q protons in the 3.7–4.2 ppm range by formula II proposed by Pittman1 who conducted a similar study using cationic polymerization.

%𝑒𝑠𝑡𝑒𝑟 = (𝐼&)

,𝐼& +𝐼)2. /

(II)

1. Liu, Y. & Pittman, C. U. Cationic ring-opening polymerizations of cyclic ketene acetals initiated by acids at high temperatures. J. Polym. Sci. Part A Polym. Chem. 35, 3655–3671 (1997).

Nevertheless, the HSQC spectra (Figure S3 a and b) shows a non-negligible overlap in the signals at approximately 4.0 ppm, which could lead to inaccurate values. We were therefore interested in completely characterizing the 1H NMR spectrum of the polymers to perform the same calculation, integrating the CH2 originating from the double bond of the monomer. The hydrogens labelled a are directly usable, but other assignments require the use of 2D spectra.

The HMBC sequences in Figure S2 demonstrated that the peaks at 2.6 and 2.75 ppm correlate with acetal carbons at ~108 ppm, but also with carbonyls at ~169.5 ppm. As the first peak was retained while the second disappeared when polymerization was performed at 150°C, the CH2 e and h of the ester-acetal-ester and acetal-acetal-ester triads are thus respectively the CH2 e and h. Conversely, the peak at 2.1 ppm correlates only with the acetal carbon peaks. It is therefore characteristic of the acetal-acetal n sequence which decreases with increasing temperature. These assignments and those of the g and m peaks were again confirmed by comparison to the HSQC (Figure S3 c and d).

Thus, a third way of calculating the ring-opening percentage from 1H NMR spectra can be performed according to formula III:

%𝑒𝑠𝑡𝑒𝑟 = (𝐼% + 𝐼! + 𝐼* + 𝐼+)

(𝐼% + 𝐼! + 𝐼* + 𝐼+) + (𝐼, + 𝐼- + 𝐼+.) (III)

Where 𝐼+ and 𝐼+.correspond to 𝐼/ and 𝐼/. or 𝐼0 and 𝐼0. depending on the initiator used. Where 𝐼- replaces 𝐼1 assuming that their integrations are identical because 𝐼1 is not available. Using the three proposed formulas, the calculation of the percentage of ring-opening at various temperatures could be performed (Table S2). It should be noted that the difference between the values is almost non-existent at 120 and 150 °C, while it is less than ±5% at low temperatures. It therefore appeared that all three methods are valid and that even the method based upon 13C NMR integration (method I) is relatively reliable, although it gave slightly lower results.

Temperature (°C)

% ester unit in the polymer backbone

method I (13C)

method II (1H)

method III (1H) Average

50 45.0 55.4 52.7 51.3

70 55.6 67.1 62.0 60.9

120 73.5 76.0 75.9 75.3

150 84.5 83.6 81.6 83.3

Table S2: Percentage of ester units in the backbone of PC5

II.3. Polymerization of the C5H monomer

T (°C) Initiator Time (h) Conv. Mp (g/mol) % ring opening

120 DTBP

20 - 70000 0

150 2,5 - 40000 0

160 ABIB 25 - 13000 0

Table S3: Experimental details for the polymerization of the C5H monomer

Figure S4 : Structure, 13C and 1H NMR spectra of PC5H

AT232_13C.1r.esp

AT232_13C.1r.esp 1D NMR

180 160 140 120 100 80 60 40 20 0Chemical Shift (ppm)

CDCl3

p q rs

n

(ppm)AT229_150-P2.004.001.1r.esp

AT229_150-P2.004.001.1r.esp 1D NMR

4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

(ppm)

q rs

n

sr

Figure S5 : HMBC (left) and HSQC (right) of PC5H

AT232_160-P2_400MHZ.HMBC.2rr.esp

3.5 3.0 2.5 2.0 1.5 1.0ppm

96

98

100

102

104

106

108

110

112

114

116

118

120

ppm2.53, 108.82

2.76, 108.82

1.51, 108.82

nq r s r s

p

X AT232_160-P2_400MHZ.HSQC.2rr.esp

3.5 3.0 2.5 2.0 1.5 1.0ppm

8

16

24

32

40

48

56

64

72

80

88

ppm

3.35, 79.25

1.21, 23.98

2.1, 28.8

1.42, 291.43, 30.24

1.76, 23.53

2.51, 47.44

2.75, 48.05

p

nq r s r s

X

X

X

X

q

s

r

II.4. Polymerization of the C6 monomer

T (°C) Initiator Time (h) Conv. Mp (g/mol)

50 DEAB

50 0.61 2800

70 24 0.37 2200

100 TBEC 16 0.39 1900

120 DTBP

18 0.62 3200

150 1 0.44 5100

Table S4: Experimental details for the polymerization of the C6 monomer

Figure S6: Structure, 13C and 1H NMR spectra of PC6 obtained at different temperatures

AT-186-187-191-179_13C.esp

AT-186-187-191-179_13C.esp 1D NMR

184 176 168 160 152 144 136 128 120 112 104 96 88Chemical Shift (ppm)

1

2

3

4

5

150∞C

120∞C

100∞C

70∞C

po

b

o'f50∞C

(ppm)

AT-186-187-191-179_13C.esp

AT-186-187-191-179_13C.esp 1D NMR

184 176 168 160 152 144 136 128 120 112 104 96 88Chemical Shift (ppm)

1

2

3

4

5

150∞C

120∞C

100∞C

70∞C

po

b

o'f50∞C

(ppm)

AT-186-187-191-179_13C.esp

AT-186-187-191-179_13C.esp 1D NMR

184 176 168 160 152 144 136 128 120 112 104 96 88Chemical Shift (ppm)

1

2

3

4

5

150∞C

120∞C

100∞C

70∞C

po

b

o'f50∞C

(ppm)

AT-186-187-191-179_13C.esp

AT-186-187-191-179_13C.esp 1D NMR

184 176 168 160 152 144 136 128 120 112 104 96 88Chemical Shift (ppm)

1

2

3

4

5

150∞C

120∞C

100∞C

70∞C

po

b

o'f50∞C

(ppm)

AT186-187-191_PS.1r.esp

AT186-187-191_PS.1r.esp 1D NMR

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

1

2

3

4

150∞C

120∞C

100∞C

70∞C

h

a

n

d,em

c

(ppm)

i

a

cq

q

h

h

h'

m

d,e

g

i

r AT186-187-191_PS.1r.esp

AT186-187-191_PS.1r.esp 1D NMR

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

1

2

3

4

150∞C

120∞C

100∞C

70∞C

h

a

n

d,em

c

(ppm)

i

a

cq

q

h

h

h'

m

d,e

g

i

r AT186-187-191_PS.1r.esp

AT186-187-191_PS.1r.esp 1D NMR

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

1

2

3

4

150∞C

120∞C

100∞C

70∞C

h

a

n

d,em

c

(ppm)

i

a

cq

q

h

h

h'

m

d,e

g

i

r AT186-187-191_PS.1r.esp

AT186-187-191_PS.1r.esp 1D NMR

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

1

2

3

4

150∞C

120∞C

100∞C

70∞C

h

a

n

d,em

c

(ppm)

i

a

cq

q

h

h

h'

m

d,e

g

i

r AT186-187-191_PS.1r.esp

AT186-187-191_PS.1r.esp 1D NMR

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

1

2

3

4

150∞C

120∞C

100∞C

70∞C

h

a

n

d,em

c

(ppm)

i

a

cq

q

h

h

h'

m

d,e

g

i

r

Figure S7: HMBC spectra showing the specific regions for acetals (top section) and esters (bottom section) of PC6 carried out at 50°C (a) and 150°C (b)

AT186_50-PS.HMBC.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5ppm

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

100.5

101.0

101.5

ppm

2.83, 98.48

3.01, 97.82

1.87, 98.49

o

o'

p

hh' n

m gc

a

d,ea.AT187_D150-PS.HMBC_2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5ppm

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

100.5

101.0

101.5

ppm

2.84, 98.48

1.85, 98.473.89, 98.47

o

o'

p

h

h' n

m gq2

c a d,e

b.

AT186_50-PS.HMBC.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5ppm

166

167

168

169

170

171

172

173

174

ppm

2.83, 169.37

3.01, 169.37

hh'

n

m gq2

c

a

d,e

f

b

AT187_D150-PS.HMBC_2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5ppm

166

167

168

169

170

171

172

173

174

ppm

2.83, 169.52

2.34, 173.2

4.09, 173.2

2.05, 170.81

1.68, 173.2

h

h' n

m

gq2

c a d,e

f

b

Figure S8: HSQC-ED of the CH2 specific region of PC6 performed at 50°C (a) and 150°C (b) and full spectrum at 50°C (c) and 150°C (d)

Polymerization temperature

(°C)

Ester percentage according to the calculation method method I

(13C) method II

(1H) method III

(1H) Average

50 18.7 44.1 32.9 31.9 70 29.8 47.1 32.3 36.4

100 41.2 57.7 41.3 46.7 120 45.8 58.4 43.7 49.3 150 58.6 69.9 56.1 61.5

Table S5: Percentage of ester units in the backbone of PC6

AT186_50-PS.HSQC.2rr.esp

4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5F2 Chemical Shift (ppm)

56

57

58

59

60

61

62

63

64

65

66

67

68

69

F1 C

hem

ical

Shi

ft (p

pm)

3.9, 59.43

4.06, 66.72

3.77, 66.72

4.07, 64.53c

c

q1

q2

q2q2q1+q3

q3

a. AT187_D150-PS.HSQC_2rr.esp

4.25 4.00 3.75 3.50ppm

57

58

59

60

61

62

63

64

65

66

67

68

69

ppm

4.09, 63.84

3.89, 59.72

3.97, 59.71

4.03, 65.98

3.72, 59.39

3.75, 66.86

c

c

q1

q2

q2

q2 q1+q3

q3

b.

AT186_50-PS.HSQC.2rr.esp

3.0 2.5 2.0 1.5 1.0ppm

10

15

20

25

30

35

40

45

ppm

1.26, 29.55

1.43, 30.41

1.64, 28.76

2.83, 38.16

1.32, 25.592.05, 25.6

1.51, 19.45

1.86, 36.48

1.23, 14.08

hh' a

md,e g

n

hh'

a

m

d

g

r

e

r

c.

DEAB

AT187_D150-PS.HSQC_2rr.esp

3.0 2.5 2.0 1.5 1.0ppm

10

15

20

25

30

35

40

45pp

m

1.68, 27.98

2.34, 33.59

1.68, 21.34

2.84, 38.31

1.86, 36.45

1.5, 19.51

1.57, 25

1.81, 24.99

h

h'

a

m

d,e

gn

hh'

a

m

d

g

r

e

r

d.

II.5. Polymerization of C7

T (°C) Initiator Time (h) Conv. Mn (g/mol) Mw (g/mol) % ring-opening

50 DEAB

24 0.55 8400 35200 100

70 3 0.69 8800 55600 100

120 DTBP

3 0.69 8700 31300 100

150 1 0.97 9400 186700 100

Table S6: Experimental details for the polymerization of the C7 monomer

Figure S9: Structure, 13C and 1H NMR spectra of PC7)

AT163_D120-6H-PS.002.001.1r.esp

AT163_D120-6H-PS.002.001.1r.esp 1D NMR

180 160 140 120 100 80 60 40 20 0Chemical Shift (ppm)

b

j h

cd

e

a

n

i g

f

l

m k

(ppm)

CDCl3

AT163_D120-6H-PS.001.001.1r.esp

AT163_D120-6H-PS.001.001.1r.esp 1D NMR

7 6 5 4 3 2 1 0Chemical Shift (ppm)

c d, f, n

a

i g

k

(ppm)

CDCl3

e, m, l

Figure S10 : HSQC-ED (left) and HMBC (right) analysis of PC7

AT163_D120-6H-PS.004.001.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5 1.0ppm

10

15

20

25

30

35

40

45

50

55

60

65

ppm

4.06, 64.12

2.31, 34.09

1.63, 28.31.65, 24.57

1.38, 25.49

1.59, 30.65

0.93, 13.68

1.37, 19.1

2.81, 41.112.44, 35.91

a

c

c

a

d

fe

k

k

g

g

i

i

i

g

m m

nn

l

k

l

d,f,n

e,m,l AT163_D120-6H-PS.005.001.2rr.esp

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5ppm

169.5

170.0

170.5

171.0

171.5

172.0

172.5

173.0

173.5

174.0

174.5

175.0

175.5

176.0

176.5

ppm2.32, 173.47 1.64, 173.414.05, 173.48

2.7, 171.82

2.41, 174.64

2.69, 174.64

c

b

h

i

a d,fe,m,l

kgi n

III. Theoretical calculations

III.1 DFT Calculations

UB3LYP/6-31G(d)

AT_R-I1fer

C 0.025090 -0.129851 -0.021578 C 0.021325 -0.107418 1.522141 C 2.160201 -0.076477 0.644858 H -0.096381 -1.152355 -0.406241 H -0.725738 0.522646 -0.473304 C 3.457174 0.653892 0.767718 H 4.080900 0.179904 1.531005 H 3.992690 0.629486 -0.185779 O 1.316920 0.371111 -0.359934 O 1.436732 -0.251056 1.816036 H 3.307739 1.709127 1.052975 C -0.439993 1.243225 2.076978 H 0.088728 2.060625 1.575991 H -0.230697 1.302066 3.149725 H -1.517440 1.381642 1.925923 C -0.727271 -1.280562 2.145718 H -0.627187 -1.263676 3.235728 H -1.794921 -1.232541 1.900900 H -0.326441 -2.230382 1.778202 Sum of electronic and thermal Enthalpies = -385.485577 Hartree

AT_R-I1ts

C 0.005448 -0.010471 -0.005173 C 0.015139 -0.005464 1.502764 C 2.250205 -0.025102 0.496068

H -0.304849 -0.985455 -0.397596 H -0.627079 0.771577 -0.436085 C 3.463690 0.859388 0.550492 H 4.185870 0.450149 1.260948 H 3.932222 0.925897 -0.436363 O 1.351123 0.276144 -0.490229 O 1.742921 -0.629413 1.508303 H 3.211277 1.886089 0.864793 C 0.044086 1.343840 2.172011 H 0.677608 2.050925 1.626467 H 0.419971 1.264447 3.197685 H -0.966225 1.781662 2.223689 C -0.735985 -1.095394 2.212353 H -0.472774 -1.121238 3.275487 H -1.824109 -0.942016 2.147202 H -0.503842 -2.073598 1.779746 Sum of electronic and thermal Enthalpies = -385.464393 Hartree

Imaginary frequency = i811.78 cm-1 AT_R-I1ouv_1

C -0.104878 -0.582345 0.030600 C -0.095114 -0.202986 1.469664 C 1.986606 0.151172 -0.900374 H -0.640259 -1.522213 -0.134939 H -0.528093 0.204253 -0.597391 O 1.243163 -0.898417 -0.490177 O 1.618564 1.306607 -0.864705 C -0.105004 1.234319 1.886518 H -0.480493 1.888581 1.094718 H -0.715505 1.382036 2.788724 H 0.908195 1.593478 2.135745 C 0.219401 -1.253092 2.490315 H -0.278559 -1.046892 3.446966 H -0.078563 -2.253890 2.155372 H 1.300785 -1.301116 2.707436 C 3.331549 -0.315261 -1.413744 H 3.196366 -1.017865 -2.242484 H 3.911709 0.545880 -1.747264 H 3.872380 -0.845136 -0.622673 Sum of electronic and thermal Enthalpies = -385.508463 Hartree

UB3LYP/6-311++G(3df,2p)

AT_R-I1rea_GB

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.543584 C 2.137105 0.000000 0.661954 H -0.141697 -1.014262 -0.399260 H -0.738817 0.673449 -0.440605 C 3.448068 0.703320 0.794536 H 4.064199 0.204227 1.547910 H 3.981031 0.685474 -0.160528 O 1.300806 0.480876 -0.333309 O 1.412436 -0.181426 1.831329 H 3.319260 1.756024 1.098568 C -0.427896 1.353085 2.118995 H 0.118503 2.164964 1.628031 H -0.214148 1.391570 3.191788 H -1.502205 1.519129 1.973422 C -0.774372 -1.163958 2.152572 H -0.670147 -1.165490 3.242322 H -1.841364 -1.086613 1.912569 H -0.397825 -2.117653 1.769724 Sum of electronic and thermal Enthalpies = -385.7928007 Hartree

AT_R-I1ts_GB

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.507976 C 2.241550 0.000000 0.515606 H -0.300662 -0.975887 -0.397644 H -0.635440 0.778875 -0.432369 C 3.448179 0.893099 0.580764 H 4.168761 0.486732 1.294484 H 3.922523 0.966336 -0.402833 O 1.346628 0.298022 -0.475443 O 1.732214 -0.611388 1.522548 H 3.186280 1.916874 0.896843 C 0.014823 1.347218 2.181872 H 0.646652 2.060722 1.642762 H 0.384702 1.267106 3.209672 H -0.998963 1.777507 2.228509 C -0.747686 -1.097744 2.209101

H -0.491105 -1.125254 3.273812 H -1.836460 -0.952062 2.137467 H -0.505651 -2.072774 1.774749 Sum of electronic and thermal Enthalpies = -385.7698964 Hartree

Imaginary frequency = i811.78 cm-1

AT_R-I1ouv_GB

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.488259 C 2.299947 0.000000 -0.699505 H -0.842212 -0.570557 -0.403152 H -0.004337 1.012178 -0.409506 O 1.160886 -0.713944 -0.575286 O 2.418657 1.162326 -0.372908 C 0.514666 1.175961 2.257639 H 0.519495 2.089411 1.656320 H -0.083024 1.350260 3.163671 H 1.552854 1.018480 2.596825 C -0.242661 -1.290040 2.209564 H -0.720628 -1.122986 3.183886 H -0.873906 -1.973134 1.628633 H 0.699793 -1.827329 2.414361 C 3.397579 -0.846980 -1.305976 H 3.087566 -1.220646 -2.287302 H 4.304633 -0.249652 -1.405160 H 3.592833 -1.718608 -0.672570 Sum of electronic and thermal Enthalpies = -385.81715 Hartree

G3(MP2)RAD

AT_R-I1rea_G3b

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.543584 C 2.137105 0.000000 0.661954 H -0.141697 -1.014262 -0.399260 H -0.738817 0.673449 -0.440605

C 3.448068 0.703320 0.794536 H 4.064199 0.204227 1.547910 H 3.981031 0.685474 -0.160528 O 1.300806 0.480876 -0.333309 O 1.412436 -0.181426 1.831329 H 3.319260 1.756024 1.098568 C -0.427896 1.353085 2.118995 H 0.118503 2.164964 1.628031 H -0.214148 1.391570 3.191788 H -1.502205 1.519129 1.973422 C -0.774372 -1.163958 2.152572 H -0.670147 -1.165490 3.242322 H -1.841364 -1.086613 1.912569 H -0.397825 -2.117653 1.769724 Sum of electronic and thermal Enthalpies = -384.8697 Hartree

AT_R-I1ts_G3b

C 0.005448 -0.010471 -0.005173 C 0.015139 -0.005464 1.502764 C 2.250205 -0.025102 0.496068 H -0.304849 -0.985455 -0.397596 H -0.627079 0.771577 -0.436085 C 3.463690 0.859388 0.550492 H 4.185870 0.450149 1.260948 H 3.932222 0.925897 -0.436363 O 1.351123 0.276144 -0.490229 O 1.742921 -0.629413 1.508303 H 3.211277 1.886089 0.864793 C 0.044086 1.343840 2.172011 H 0.677608 2.050925 1.626467 H 0.419971 1.264447 3.197685 H -0.966225 1.781662 2.223689 C -0.735985 -1.095394 2.212353 H -0.472774 -1.121238 3.275487 H -1.824109 -0.942016 2.147202 H -0.503842 -2.073598 1.779746 Sum of electronic and thermal Enthalpies = =-384.833 Hartree

Imaginary frequency = i811.78 cm-1

AT-R-I1ouv_G3

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.488259 C 2.299947 0.000000 -0.699505 H -0.842212 -0.570557 -0.403152 H -0.004337 1.012178 -0.409506 O 1.160886 -0.713944 -0.575286 O 2.418657 1.162326 -0.372908 C 0.514666 1.175961 2.257639 H 0.519495 2.089411 1.656320 H -0.083024 1.350260 3.163671 H 1.552854 1.018480 2.596825 C -0.242661 -1.290040 2.209564 H -0.720628 -1.122986 3.183886 H -0.873906 -1.973134 1.628633 H 0.699793 -1.827329 2.414361 C 3.397579 -0.846980 -1.305976 H 3.087566 -1.220646 -2.287302 H 4.304633 -0.249652 -1.405160 H 3.592833 -1.718608 -0.672570 Sum of electronic and thermal Enthalpies = -384.88627 Hartree

M06-2X/6-31G(d)

AT_R-I1reaM

C -0.002143 -0.029977 0.000742 C 0.014157 -0.031614 1.534801 C 2.125901 -0.010008 0.646323 H -0.114709 -1.048831 -0.394742 H -0.760420 0.626008 -0.431441 C 3.400068 0.744845 0.818628 H 4.034555 0.238357 1.548826 H 3.931513 0.802367 -0.133518 O 1.279628 0.482240 -0.323700 O 1.408843 -0.270088 1.797391 H 3.208054 1.767867 1.175229 C -0.346743 1.338970 2.097406 H 0.233131 2.114308 1.586872 H -0.116767 1.375404 3.165605 H -1.412619 1.548938 1.959078

C -0.799795 -1.151881 2.153724 H -0.689282 -1.143847 3.241578 H -1.861230 -1.030474 1.914228 H -0.459206 -2.119866 1.776573 Sum of electronic and thermal Enthalpies = -385.308986 Hartree

AT_R-I1tsM

C -0.012930 0.001374 -0.000945 C -0.007221 -0.010472 1.499860 C 2.209753 0.023184 0.523590 H -0.302288 -0.974951 -0.403551 H -0.651533 0.780875 -0.425565 C 3.411993 0.914158 0.602029 H 4.075665 0.554758 1.389094 H 3.948277 0.914884 -0.350461 O 1.328059 0.312696 -0.465459 O 1.722329 -0.636052 1.491193 H 3.128003 1.953719 0.820401 C 0.059076 1.331260 2.168505 H 0.734133 2.004364 1.628816 H 0.415607 1.235583 3.198340 H -0.930235 1.810566 2.196254 C -0.746262 -1.101494 2.208282 H -0.449580 -1.142134 3.260928 H -1.833094 -0.944555 2.173986 H -0.523408 -2.070384 1.752580 Sum of electronic and thermal Enthalpies = -385.278979 Hartree

Imaginary frequency = i951.07 cm-1 AT_R-I1ouvM

C -0.046870 0.076674 -0.045070 C 0.005769 0.048522 1.441243 C 2.250696 -0.087035 -0.572491 H -0.931729 -0.443362 -0.425877 H -0.025058 1.099639 -0.429783

O 1.043159 -0.668108 -0.658110 O 2.443510 0.983405 -0.049521 C 0.430847 1.244924 2.225306 H 0.311959 2.167986 1.651962 H -0.143790 1.330563 3.156106 H 1.493374 1.180162 2.503266 C -0.014297 -1.286440 2.111869 H -0.454335 -1.222662 3.113717 H -0.576577 -2.025027 1.530829 H 1.003588 -1.687937 2.240480 C 3.310428 -0.946411 -1.213809 H 3.054559 -1.131419 -2.259974 H 4.273890 -0.443970 -1.143876 H 3.353018 -1.914764 -0.708470 Sum of electronic and thermal Enthalpies = -385.325098 Hartree

UB3LYP/6-31G(d)

AT_R-I2fer

C 0.027120 -0.259327 0.000215 C 0.004645 -0.114261 1.533961 C 2.143687 -0.091265 0.739903 H -0.139871 -1.299607 -0.309827 H -0.676579 0.396813 -0.516339 O 1.356153 0.140862 -0.354105 O 1.402226 -0.384906 1.845498 C -0.328636 1.312243 1.977430 H -1.381598 1.542468 1.778231 H -0.145654 1.425574 3.050267 H 0.292067 2.038087 1.442313 C -0.842620 -1.163487 2.240199 H -0.741253 -1.068430 3.325802 H -1.900531 -1.036201 1.984713 H -0.530107 -2.171471 1.951148 C 3.537715 -0.019422 0.724656 C 4.248619 0.232867 -0.489662 C 4.294609 -0.197028 1.924339 C 5.631287 0.301639 -0.487584 H 3.690602 0.368508 -1.410447 C 5.676701 -0.123966 1.895604 H 3.770892 -0.388405 2.855340 C 6.364327 0.125472 0.697049 H 6.154019 0.494666 -1.421568 H 6.234428 -0.261744 2.819066 H 7.448860 0.181136 0.686259 Sum of electronic and thermal Enthalpies = -577.184814 Hartree

AT_R-I2ts

C -0.000805 -0.001257 0.002558 C -0.017640 0.007045 1.509552 C 2.232086 -0.015642 0.527463 H -0.302821 -0.977253 -0.392341 H -0.629667 0.779075 -0.437765 O 1.346331 0.287438 -0.464842 O 1.745707 -0.680689 1.502215 C 0.100005 1.346582 2.177376 H -0.834236 1.921789 2.075379 H 0.308954 1.237832 3.246370 H 0.899772 1.948300 1.729045 C -0.786837 -1.068573 2.214242 H -0.522058 -1.105242 3.276300 H -1.871988 -0.891093 2.153280 H -0.580185 -2.049368 1.774238 C 3.539556 0.586188 0.480481 C 3.972727 1.323942 -0.646900 C 4.440829 0.388063 1.553774 C 5.256181 1.855403 -0.682859 H 3.290859 1.472126 -1.477558 C 5.716989 0.931615 1.505866 H 4.112661 -0.190196 2.411572 C 6.136485 1.667033 0.389175 H 5.575497 2.424225 -1.552624 H 6.395675 0.780479 2.341591 H 7.139544 2.082894 0.353267 Sum of electronic and thermal Enthalpies = -577.161729 Hartree

Imaginary frequency = i734.38 cm-1 AT_R-I2ouv

C -0.205303 -0.370551 -0.034585 C -0.118539 -0.106684 1.427856 C 2.015970 -0.105856 -0.909791 H -0.950100 -1.139158 -0.262978 H -0.417433 0.536827 -0.603242 O 1.029847 -0.967789 -0.584465 O 1.930307 1.101903 -0.779053

C 0.190313 1.263387 1.944457 H -0.353787 1.467580 2.877290 H 1.262759 1.379502 2.176276 H -0.054863 2.041052 1.215241 C -0.049326 -1.272008 2.366113 H -0.569467 -2.151505 1.967628 H 0.993030 -1.580791 2.557796 H -0.484353 -1.027485 3.344043 C 3.220829 -0.799180 -1.455075 C 4.310363 -0.008386 -1.844628 C 3.291002 -2.193183 -1.584951 C 5.458679 -0.604860 -2.359327 H 4.234752 1.068480 -1.735489 C 4.442454 -2.786556 -2.099933 H 2.445628 -2.800892 -1.282477 C 5.526259 -1.994809 -2.487314 H 6.301026 0.011866 -2.660548 H 4.494579 -3.867330 -2.199646 H 6.422621 -2.460428 -2.888688 Sum of electronic and thermal Enthalpies = -577.1944 Hartree

UB3LYP/6-311++G(3df,2p)

AT_R-I2rea_GB

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.540752 C 2.129550 0.000000 0.721422 H -0.219010 -0.997488 -0.404061 H -0.677236 0.733725 -0.442209 O 1.342738 0.370404 -0.334410 O 1.386283 -0.363111 1.804935 C -0.260953 1.391923 2.121397 H -1.303842 1.688315 1.960306 H -0.061797 1.394474 3.197339 H 0.387846 2.135842 1.647985 C -0.888881 -1.071146 2.157180 H -0.772787 -1.083844 3.245393 H -1.942018 -0.871723 1.929585 H -0.627041 -2.060621 1.770360 C 3.525206 0.009396 0.692981 C 4.234869 0.343147 -0.502277 C 4.284984 -0.315489 1.859501 C 5.619192 0.348469 -0.513652 H 3.674571 0.590737 -1.398038 C 5.668643 -0.302953 1.817871 H 3.762328 -0.570376 2.775759

C 6.355073 0.027559 0.638409 H 6.140949 0.605245 -1.432711 H 6.228580 -0.552980 2.716078 H 7.440863 0.034677 0.617321 Sum of electronic and thermal Enthalpies = -577.6039966 Hartree

AT_R-I2ts_GB

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.507112 C 2.238680 0.000000 0.499844 H -0.298944 -0.976141 -0.396871 H -0.639714 0.777833 -0.428966 O 1.339562 0.301612 -0.480821 O 1.768367 -0.674057 1.476290 C 0.114866 1.336764 2.180949 H -0.824836 1.905289 2.092564 H 0.336614 1.223833 3.246927 H 0.904926 1.947057 1.727034 C -0.752991 -1.085328 2.214413 H -0.476049 -1.125712 3.273229 H -1.840084 -0.915899 2.166554 H -0.543783 -2.062099 1.766732 C 3.540896 0.612147 0.441578 C 3.955739 1.359325 -0.686490 C 4.455637 0.415166 1.503629 C 5.234604 1.900861 -0.733854 H 3.263486 1.506745 -1.508651 C 5.726980 0.968801 1.444465 H 4.141543 -0.170251 2.361841 C 6.128288 1.713479 0.327226 H 5.539783 2.476839 -1.603985 H 6.416131 0.818378 2.271712 H 7.127667 2.137257 0.282409 Sum of electronic and thermal Enthalpies = -577.5790725 Hartree

Imaginary frequency = i734.38 cm-1

AT_R-I2pro_GB

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.488590 C 2.302820 0.000000 -0.683345 H -0.005985 -1.011659 -0.410150 H -0.839905 0.573573 -0.404002 O 1.161302 0.711507 -0.574161 O 2.409569 -1.165143 -0.345479 C -0.210136 1.296756 2.207868 H -0.683399 1.141916 3.186358 H 0.744750 1.815216 2.402784 H -0.832377 1.990786 1.629952 C 0.486871 -1.188215 2.257009 H 1.538809 -1.069527 2.567969 H -0.095830 -1.331039 3.177868 H 0.440910 -2.106386 1.664147 C 3.417867 0.799934 -1.271971 C 3.264479 2.142903 -1.643381 C 4.654788 0.165610 -1.450446 C 4.341161 2.841249 -2.187633 H 2.305715 2.629422 -1.503635 C 5.727854 0.866452 -1.995125 H 4.751478 -0.874249 -1.156146 C 5.572428 2.205330 -2.364121 H 4.219909 3.882200 -2.474774 H 6.685057 0.370861 -2.132176 H 6.410008 2.752481 -2.788915 Sum of electronic and thermal Enthalpies = -577.6139465 Hartree

G3(MP2)RAD

AT_R-I2rea_G3_Final

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.540751 C 2.129550 0.000000 0.721422 H -0.219010 -0.997488 -0.404061 H -0.677236 0.733725 -0.442209 O 1.342738 0.370404 -0.334410 O 1.386283 -0.363111 1.804935

C -0.260953 1.391923 2.121397 H -1.303842 1.688315 1.960306 H -0.061797 1.394474 3.197339 H 0.387846 2.135842 1.647985 C -0.888881 -1.071146 2.157180 H -0.772787 -1.083844 3.245393 H -1.942018 -0.871723 1.929585 H -0.627041 -2.060621 1.770360 C 3.525206 0.009396 0.692981 C 4.234869 0.343147 -0.502277 C 4.284984 -0.315489 1.859501 C 5.619192 0.348469 -0.513652 H 3.674571 0.590737 -1.398038 C 5.668643 -0.302953 1.817871 H 3.762328 -0.570376 2.775759 C 6.355073 0.027559 0.638409 H 6.140949 0.605245 -1.432711 H 6.228580 -0.552980 2.716078 H 7.440863 0.034677 0.617321 Sum of electronic and thermal Enthalpies = -576.2027 Hartree

AT_R-I2ts_G3_Final

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.507112 C 2.238680 0.000000 0.499844 H -0.298944 -0.976141 -0.396871 H -0.639714 0.777833 -0.428966 O 1.339562 0.301612 -0.480821 O 1.768367 -0.674057 1.476290 C 0.114866 1.336764 2.180949 H -0.824836 1.905289 2.092564 H 0.336614 1.223833 3.246927 H 0.904926 1.947057 1.727034 C -0.752991 -1.085328 2.214413 H -0.476049 -1.125712 3.273229 H -1.840084 -0.915899 2.166554 H -0.543783 -2.062099 1.766732 C 3.540896 0.612147 0.441578 C 3.955739 1.359325 -0.686490 C 4.455637 0.415166 1.503629 C 5.234604 1.900861 -0.733854 H 3.263486 1.506745 -1.508651 C 5.726980 0.968801 1.444465 H 4.141543 -0.170251 2.361841 C 6.128288 1.713479 0.327226 H 5.539783 2.476839 -1.603985

H 6.416131 0.818378 2.271712 H 7.127667 2.137257 0.282409 Sum of electronic and thermal Enthalpies = -576.183 Hartree

Imaginary frequency = i734.38 cm-1

AT-R-I2ouv_G3_Final

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.488585 C 2.302826 0.000000 -0.683444 H -0.839876 -0.573588 -0.404037 H -0.005937 1.011638 -0.410191 O 1.161362 -0.711554 -0.574096 O 2.409508 1.165247 -0.345907 C 0.487103 1.188137 2.256974 H -0.095469 1.331013 3.177905 H 1.539063 1.069306 2.567814 H 0.441193 2.106316 1.664124 C -0.210316 -1.296745 2.207832 H -0.833136 -1.990436 1.630128 H 0.744459 -1.815622 2.402169 H -0.683023 -1.141833 3.186573 C 3.417941 -0.800031 -1.271822 C 4.654705 -0.165561 -1.450851 C 3.264767 -2.143246 -1.642429 C 5.727822 -0.866498 -1.995310 H 4.751237 0.874481 -1.157151 C 4.341507 -2.841694 -2.186432 H 2.306120 -2.629875 -1.502264 C 5.572614 -2.205624 -2.363493 H 6.684895 -0.370784 -2.132822 H 4.220424 -3.882841 -2.472935 H 6.410237 -2.752849 -2.788107 Sum of electronic and thermal Enthalpies = -576.2064 Hartree

M06-2X/6-31G(d)

AT_R-I2ferM

C 0.002862 -0.030877 0.002366 C 0.015605 -0.022107 1.535940 C 2.118650 -0.034721 0.720158 H -0.212319 -1.032486 -0.391181 H -0.678555 0.700398 -0.436117 O 1.337753 0.337933 -0.329357 O 1.378666 -0.427513 1.785536 C -0.185660 1.380706 2.095221 H -1.214842 1.714765 1.930534 H 0.018650 1.385975 3.168936 H 0.494730 2.084897 1.606378 C -0.905693 -1.047286 2.164635 H -0.786871 -1.044625 3.251386 H -1.948519 -0.812084 1.930913 H -0.673999 -2.047812 1.790515 C 3.511669 -0.003753 0.697316 C 4.209691 0.363291 -0.487030 C 4.266772 -0.338466 1.855973 C 5.590613 0.390860 -0.495698 H 3.642572 0.618787 -1.375993 C 5.647059 -0.302901 1.816439 H 3.742874 -0.618134 2.763998 C 6.326884 0.060310 0.647956 H 6.109361 0.672620 -1.407730 H 6.209545 -0.561132 2.709382 H 7.411221 0.084853 0.629240 Sum of electronic and thermal Enthalpies = -576.932085 Hartree

AT_R-I2tsM

C -0.000512 -0.026594 -0.008863 C 0.019323 -0.001218 1.491261 C 2.225166 -0.073367 0.474280 H -0.320225 -1.004232 -0.383351 H -0.624886 0.759574 -0.443507 O 1.336711 0.239245 -0.497596 O 1.764940 -0.753425 1.431594 C 0.236748 1.336128 2.124394 H -0.633813 1.992048 1.980850 H 0.416168 1.237630 3.198300

H 1.100804 1.842700 1.673884 C -0.747900 -1.043489 2.235677 H -0.440085 -1.069691 3.285113 H -1.828614 -0.845069 2.210907 H -0.571769 -2.031200 1.799706 C 3.518790 0.576321 0.437226 C 3.905354 1.365003 -0.660547 C 4.422652 0.373226 1.495283 C 5.164381 1.947998 -0.684679 H 3.208926 1.513484 -1.478932 C 5.674642 0.967061 1.461335 H 4.117979 -0.249582 2.330186 C 6.053884 1.755484 0.372678 H 5.455446 2.559986 -1.533189 H 6.364838 0.812070 2.285327 H 7.038422 2.211808 0.347534 Sum of electronic and thermal Enthalpies = -576.900201 Hartree

Imaginary frequency = i878.04 cm-1 AT_R-I2ouvM

C -0.049198 -0.008437 -0.044233 C 0.038219 0.027227 1.439666 C 2.242619 -0.062113 -0.608988 H -0.907646 -0.596921 -0.383725 H -0.097366 0.996221 -0.472029 O 1.071203 -0.712071 -0.652884 O 2.377632 1.041290 -0.129843 C 0.401672 1.277349 2.168657 H -0.182624 1.378455 3.092090 H 1.463823 1.274181 2.455214 H 0.244396 2.166177 1.552402 C 0.108362 -1.278987 2.161417 H -0.428604 -2.068236 1.624605 H -0.307944 -1.199081 3.172090 C 3.357724 -0.844845 -1.218145 C 4.620001 -0.250504 -1.252534 C 3.169549 -2.127343 -1.736401 C 5.694242 -0.936603 -1.805528 H 4.735676 0.746624 -0.840150 C 4.247964 -2.811145 -2.288018 H 2.183774 -2.578024 -1.703759 C 5.508186 -2.217476 -2.322959 H 6.676345 -0.475265 -1.832757 H 4.105233 -3.808336 -2.692572 H 6.346974 -2.754983 -2.755122 Sum of electronic and thermal Enthalpies = -576.935834 Hartree

UB3LYP/6-311++G(3df,2p)

AT_R14fer1

C -0.000057 -0.000323 0.002013 C 0.000294 0.003421 1.519343 C 1.415401 0.003837 2.063677 C 2.086662 1.291596 1.521652 C 1.970794 1.457084 -0.012619 C 0.523845 1.309850 -0.549795 H 1.429357 -0.005858 3.159324 H 1.620860 2.158982 2.010311 H 3.144159 1.307697 1.810085 H 2.376211 2.432673 -0.305145 H 2.601925 0.701836 -0.501722 H -0.106436 2.140768 -0.207687 H 0.516960 1.319975 -1.645460 H 1.949395 -0.890902 1.719023 H -0.519521 0.910758 1.870943 H 0.638623 -0.826298 -0.351887 O -0.836830 -1.124067 1.814520 O -1.363596 -0.344024 -0.272923 C -1.684765 -1.275557 0.710483 C -3.147600 -1.435157 0.993754 H -3.663602 -1.528018 0.031065 C -3.449383 -2.646006 1.884538 H -2.929088 -2.560973 2.843893 H -4.523664 -2.722305 2.083984 H -3.121701 -3.575357 1.406130 H -3.535352 -0.516589 1.470484 Sum of electronic and thermal Enthalpies = -502.149216 Hartree

AT_R14ts3AA

C 0.000229 0.001327 0.004272 C 0.003924 -0.001794 1.502717 C 1.387331 -0.000560 2.076787 C 2.078088 1.298523 1.556672 C 1.978358 1.472315 0.024613 C 0.535981 1.325768 -0.520201 H 1.386519 -0.014084 3.172115 H 1.605502 2.160428 2.047510

H 3.132812 1.305285 1.861642 H 2.383532 2.450697 -0.259300 H -0.098519 2.150007 -0.169487 H 0.532861 1.350291 -1.616698 H 1.945185 -0.882752 1.735207 H -0.677581 0.723327 1.951308 H 0.658267 -0.808968 -0.341975 O -1.065152 -1.496219 1.470735 O -1.340715 -0.314713 -0.419953 C -1.880201 -1.150311 0.538189 C -3.372148 -1.044278 0.703229 H -3.713694 -1.921879 1.262137 C -3.814031 0.244131 1.428672 H -3.503659 1.130939 0.866256 H -4.903984 0.274631 1.540845 H -3.369454 0.295313 2.428814 H -3.834076 -1.085664 -0.289956 Sum of electronic and thermal Enthalpies = -502.123707 Hartree

Imaginary frequency = i757.11 cm-1

AT_R14ouv2

C -0.048463 0.045141 0.053268 C 0.126616 -0.082315 1.528335 C 1.608182 -0.116325 1.938266 C 2.379582 1.043623 1.288864 C 2.264696 1.001784 -0.241549 C 0.788695 1.036417 -0.692365 H 1.680062 -0.076162 3.030194 H 1.986015 2.001124 1.661195 H 3.432477 1.001868 1.593326 H 2.810733 1.840340 -0.690978 H 2.732733 0.079760 -0.612412 H 0.402340 2.060851 -0.523018 H 0.710266 0.866471 -1.773175 H 2.032164 -1.073722 1.608505 H -0.360258 0.749458 2.063135 H -0.942857 -0.377506 -0.395503 O -0.542156 -1.304564 1.948532 O -0.951525 -0.420568 3.998215 C -1.036004 -1.337044 3.207867 C -1.704839 -2.671390 3.484574 H -0.955846 -3.457556 3.323038 C -2.306596 -2.754988 4.885796 H -3.066221 -1.981626 5.033806 H -2.773153 -3.732910 5.043586 H -1.539115 -2.609923 5.651793 H -2.465919 -2.830954 2.710074 Sum of electronic and thermal Enthalpies = -502.177551 Hartree

AT_R-C6fer_3

C 0.032268 -0.030417 -0.046665 C 0.121487 -0.266614 1.466310 C 1.460471 0.147663 2.076347 C 0.410566 1.387606 -0.472050 C 2.139270 2.192870 0.969445 H 0.696961 -0.728592 -0.572927 H -0.668971 0.293223 1.983412 H 2.300388 -0.321088 1.546442 H -0.192606 2.140054 0.051568 H -0.987783 -0.240343 -0.396118 H -0.048880 -1.330170 1.682061 H 1.506112 -0.151391 3.127955 H 0.261627 1.512845 -1.549287 C 3.574033 2.632068 1.052169 H 4.237513 1.747407 1.008087 H 3.721205 3.072508 2.044750 C 3.976762 3.624412 -0.044147 H 3.359923 4.528862 0.003181 H 5.025757 3.920548 0.065726 H 3.847909 3.182659 -1.036853 O 1.804947 1.647942 -0.246149 O 1.622729 1.581250 2.090671 Sum of electronic and thermal Enthalpies = -385.475594 Hartree

AT_R-C6tsB

C -0.051647 0.050201 0.115642 C 0.006896 0.217526 2.729577 C 2.041037 0.016011 1.482724 C 1.352250 0.566473 0.224469 H -0.187750 -1.030846 0.140992 H -0.735752 0.567694 -0.549050 H 3.046194 0.431970 1.588979 H 2.134089 -1.077926 1.392014 H 1.333350 1.662234 0.260826 H 1.968004 0.280982 -0.643276 O -0.664962 0.651470 1.740733

O 1.379192 0.312005 2.723241 C -0.547181 -0.676397 3.805140 H 0.024751 -0.491397 4.722943 H -0.341628 -1.730748 3.542034 C -2.047190 -0.483923 4.040390 H -2.611343 -0.662266 3.120183 H -2.409921 -1.175181 4.808588 H -2.264651 0.538329 4.367801 Sum of electronic and thermal Enthalpies = -385.448103 Hartree

Imaginary frequency = i732.40 cm-1

AT_R-C6ouv_1

C -0.156429 0.142036 -0.002987 C 0.364726 0.025548 4.480008 C 0.972062 -0.320621 2.199915 C -0.349983 -0.307773 1.406429 H 0.120075 -0.561281 -0.782407 H -0.156116 1.197549 -0.255874 H 1.699416 -0.991500 1.737042 H 1.391498 0.685725 2.268075 H -0.770234 -1.321460 1.437489 H -1.044637 0.358088 1.931805 O 0.151367 1.200614 4.270684 O 0.780883 -0.848576 3.531947 C 0.214097 -0.670555 5.819626 H 1.182909 -1.121316 6.071234 H -0.472729 -1.515378 5.680697 C -0.268741 0.266532 6.924701 H -1.244418 0.695646 6.677679 H -0.358957 -0.274798 7.872125 H 0.427808 1.098137 7.066134 Sum of electronic and thermal Enthalpies = -385.496457 Hartree

AT_R-C5fer_1

C -0.044389 0.392481 0.144908 C 0.139771 -0.355944 1.469134 C 2.133562 -0.241409 0.440702 H -0.833355 -0.022987 -0.488419 H -0.231600 1.463329 0.299630

H -0.140696 -1.414135 1.377995 H -0.386238 0.091824 2.315014 C 3.513091 0.341168 0.369433 H 3.476775 1.408348 0.653528 H 3.830244 0.308690 -0.679051 C 4.518044 -0.400649 1.258214 H 5.512022 0.052563 1.180192 H 4.209994 -0.367080 2.308115 H 4.596652 -1.453202 0.965091 O 1.222006 0.221489 -0.502903 O 1.545071 -0.237963 1.695385 Sum of electronic and thermal Enthalpies = -346.187303 Hartree

AT_R-C5tsB

C 0.012217 -0.010869 -0.009955 C 0.025319 0.026398 1.483955 C 2.249790 -0.043161 0.540220 H -0.328938 -0.979207 -0.389508 H -0.572236 0.789629 -0.469802 H -0.519170 -0.735718 2.029089 H 0.048249 1.002083 1.963544 C 3.455000 0.860842 0.607390 H 3.125890 1.851995 0.969734 H 3.822733 1.017532 -0.412718 C 4.558594 0.314151 1.516613 H 5.392077 1.021382 1.582279 H 4.173980 0.138209 2.525801 H 4.945696 -0.637549 1.136742 O 1.389193 0.202832 -0.482355 O 1.716665 -0.598566 1.567711 Sum of electronic and thermal Enthalpies = -346.165954 Hartree

Imaginary frequency = i853.45 cm-1

AT_R-C5ouv_2

C -0.071750 -0.312755 0.129322 C 0.201397 0.317891 1.444366 C 2.009173 -0.147418 -1.038104 H -0.790716 -1.130834 0.207521 H -0.420773 0.421555 -0.600898 H 0.624019 1.315071 1.489746

H 0.139604 -0.261245 2.359960 C 3.185276 -0.938672 -1.582319 H 2.787734 -1.711509 -2.252540 H 3.634745 -1.483807 -0.742231 C 4.213781 -0.059603 -2.291064 H 5.043860 -0.668134 -2.664611 H 3.763031 0.467493 -3.137168 H 4.617352 0.697172 -1.611915 O 1.120636 -0.967235 -0.432292 O 1.870123 1.054128 -1.129441 Sum of electronic and thermal Enthalpies = -346.210011 Hartree

AT_R4fer_1

C -0.047419 0.112095 -0.241877 C -0.168531 -0.201551 2.092108 C 2.013928 -0.046929 1.151371 C 1.382776 0.620742 -0.080955 H -0.047506 -0.957911 -0.499532 H -0.591621 0.657012 -1.017612 H 2.078345 -1.131066 0.968616 H 1.380636 1.707069 0.064749 H 1.974419 0.399132 -0.977061 O -0.788571 0.303606 0.966954 O 1.152766 0.164367 2.282640 C -0.998234 -0.063023 3.332764 H -2.025517 -0.341123 3.072937 H -1.029156 0.998447 3.635797 C -0.484269 -0.916290 4.498377 H 0.543192 -0.643467 4.757233 H -1.110450 -0.775470 5.386035 H -0.493864 -1.980812 4.239012 C 3.388119 0.492472 1.479062 C 3.548017 1.610884 2.305710 C 4.521434 -0.099047 0.909216 C 4.819982 2.127771 2.553895 H 2.672626 2.059616 2.763869 C 5.793099 0.421789 1.150912 H 4.409196 -0.976753 0.275660 C 5.945517 1.538115 1.975098 H 4.931936 2.992535 3.202856 H 6.664018 -0.049902 0.703399 H 6.935480 1.941963 2.169876 Sum of electronic and thermal Enthalpies = -616.447029 Hartree

AT_R4ts2

C -0.150905 0.317775 0.066382 C -0.052598 0.413188 2.451109 C 2.123755 0.182591 1.099719 C 1.303870 0.795619 -0.010576 H -0.187034 -0.768538 -0.113317 H -0.762994 0.806505 -0.695869 H 1.990429 -0.898187 1.181878 H 1.335187 1.888015 0.060797 H 1.706433 0.518825 -0.995791 O -0.804196 0.595099 1.315010 O 1.184018 0.777588 2.459679 C -0.657530 -0.503544 3.476297 H -0.577254 -1.551173 3.128201 H -1.733782 -0.295481 3.519956 C -0.014195 -0.372524 4.859751 H -0.147721 0.638172 5.259874 H -0.462148 -1.082713 5.562953 H 1.061021 -0.567132 4.807986 C 3.503705 0.601615 1.352772 C 3.928212 1.934641 1.182616 C 4.440968 -0.336698 1.829610 C 5.240004 2.305595 1.467225 H 3.225256 2.685986 0.836243 C 5.752444 0.034366 2.107820 H 4.128795 -1.368510 1.975916 C 6.160153 1.359609 1.926753 H 5.546877 3.339440 1.330781 H 6.459172 -0.709369 2.466768 H 7.183862 1.652107 2.143750 Sum of electronic and thermal Enthalpies = -616.428727 Hartree

Imaginary frequency = i696.34 cm-1

AT_R4ouv_1

C 0.194619 0.279130 0.187122 C 0.156166 -0.004932 2.555457 C 2.660848 0.246128 -0.371363 C 1.451076 1.094981 -0.123055 H -0.035626 -0.413789 -0.626081 H -0.658194 0.938892 0.363260 H 2.666606 -0.741403 0.084370 H 1.616582 1.792395 0.713838

H 1.225647 1.725755 -0.994783 O 0.377230 -0.570805 1.342795 O -0.188476 1.146833 2.710130 C 0.393060 -1.010110 3.666214 H 1.420714 -1.382225 3.563924 H -0.251619 -1.877477 3.474302 C 0.147053 -0.427275 5.056317 H -0.882616 -0.071407 5.156321 H 0.327519 -1.185514 5.825165 H 0.807569 0.423540 5.247848 C 3.808607 0.634654 -1.102231 C 3.955032 1.920367 -1.700843 C 4.890057 -0.281637 -1.264604 C 5.099384 2.253633 -2.411706 H 3.162023 2.654383 -1.593461 C 6.027612 0.061361 -1.977153 H 4.806263 -1.269078 -0.816455 C 6.144161 1.332008 -2.558970 H 5.184429 3.242111 -2.856307 H 6.833782 -0.660002 -2.084479 H 7.036854 1.599973 -3.116906 Sum of electronic and thermal Enthalpies = -616.487734 Hartree

AT_R0-reaB

C -0.304776 1.199285 0.325183 C -0.186471 0.218709 2.496659 C 2.087816 0.730432 2.120342 H -0.788160 2.032971 0.853347 H -0.903723 0.974822 -0.562083 H 2.894565 1.068998 2.776873 O -0.374329 0.013826 1.148227 C 2.205378 1.411870 0.772063 C 1.103179 1.577978 -0.085579 C 1.300487 2.158024 -1.343876 C 2.563165 2.580244 -1.758088 C 3.655293 2.419367 -0.906292 C 3.468608 1.840753 0.348404 H 4.645521 2.744875 -1.213080 H 2.691751 3.027810 -2.739832 H 0.448546 2.278711 -2.010034 H 4.319559 1.719077 1.015584 O 0.873611 1.028459 2.822317 H 2.174598 -0.359126 2.011383 C -2.441944 -0.663944 3.220613 H -2.031771 -1.619272 3.565657 H -3.330790 -0.436528 3.818901 H -2.752440 -0.791286 2.178886 C -1.402716 0.456461 3.345384

H -1.073473 0.566343 4.384461 H -1.868533 1.420798 3.067673 Sum of electronic and thermal Enthalpies = -577.155953 Hartree

AT_R0-tsB

C 0.017870 -0.021903 -0.019221 C -0.002337 0.012685 2.635729 C 2.259660 -0.010633 1.903348 H -0.963800 0.250977 -0.403333 H 0.368871 -0.960773 -0.444211 H 3.239272 0.030539 2.384172 O -0.299602 -0.650920 1.569843 C 2.139397 1.053480 0.830204 C 1.008402 1.079645 -0.019343 C 0.842488 2.168654 -0.887949 C 1.792271 3.188418 -0.958284 C 2.922005 3.141912 -0.143023 C 3.079766 2.081763 0.753187 H 3.665653 3.932718 -0.187398 H 1.646920 4.015682 -1.647867 H -0.033439 2.203505 -1.531484 H 3.941169 2.060622 1.416993 O 1.316059 0.244781 2.958681 H 2.105468 -1.018600 1.503028 C -2.382548 0.314779 3.443299 H -2.390396 -0.630410 3.996825 H -3.062386 1.011935 3.944868 H -2.773838 0.114266 2.441127 C -0.967151 0.896484 3.370131 H -0.564971 1.080071 4.373238 H -0.998013 1.885167 2.875448 Sum of electronic and thermal Enthalpies = -577.140363 Hartree

Imaginary frequency = i704.81 cm-1

AT_R0ouv_1

C 0.065837 -0.161134 -0.133508 C -0.054624 -0.215600 2.250729 C 2.923188 0.076008 -0.933775 H -1.017529 -0.052506 -0.061195

H 0.303212 -0.955013 -0.845989 H 3.951873 0.161608 -1.269016 O 0.567774 -0.667954 1.134875 C 2.082573 1.202607 -0.932804 C 0.704629 1.146057 -0.524757 C -0.058425 2.308944 -0.510132 C 0.475451 3.540529 -0.908623 C 1.810052 3.610779 -1.331119 C 2.595131 2.470515 -1.342944 H 2.232255 4.561523 -1.646079 H -0.143006 4.433114 -0.888844 H -1.089384 2.252246 -0.171823 H 3.632577 2.527024 -1.663467 O -1.010639 0.529581 2.239127 H 2.597808 -0.892217 -0.574467 C -0.111707 -0.375584 4.781461 H 0.404941 -0.790692 5.653019 H -0.150826 0.712437 4.887230 H -1.142675 -0.742213 4.784605 C 0.608823 -0.774400 3.495209 H 1.649679 -0.424718 3.496389 H 0.666766 -1.864715 3.386327 Sum of electronic and thermal Enthalpies = -577.200553 Hartree

AT_R-C7fer_1

C 0.032268 -0.030417 -0.046665 C 0.121487 -0.266614 1.466310 C 1.460471 0.147663 2.076347 C 0.410566 1.387606 -0.472050 C 2.139270 2.192870 0.969445 H 0.696961 -0.728592 -0.572927 H -0.668971 0.293223 1.983412 H 2.300388 -0.321088 1.546442 H -0.192606 2.140054 0.051568 H -0.987783 -0.240343 -0.396118 H -0.048880 -1.330170 1.682061 H 1.506112 -0.151391 3.127955 H 0.261627 1.512845 -1.549287 C 3.574033 2.632068 1.052169 H 4.237513 1.747407 1.008087 H 3.721205 3.072508 2.044750 C 3.976762 3.624412 -0.044147 H 3.359923 4.528862 0.003181 H 5.025757 3.920548 0.065726 H 3.847909 3.182659 -1.036853 O 1.804947 1.647942 -0.246149 O 1.622729 1.581250 2.090671

Sum of electronic and thermal Enthalpies = -424.758918 Hartree

AT_R-C7tsB1

C 0.000152 0.003505 0.001919 C -0.000116 -0.004855 1.541463 C 1.381206 -0.001336 2.208142 C 0.635403 1.213078 -0.618875 C 2.576038 1.746860 1.102115 H 0.517378 -0.892567 -0.366278 H -0.567613 0.853141 1.926792 H 2.057253 -0.709419 1.714162 H 0.269652 2.183184 -0.281696 H -1.043790 -0.083902 -0.342772 H -0.530194 -0.904980 1.882332 H 1.284685 -0.286120 3.259585 H 0.820137 1.170962 -1.688671 C 3.048252 3.171229 1.208147 H 3.435022 3.335034 2.220046 H 2.176387 3.843356 1.106476 C 4.096257 3.530706 0.150562 H 3.712168 3.338345 -0.855639 H 4.370636 4.588802 0.220464 H 5.004573 2.931975 0.278490 O 2.352437 1.154546 -0.007334 O 1.992056 1.297804 2.255788 Sum of electronic and thermal Enthalpies = -424.74395 Hartree

Imaginary frequency = i675.45 cm-1

AT_R-C7ouv_1

C -0.033661 -0.122341 -0.026623 C 0.159904 0.080604 1.486211 C 1.590449 0.059646 1.907240 C -1.486483 -0.070060 -0.472741 C -3.287415 1.478586 -0.518541 H 0.537176 0.637008 -0.577260 H -0.310541 1.040616 1.765607 H 2.363818 0.463106 1.259410 H -2.107072 -0.792928 0.068510 H 0.373613 -1.097936 -0.322526 H -0.404941 -0.687774 2.035137

H 1.870164 -0.192167 2.925188 H -1.589350 -0.281858 -1.542157 C -3.688076 2.906381 -0.196823 H -3.004334 3.575060 -0.735509 H -3.485374 3.078130 0.868342 C -5.146089 3.203441 -0.541269 H -5.821921 2.544435 0.011727 H -5.393712 4.240746 -0.293353 H -5.337027 3.047359 -1.607160 O -1.987021 1.261764 -0.212507 O -4.015510 0.630173 -0.986685 Sum of electronic and thermal Enthalpies = -424.781824 Hartree

AT_R-C5Pfer_2

C 0.235796 0.352116 -0.158187 C 0.262302 0.243557 1.379158 C 2.376628 0.130413 0.472309 H -0.562978 -0.225811 -0.627460 H 0.171187 1.401914 -0.474523 H -0.080069 -0.754648 1.686678 C 3.602490 -0.728220 0.571703 H 4.272419 -0.274454 1.311210 H 4.119508 -0.689461 -0.394075 C 3.306876 -2.191644 0.957348 H 2.658885 -2.664445 0.212162 H 4.233127 -2.773372 1.024392 H 2.803960 -2.238168 1.929137 O 1.491271 -0.206661 -0.538770 O 1.671951 0.340106 1.656452 C -0.527959 1.303903 2.104446 C -1.815066 1.016962 2.571845 C -0.011612 2.594475 2.276165 C -2.582851 2.005399 3.189657 H -2.218047 0.012775 2.456462 C -0.775194 3.580190 2.900252 H 0.995923 2.812123 1.935256 C -2.063912 3.290136 3.355180 H -3.580869 1.768618 3.548733 H -0.362178 4.576408 3.035271 H -2.656937 4.059584 3.842225 Sum of electronic and thermal Enthalpies = -577.16047 Hartree

AT_R-C5Pts

C 0.007718 0.013682 0.000395 C -0.022499 0.002867 1.511005 C 2.208633 -0.022410 0.613303 H -0.647215 -0.742148 -0.440693 H -0.256587 0.997443 -0.400709 H 0.030916 -1.000985 1.933410 C 3.407412 -0.921646 0.746369 H 4.140016 -0.418685 1.386230 H 3.861136 -1.040236 -0.244005 C 3.060620 -2.306681 1.332610 H 2.343352 -2.830250 0.691772 H 3.958803 -2.928710 1.418400 H 2.623286 -2.204486 2.331884 O 1.353033 -0.325268 -0.411131 O 1.637005 0.571992 1.611327 C -0.877529 0.914597 2.267874 C -1.560054 0.451652 3.410704 C -1.025390 2.270483 1.907885 C -2.377952 1.300001 4.150186 H -1.448411 -0.588309 3.709423 C -1.841112 3.117556 2.652727 H -0.477243 2.665566 1.057864 C -2.525955 2.638385 3.773050 H -2.900658 0.918618 5.023465 H -1.938824 4.160380 2.361973 H -3.163267 3.302579 4.350238 Sum of electronic and thermal Enthalpies = -577.146074 Hartree

Imaginary frequency = i801.94 cm-1

AT_R-C5Pouv_3

C -0.049628 0.093806 0.002179 C -0.145364 0.007056 1.487578 C 2.160125 -0.016956 -0.955939 H -0.096140 -0.879996 -0.485782 H -0.839442 0.736124 -0.396132 H -0.491633 0.900087 2.003372 C 3.378602 0.820431 -1.300156 H 3.729635 1.286484 -0.370221

H 3.046019 1.650903 -1.935605 C 4.487345 0.011139 -1.969672 H 4.137030 -0.438011 -2.903826 H 5.344968 0.653369 -2.195400 H 4.825214 -0.802549 -1.321344 O 1.191489 0.756337 -0.418549 O 2.065201 -1.213586 -1.139934 C 0.195781 -1.112149 2.287103 C 0.743895 -2.319175 1.760403 C -0.023726 -1.053373 3.695561 C 1.034717 -3.388420 2.595607 H 0.968805 -2.388629 0.701286 C 0.268917 -2.129749 4.517245 H -0.436915 -0.141694 4.120844 C 0.797906 -3.309169 3.974399 H 1.457629 -4.295568 2.171675 H 0.087095 -2.057550 5.586458 H 1.027974 -4.152917 4.618920 Sum of electronic and thermal Enthalpies = -577.201502 Hartree

AT_R2ouv_1

C -0.080410 0.026241 0.018218 C 0.047068 -0.051927 1.541827 C 2.273817 0.099877 2.405571 H -0.228267 -0.978025 -0.390507 H -0.001173 0.939621 1.999259 H -0.972057 0.629234 -0.229479 H -0.778324 -0.656149 1.937834 C 1.512123 1.815348 -0.296735 H 0.692633 2.428444 0.106888 H 1.860057 2.292448 -1.223346 C 2.677468 1.783114 0.685537 H 3.448893 1.098206 0.315170 H 3.109482 2.786663 0.770293 O 2.284628 1.419971 2.031179 O 1.265757 -0.696536 1.902234 O 1.068582 0.514579 -0.649566 C 3.579839 -0.628107 2.546237 C 3.466962 -1.928096 3.353409 H 4.286330 0.059346 3.025664 H 3.998249 -0.863897 1.549949 H 4.444285 -2.415480 3.439062 H 3.093411 -1.728658 4.363755 H 2.776517 -2.626321 2.871574 Sum of electronic and thermal Enthalpies = -499.949403 Hartree

AT_R2tsA

C -0.017689 0.004176 -0.004252 C -0.010702 -0.000643 1.526873 C 2.223540 0.017933 2.367343 H -0.150202 -1.019094 -0.369428 H -0.010757 1.013711 1.934131 H -0.879880 0.601622 -0.349487 H -0.904405 -0.523992 1.884988 C 1.554620 1.803516 -0.365538 H 0.721949 2.379797 0.062596 H 1.779238 2.248902 -1.349731 C 2.758738 1.885312 0.522492 H 3.584012 1.238022 0.230857 H 3.069744 2.889261 0.801604 O 2.281029 1.278110 2.145427 O 1.115744 -0.720062 2.024403 O 1.186093 0.446548 -0.601394 C 3.434466 -0.833313 2.623057 C 3.182125 -2.033665 3.545738 H 4.205771 -0.178016 3.041051 H 3.821736 -1.199893 1.655500 H 4.103223 -2.609569 3.686632 H 2.831954 -1.704922 4.530439 H 2.422965 -2.697652 3.123104 Sum of electronic and thermal Enthalpies = -499.937236 Hartree

Imaginary frequency = i665.61 cm-1

AT_R2fer_1

C 0.096035 -0.103514 0.230536 C 0.184136 0.320077 1.657132 C 5.049871 -0.068588 0.717168 H -0.534332 -1.002329 0.125685 H 0.895028 -0.167982 2.316569 H -0.381223 0.685409 -0.377913 H -0.570319 0.966564 2.093935 C 2.223136 0.612843 -0.540061 H 2.409006 1.162269 0.392912 H 1.788885 1.325111 -1.264608 C 3.530310 0.091103 -1.106317 H 3.336086 -0.570255 -1.953671

H 4.159204 0.929212 -1.417570 O 4.251041 -0.722821 -0.158880 O 5.184490 1.136750 0.740854 O 1.346484 -0.480307 -0.332495 C 5.741111 -1.048938 1.645279 C 6.672921 -0.364815 2.643505 H 6.280835 -1.774402 1.023225 H 4.960641 -1.627779 2.155945 H 7.458959 0.194504 2.127436 H 6.124400 0.344930 3.269843 H 7.146847 -1.106883 3.294287 Sum of electronic and thermal Enthalpies = -499.977183 Hartree

AT__ETHYL

C -0.021991 -0.023156 -0.015663 H -0.009822 0.016711 1.080541 H 1.016063 0.017212 -0.368110 H -0.403039 -1.024822 -0.285862 C -0.848312 1.069448 -0.600455 H -0.670946 1.421791 -1.611470 H -1.743117 1.421381 -0.097242 Sum of electronic and thermal Enthalpies = -79.095625 Hartree

AT_R-C5

C -0.063767 0.057438 0.016793 C 0.018477 -0.077103 1.536056 C 2.067084 0.398338 0.699166 H -0.604321 -0.752372 -0.477569 H -0.486773 1.023765 -0.287653 H 0.013309 -1.126657 1.857844 H -0.750477 0.477525 2.077835 C 3.373637 0.653376 0.650020 O 1.314008 -0.014484 -0.367649 O 1.291797 0.513657 1.822058 H 3.902573 0.593087 -0.291052 H 3.905960 0.921645 1.552262 Sum of electronic and thermal Enthalpies = -306.340918 Hartree

AT_AC55-ET_ts1

C -0.004873 0.002924 -0.004838 H -0.009555 0.009104 1.099352 H 1.049146 -0.002102 -0.312374 C -0.746987 1.166845 -0.590260 C -0.567551 0.912044 -2.889956 H -0.292491 2.151308 -0.500093 H -1.831717 1.167514 -0.502928 C -1.159135 1.927234 -3.567876 H 0.512297 0.907997 -2.819897 H -1.083235 -0.038269 -2.847630 O -2.472284 1.935345 -3.962779 O -0.567791 3.142122 -3.802626 C -2.821770 3.291643 -4.263914 C -1.466253 3.904531 -4.615793 H -3.269148 3.766243 -3.380577 H -3.541307 3.291157 -5.085401 H -1.367181 4.958622 -4.348146 H -1.217747 3.767747 -5.676681 H -0.443675 -0.954942 -0.313677 Sum of electronic and thermal Enthalpies = -385.424953 Hartree

Imaginary frequency = i414.22 cm-1 AT_AC55-ET_add1

C -0.007543 -0.010580 -0.002761 H -0.030592 -0.081463 1.090946 H 1.044012 -0.029216 -0.315026 C -0.710041 1.258058 -0.493594 C -0.700917 1.387097 -2.032961 H -0.227847 2.144377 -0.062943 H -1.751756 1.266121 -0.148453 C -1.388991 2.614753 -2.549549 H 0.332894 1.396910 -2.400114 H -1.188867 0.511890 -2.479941 O -2.762215 2.691734 -2.324641 O -0.796169 3.820518 -2.205407 C -3.082907 4.040905 -1.965950 C -1.813967 4.812482 -2.344058

H -3.289612 4.090870 -0.888771 H -3.971269 4.360703 -2.518153 H -1.579926 5.645234 -1.677266 H -1.852769 5.170486 -3.381912 H -0.487582 -0.911552 -0.404672 Sum of electronic and thermal Enthalpies = -385.4724 Hartree

AT_AC66_1

C 0.001720 0.050300 0.007222 C -0.000443 -0.008647 1.340059 H 0.938905 0.077191 -0.533261 H -0.932213 0.127219 -0.534085 O 1.165748 -0.005776 2.057192 O -1.165443 0.056558 2.056166 C 1.207044 -0.899387 3.179087 C -1.255425 -0.833510 3.178028 C -0.020222 -0.703922 4.062211 H 1.258886 -1.936670 2.813457 H 2.138452 -0.669853 3.701888 H -2.173673 -0.554471 3.700030 H -1.362351 -1.866554 2.812355 H 0.006260 0.293191 4.515923 H -0.040505 -1.448990 4.866755 Sum of electronic and thermal Enthalpies = -345.623192 Hartree

AT_AC66-ET_ts2

C -0.089848 0.029852 -0.068005 H -0.084040 -0.041921 1.027316 H 0.950610 -0.037283 -0.411306 C -0.749209 1.289905 -0.538162 C 0.523576 3.051476 0.382946 H -1.705386 1.562754 -0.098132 H -0.636998 1.567601 -1.583455 C -0.007694 4.240721 0.005232 H 0.310159 2.676535 1.374918 H 1.397113 2.681925 -0.137156 O 0.295031 4.786021 -1.215926

O -1.070492 4.779398 0.683835 C 0.347268 6.218581 -1.251334 C -1.092065 6.211600 0.751268 C -0.916983 6.813098 -0.639359 H 1.238365 6.563018 -0.703527 H 0.464171 6.483155 -2.305000 H -2.054349 6.470970 1.199168 H -0.289894 6.555559 1.422832 H -1.782373 6.559793 -1.262218 H -0.841314 7.905760 -0.581171 H -0.601974 -0.875410 -0.439235 Sum of electronic and thermal Enthalpies = -424.70871 Hartree

Imaginary frequency = i407.52 cm-1 AT_AC66-ET_add1

C 0.130775 0.046957 -0.141711 H -0.327680 -0.239986 0.812933 H 1.204335 0.185582 0.036548 C -0.506812 1.320032 -0.705581 C -0.362415 2.522466 0.239110 H -1.573077 1.146899 -0.902682 H -0.051300 1.569013 -1.671241 C -0.970158 3.780681 -0.302949 H -0.842539 2.311431 1.201944 H 0.707927 2.693380 0.454036 O -1.147421 4.754466 0.662871 O -0.391810 4.193365 -1.490158 C -1.797890 5.939523 0.191694 C -1.008232 5.344023 -2.077018 C -1.096857 6.475122 -1.055002 H -2.850756 5.709053 -0.031618 H -1.764869 6.649520 1.022139 H -0.388784 5.610530 -2.937294 H -2.012282 5.073195 -2.437387 H -0.087412 6.812723 -0.793050 H -1.647747 7.328448 -1.469654 H 0.014366 -0.795404 -0.833118 Sum of electronic and thermal Enthalpies = -424.760515 Hartree

AT_AC77_1

C -0.000269 0.000011 0.006461 C -0.000131 -0.000153 1.341513 H 0.935148 -0.011626 -0.537421 H -0.935791 0.011804 -0.537239 O 1.152673 0.143135 2.057038 O -1.152812 -0.143591 2.057218 C 1.322325 -0.710633 3.206096 C -1.321928 0.709269 3.207008 C 0.764377 -0.063608 4.472079 H 0.863624 -1.688971 3.016322 H 2.403894 -0.848763 3.293828 C -0.763621 0.061216 4.472315 H -0.863204 1.687717 3.017858 H -2.403452 0.847429 3.295245 H 1.223308 0.928928 4.571499 H 1.089531 -0.652476 5.340189 H -1.222527 -0.931400 4.571060 H -1.088560 0.649388 5.340977 Sum of electronic and thermal Enthalpies = -384.911174 Hartree

AT_AC77-ET_ts1

C 0.001045 -0.001545 -0.000104 H 0.002330 -0.001042 1.097643 H 1.047013 -0.000495 -0.332964 C -0.757272 1.166101 -0.554777 C 0.361242 3.058868 0.246536 H -1.744948 1.367639 -0.145031 H -0.660684 1.375823 -1.617531 C -0.162639 4.202062 -0.269507 H 0.105187 2.788232 1.262594 H 1.285702 2.677750 -0.167932 O -1.109438 4.920100 0.401012 O 0.145562 4.601425 -1.538086 C -2.272611 5.338515 -0.342473 C 0.296045 6.016441 -1.761466 C -2.055939 6.697211 -1.005590 H -2.542516 4.569631 -1.077172 H -3.072096 5.401572 0.401568 C -1.030892 6.668525 -2.145890 H 0.736608 6.489791 -0.874758

H 1.011018 6.096495 -2.585711 H -1.734377 7.402597 -0.227907 H -3.020868 7.060290 -1.384152 H -1.438544 6.118016 -3.004142 H -0.831375 7.691863 -2.491137 H -0.427551 -0.969712 -0.313603 Sum of electronic and thermal Enthalpies = -463.996176 Hartree

Imaginary frequency = i400.53 cm-1 AT_AC77-ET_add1

C 0.201650 0.102063 -0.145741 H -0.276625 -0.221534 0.787202 H 1.261206 0.284397 0.073499 C -0.472165 1.355281 -0.711762 C -0.416301 2.546887 0.255621 H -1.521587 1.139229 -0.950993 H 0.004330 1.642720 -1.656615 C -1.036233 3.795462 -0.306121 H -0.932887 2.302942 1.191570 H 0.639209 2.741361 0.528255 O -1.293091 4.743381 0.654208 O -0.552493 4.247587 -1.513594 C -1.992487 5.922802 0.227169 C 0.414182 5.321935 -1.497441 C -1.024223 7.017807 -0.219954 H -2.702134 5.663172 -0.568506 H -2.559831 6.254194 1.102544 C -0.269580 6.688212 -1.514148 H 1.078150 5.217297 -0.629003 H 1.009730 5.183865 -2.405030 H -0.310244 7.189127 0.596724 H -1.587852 7.951832 -0.348482 H -0.960803 6.704382 -2.367099 H 0.488792 7.459812 -1.704733 H 0.147482 -0.732556 -0.853995 Sum of electronic and thermal Enthalpies = -464.043802 Hartree

AT_A22_1

C 0.091080 -0.466293 0.247280 C 0.077553 0.133187 1.440252 H 1.026577 -0.652570 -0.264180 H -0.838373 -0.754673 -0.226189 O 1.223657 0.622525 1.998988 O -1.074581 0.398922 2.135359 C 1.214434 0.918592 3.394016 C -1.672749 -0.702724 2.834177 C 1.325468 -0.333795 4.264853 H 0.325125 1.502844 3.646774 H 2.095967 1.544917 3.563480 C -1.008597 -0.947966 4.184133 H -1.602930 -1.605079 2.216107 H -2.727122 -0.439355 2.969651 H 2.282156 -0.829921 4.076280 H 1.302810 -0.020683 5.323650 O 0.348233 -1.330005 4.010479 H -1.096884 -0.058439 4.824284 H -1.524408 -1.776312 4.688589 Sum of electronic and thermal Enthalpies = -460.102042 Hartree

AT_A22-ET_ts1

C 0.000086 0.001849 0.000764 H -0.000036 0.000303 1.098573 H 1.046648 0.001312 -0.330768 C -0.759683 -1.163241 -0.556098 C 0.313263 -3.081388 0.279855 H -0.657496 -1.378213 -1.617320 H -1.745479 -1.372264 -0.147426 C -0.314277 -4.204441 -0.155648 H 1.236151 -2.782340 -0.200272 H 0.129471 -2.734238 1.288478 O -0.017565 -4.808388 -1.351300 O -1.452261 -4.640346 0.467866 C 1.085936 -5.726459 -1.344295 C -1.922540 -5.945973 0.146177 C 0.687911 -7.096928 -0.808414 H 1.899676 -5.314459 -0.735742

H 1.420241 -5.806811 -2.384242 C -1.101700 -7.052260 0.811921 H -1.956845 -6.074465 -0.939973 H -2.947173 -5.990149 0.528970 H -0.105384 -7.537589 -1.429041 H 1.559505 -7.763997 -0.856410 O 0.292242 -7.006043 0.552579 H -1.183969 -6.967121 1.899549 H -1.525878 -8.026062 0.509451 H -0.427179 0.971299 -0.311186 Sum of electronic and thermal Enthalpies = -539.187403 Hartree

Imaginary frequency = i399.23 cm-1 AT_A22-ET_add1

C -0.004382 0.008976 -0.000854 H 0.011569 0.044630 1.095752 H 1.036373 0.042518 -0.347248 C -0.717905 -1.248295 -0.505382 C -0.044091 -2.551882 -0.020819 H -0.741058 -1.250708 -1.602262 H -1.761884 -1.247766 -0.168283 C -0.714017 -3.804285 -0.508287 H 1.001423 -2.567738 -0.355841 H -0.030510 -2.572489 1.076155 O -0.711530 -3.985508 -1.884515 O -1.932577 -4.017412 0.109570 C -0.021580 -5.150414 -2.350134 C -2.812079 -4.960502 -0.489591 C -0.839096 -6.429080 -2.193824 H 0.926028 -5.259961 -1.808274 H 0.192525 -4.972699 -3.410417 C -2.363339 -6.413579 -0.322682 H -2.955605 -4.711618 -1.546392 H -3.771593 -4.836050 0.023515 H -1.780904 -6.355552 -2.756648 H -0.264946 -7.266421 -2.613909 O -1.073462 -6.720987 -0.824139 H -2.315624 -6.663733 0.741525 H -3.128836 -7.056841 -0.792679 H -0.501625 0.919424 -0.355784 Sum of electronic and thermal Enthalpies = -539.236712 Hartree

AT_MeCH

C 0.075454 0.050295 0.102528 C 0.059406 -0.029660 1.600952 C 1.497329 0.045390 2.166490 C 2.295893 1.210986 1.564705 C 2.360662 1.111318 0.034115 C 0.946759 1.057536 -0.581516 H 1.457247 0.132494 3.260488 H 1.822500 2.163137 1.848746 H 3.309318 1.229575 1.985903 H 2.920101 1.957909 -0.383791 H 2.907835 0.199562 -0.243218 H 0.496886 2.066727 -0.491833 H 1.004081 0.854350 -1.658429 H 2.014117 -0.899552 1.942593 H -0.473149 0.863907 1.988853 H -0.720218 -0.435867 -0.458992 C -0.690149 -1.267280 2.112961 H -1.722505 -1.286086 1.743626 H -0.197885 -2.188026 1.776613 H -0.725178 -1.284305 3.208700 Sum of electronic and thermal Enthalpies = -274.343161 Hartree

AT_R14mon1b

C 0.042729 0.003163 -0.008773 C 0.022978 0.036163 1.505088 C 1.425174 -0.038850 2.072196 C 2.175157 1.199960 1.517226 C 2.085342 1.350022 -0.020911 C 0.639174 1.274396 -0.575881 H 1.422040 -0.027914 3.167592 H 1.756551 2.100036 1.988559 H 3.228569 1.157829 1.816839 H 2.545962 2.298326 -0.320524 H 2.680804 0.555797 -0.492244 H 0.049003 2.142330 -0.255625 H 0.647331 1.266467 -1.671277 H 1.911241 -0.969090 1.751940 H -0.454884 0.971794 1.837606

H 0.641527 -0.860085 -0.341291 O -0.877684 -1.045874 1.791900 O -1.336471 -0.279335 -0.295584 C -1.776030 -1.062984 0.748158 C -2.918740 -1.746915 0.748158 H -3.224196 -2.291685 1.631063 H -3.543190 -1.758710 -0.134748 Sum of electronic and thermal Enthalpies = -462.303091 Hartree

AT_A1414-CH_ts1

C -0.022660 0.020053 -0.009571 C -0.006429 0.004971 1.503107 C 1.462890 -0.014713 2.009751 C 2.311382 1.104648 1.388102 C 2.268914 1.061018 -0.146536 C 0.808236 1.102410 -0.650704 H 1.476442 0.061666 3.106716 H 1.931692 2.079255 1.730530 H 3.347465 1.032791 1.744591 H 2.843021 1.897133 -0.569544 H 2.750019 0.136588 -0.498045 H 0.389006 2.089871 -0.399495 H 0.776345 1.025435 -1.744010 H 1.907232 -0.989508 1.757825 H -0.448604 0.950930 1.863249 H 0.055413 -0.965105 -0.475730 C -2.164380 0.497794 -0.695173 C -2.254556 0.650723 -2.042787 H -2.562109 -0.414898 -0.271738 H -2.181804 1.390222 -0.081593 O -1.918722 1.808954 -2.713735 O -2.533900 -0.375393 -2.921470 C -2.312170 1.579724 -4.075466 C -2.076261 0.087514 -4.201706 C -1.584024 2.343617 -5.161722 H -3.393791 1.778097 -4.152512 C -2.748170 -0.469358 -5.439569 H -0.991398 -0.099101 -4.260587 C -2.151053 1.820220 -6.506990 H -1.740255 3.424258 -5.072267 H -0.504544 2.158773 -5.092484 C -2.116662 0.278840 -6.641989 H -3.830127 -0.292438 -5.391931 H -2.593937 -1.549847 -5.534158 H -3.190275 2.164224 -6.604059

H -1.598936 2.270359 -7.339902 H -2.624066 -0.016242 -7.567588 H -1.072283 -0.047256 -6.745393 C -0.803820 -1.157894 2.107280 H -1.862359 -1.112283 1.829436 H -0.409343 -2.121624 1.759681 H -0.746006 -1.151418 3.202679 Sum of electronic and thermal Enthalpies = -736.632756 Hartree

Imaginary frequency = i381.16 cm-1 AT_A1414-CH_add1

C -0.123224 0.049131 -0.006582 C -0.068842 0.067614 1.543231 C 1.373437 -0.171898 2.037491 C 2.387184 0.808059 1.433600 C 2.331254 0.777706 -0.098167 C 0.905445 1.033782 -0.600698 H 1.395287 -0.111859 3.134042 H 2.161648 1.826222 1.784302 H 3.398896 0.572592 1.788929 H 3.020544 1.519044 -0.522974 H 2.672097 -0.205899 -0.454340 H 0.606978 2.059694 -0.332931 H 0.868392 0.980279 -1.694807 H 1.667762 -1.201283 1.779555 H -0.368005 1.077975 1.869771 H 0.151897 -0.965918 -0.334167 C -1.535661 0.347657 -0.552587 C -1.632544 0.271810 -2.047212 H -2.271237 -0.348529 -0.116656 H -1.845100 1.357757 -0.254190 O -2.775859 0.830815 -2.629944 O -1.371137 -0.977476 -2.607648 C -3.256792 -0.137538 -3.572515 C -1.993061 -0.913812 -3.896985 C -3.924270 0.368040 -4.836843 H -3.955439 -0.805834 -3.041196 C -2.317510 -2.218619 -4.594653 H -1.356150 -0.299002 -4.553903 C -4.262308 -0.887547 -5.680687 H -4.833215 0.938635 -4.615679 H -3.241393 1.033938 -5.379874 C -3.057979 -1.834122 -5.901262 H -2.954278 -2.840733 -3.952710

H -1.412695 -2.794043 -4.820065 H -5.063781 -1.442664 -5.173178 H -4.667313 -0.582783 -6.652666 H -3.397357 -2.741111 -6.414852 H -2.340748 -1.346898 -6.576528 C -1.018664 -0.944679 2.202479 H -2.072257 -0.727964 1.999572 H -0.812594 -1.963452 1.848628 H -0.888351 -0.941370 3.291545 Sum of electronic and thermal Enthalpies = -736.674854 Hartree

AT_MeBZ

C -0.038669 0.027428 0.006749 H -0.044022 0.041824 1.100822 H 1.008562 0.005968 -0.321936 C -0.939888 -1.377539 -1.936342 C -0.813380 -1.154511 -0.520141 C -1.417698 -2.047041 0.358889 C -2.145501 -3.156062 -0.092666 C -2.276514 -3.385044 -1.468673 C -1.686874 -2.515139 -2.369394 H -2.838962 -4.242330 -1.829165 H -2.604087 -3.832160 0.623480 H -1.320074 -1.875583 1.428791 H -1.785534 -2.688185 -3.438464 C -0.358856 -0.520926 -2.886454 H 0.216055 0.353384 -2.606503 H -0.473152 -0.717646 -3.947692 H -0.461775 0.978571 -0.341928 Sum of electronic and thermal Enthalpies = - 310.086793 Hartree

AT_A0mon

C 0.006546 -0.042715 0.015366 C 0.008612 -0.000436 2.377477 C 2.329122 -0.042791 1.936427 H -0.328757 0.997993 0.118024 H -0.644879 -0.533169 -0.713134 H 3.181442 0.440512 2.421798

O -0.229122 -0.737469 1.253436 C 2.526506 -0.045876 0.434760 C 1.443660 -0.099764 -0.459360 C 1.696023 -0.158448 -1.834317 C 2.998993 -0.157524 -2.330938 C 4.073417 -0.102219 -1.443842 C 3.830698 -0.044427 -0.071947 H 5.094329 -0.099758 -1.815625 H 3.172079 -0.203904 -3.402563 H 0.857161 -0.207407 -2.525601 H 4.668429 0.004611 0.620701 O 1.178723 0.702497 2.374554 H 2.260806 -1.068691 2.322332 C -0.841100 0.030778 3.404465 H -0.564837 0.529203 4.324428 H -1.810912 -0.442393 3.322909 Sum of electronic and thermal Enthalpies = - 537.308006 Hartree

AT_A00-BZ_ts1

C -0.023449 0.012643 -0.005256 H -0.018736 0.017310 1.089349 H 1.018803 0.024915 -0.348256 C -0.852219 -1.436173 -1.938986 C -0.784580 -1.179337 -0.536432 C -1.442062 -2.040724 0.342517 C -2.160815 -3.151321 -0.110683 C -2.226440 -3.412576 -1.482114 C -1.579975 -2.568788 -2.376635 H -2.782690 -4.270821 -1.850909 H -2.661733 -3.803155 0.599947 H -1.391334 -1.837464 1.410435 H -1.633825 -2.770121 -3.444685 C -0.153734 -0.612949 -2.893224 H 0.139912 0.389731 -2.603573 H -0.422657 -0.718716 -3.940865 C 1.875066 -1.448853 -3.051887 C 2.782367 -0.481748 -3.402955 H 1.880551 -1.792142 -2.024917 H 1.601757 -2.174400 -3.808358 O 3.133400 -0.243279 -4.697108 O 3.221958 0.427823 -2.484782 C 3.022662 1.129333 -5.126748 C 4.619410 0.758885 -2.581392 H 2.109470 1.564203 -4.699593 H 2.893316 1.075160 -6.210937 C 4.228629 1.982899 -4.794683 H 4.904144 1.085976 -1.577666 C 4.933003 1.848496 -3.585734 H 5.184756 -0.154790 -2.810372 C 4.616890 2.974069 -5.703216

C 5.999469 2.714020 -3.317608 C 5.681653 3.831335 -5.428655 H 4.075325 3.073412 -6.641643 C 6.378763 3.699165 -4.228340 H 6.539991 2.613964 -2.378559 H 5.965648 4.593258 -6.149196 H 7.209930 4.360151 -3.998814 H -0.471870 0.959136 -0.337661 Sum of electronic and thermal Enthalpies = - 847.378369 Hartree

Imaginary frequency = i513.35 cm-1 AT_A00-BZ_add1

C -0.007273 -0.035188 0.060369 H -0.210035 0.094524 1.127978 H 1.080183 -0.093564 -0.066548 C -0.549856 -1.685135 -1.812622 C -0.715459 -1.260382 -0.475833 C -1.572511 -1.985779 0.361246 C -2.259904 -3.111717 -0.092468 C -2.097103 -3.529930 -1.412134 C -1.248334 -2.815628 -2.256938 H -2.628575 -4.401995 -1.784153 H -2.918765 -3.654175 0.580554 H -1.703616 -1.656923 1.390016 H -1.123982 -3.136771 -3.289531 C 0.390725 -0.977048 -2.763410 H 0.443402 0.093180 -2.538945 H 0.011021 -1.072954 -3.787703 C 1.835499 -1.565467 -2.719867 C 2.819823 -0.861349 -3.602453 H 2.208545 -1.534540 -1.690114 H 1.796190 -2.618835 -3.018575 O 2.724181 -1.067053 -4.960235 O 3.110848 0.424286 -3.215709 C 2.221854 0.031305 -5.748975 C 4.328475 0.946412 -3.764561 H 1.367983 0.486813 -5.231364 H 1.850647 -0.428398 -6.669127 C 3.254289 1.086865 -6.087135 H 4.664308 1.710420 -3.056816 C 4.188202 1.554017 -5.145952 H 5.078676 0.143010 -3.774440 C 3.235286 1.656205 -7.365978 C 5.067477 2.581012 -5.508466 C 4.115961 2.677458 -7.719733 H 2.516620 1.289898 -8.096159 C 5.039459 3.142417 -6.784189 H 5.785631 2.946422 -4.776971

H 4.082528 3.102756 -8.719005 H 5.731978 3.938777 -7.042820 H -0.335389 0.879724 -0.450299 Sum of electronic and thermal Enthalpies = - 847.409692 Hartree

AT__Sty

C 0.002009 0.103967 0.032611 C 0.150474 -0.496005 1.289834 C 1.409140 -0.663236 1.850304 C 2.582222 -0.231271 1.166009 C 2.401821 0.375810 -0.111339 C 1.140436 0.537960 -0.661848 H -0.986081 0.231830 -0.400362 H -0.727923 -0.834802 1.833725 H 1.503362 -1.130653 2.826025 H 3.280480 0.714801 -0.655600 H 1.034571 1.004599 -1.638026 C 3.881174 -0.385752 1.707277 H 4.715933 -0.025097 1.110750 C 4.185244 -1.007064 3.035132 H 3.834978 -2.048720 3.095113 H 5.261265 -1.011065 3.231213 H 3.700584 -0.470019 3.864581 Sum of electronic and thermal Enthalpies = - 310.087199 Hartree

AT_R-C5Pmon_1

C 0.225924 0.351574 -0.098344 C 0.096087 0.204763 1.425935 C 2.237137 -0.200074 0.764915 H -0.557229 -0.162136 -0.659437 H 0.263067 1.408087 -0.393980 H -0.319996 -0.782276 1.671425 C 3.533556 -0.497581 0.833851 H 4.047874 -0.462323 1.784320 H 4.072166 -0.777909 -0.060913 O 1.477774 -0.283324 -0.371001

O 1.480831 0.229453 1.822674 C -0.693970 1.287466 2.114619 C -2.027933 1.054199 2.465765 C -0.129588 2.544203 2.366786 C -2.794588 2.064616 3.048156 H -2.468763 0.075662 2.287177 C -0.892810 3.550552 2.957363 H 0.912389 2.720039 2.117813 C -2.227742 3.315412 3.295548 H -3.829457 1.870541 3.316698 H -0.443440 4.519586 3.157347 H -2.820215 4.101210 3.756265 Sum of electronic and thermal Enthalpies = - 537.313935 Hartree

AT_AC55PP-ST_ts2

C -0.002160 0.002757 0.000754 H -0.003820 0.002337 1.097381 H 1.045371 0.001360 -0.317944 C -2.110004 -1.473318 -0.202009 C -2.703956 -0.993640 0.990146 C -2.897667 -2.323392 -1.017613 C -4.006029 -1.342331 1.338436 H -2.139905 -0.335036 1.644282 C -4.196609 -2.669843 -0.665988 H -2.469505 -2.704361 -1.942914 C -4.763915 -2.182088 0.517062 H -4.435714 -0.952656 2.258457 H -4.775266 -3.319648 -1.318422 H -5.780472 -2.450081 0.791662 C -0.738958 -1.178932 -0.575290 C 0.379620 -2.873217 0.194621 H -0.506300 -1.390569 -1.618011 C 1.678892 -2.899692 -0.243059 H 0.220876 -2.620237 1.236749 H -0.291647 -3.610545 -0.229987 O 2.051628 -3.359713 -1.477577 O 2.722480 -2.277007 0.389168 C 3.478448 -3.278904 -1.541335 C 3.801412 -2.139346 -0.559946 H 3.772102 -3.070646 -2.571931 H 3.925987 -4.224932 -1.210020 H 3.694660 -1.170069 -1.066671 C 5.145398 -2.230212 0.114513 C 6.213038 -1.461816 -0.361658 C 5.358614 -3.112843 1.180916 C 7.481236 -1.581061 0.208736

H 6.051338 -0.763468 -1.180102 C 6.623358 -3.224644 1.756948 H 4.526309 -3.692757 1.567817 C 7.688521 -2.463189 1.269821 H 8.302422 -0.978507 -0.169702 H 6.777269 -3.905535 2.589753 H 8.673300 -2.552292 1.720339 H -0.446709 0.956750 -0.322263 Sum of electronic and thermal Enthalpies = - 847.382565 Hartree

Imaginary frequency = i506.01 cm-1 AT_AC55PP-ST_add2

C -0.215342 0.175498 -0.520998 H -0.271793 0.586206 0.494226 H 0.832586 0.208276 -0.836611 C -2.213912 -1.351514 -0.169981 C -2.646219 -0.969673 1.109207 C -3.174027 -1.815829 -1.077898 C -3.991790 -1.049851 1.467354 H -1.924781 -0.603564 1.835989 C -4.522819 -1.897365 -0.725638 H -2.859587 -2.117030 -2.074989 C -4.936993 -1.514345 0.550063 H -4.303042 -0.748405 2.464465 H -5.248486 -2.260334 -1.449217 H -5.985834 -1.576172 0.828148 C -0.747166 -1.268549 -0.570521 C 0.117467 -2.225429 0.285853 H -0.670844 -1.616719 -1.608268 C 1.528006 -2.346885 -0.209084 H 0.156748 -1.877480 1.324800 H -0.355098 -3.223097 0.302715 O 1.694450 -2.826861 -1.504052 O 2.402792 -2.993665 0.644890 C 2.789956 -3.746405 -1.497119 C 3.500257 -3.453115 -0.160614 H 3.421544 -3.566704 -2.371318 H 2.410747 -4.776217 -1.527441 H 4.210290 -2.624646 -0.294921 C 4.190252 -4.633865 0.472523 C 5.572649 -4.792598 0.328440 C 3.459689 -5.607249 1.165903 C 6.217155 -5.912144 0.857299 H 6.149725 -4.033999 -0.196202

C 4.104526 -6.720656 1.702815 H 2.390503 -5.473353 1.298484 C 5.483809 -6.878825 1.546246 H 7.291678 -6.022837 0.738730 H 3.529727 -7.465381 2.246991 H 5.984455 -7.747503 1.965323 H -0.799407 0.828789 -1.178145 Sum of electronic and thermal Enthalpies = - 847.411176 Hartree

AT_R4mon_1

C -0.002237 -0.072448 -0.014406 C -0.026847 0.009963 2.350141 C 2.112679 -0.004510 1.284817 C 1.423931 0.463867 -0.003899 H -0.004337 -1.169414 -0.107840 H -0.595024 0.345103 -0.831661 H 2.191198 -1.103150 1.265774 H 1.413951 1.559314 -0.027106 H 1.978574 0.108892 -0.880229 O -0.688112 0.299416 1.188837 O 1.295162 0.364616 2.414194 C -0.664314 -0.480462 3.414443 H -0.133045 -0.627238 4.345770 C 3.487876 0.593017 1.476519 C 3.654080 1.839607 2.091356 C 4.612475 -0.080626 0.987013 C 4.925520 2.401294 2.210363 H 2.786174 2.354758 2.490191 C 5.883394 0.484558 1.098775 H 4.495165 -1.056624 0.520074 C 6.042833 1.728439 1.711631 H 5.043586 3.366363 2.696160 H 6.748179 -0.051163 0.716324 H 7.032372 2.167633 1.805900 H -1.726455 -0.682204 3.365129 Sum of electronic and thermal Enthalpies = - 576.594688 Hartree

AT_A44-ST_ts1

C -0.004351 0.001167 0.006240 H 0.018191 0.006805 1.106761 H 1.036341 0.005809 -0.339592 C -0.364162 -2.536245 -0.273702 C 0.961746 -2.875847 0.087451 C -1.282948 -3.602582 -0.434253 C 1.339370 -4.201902 0.279587 H 1.698881 -2.089984 0.225222 C -0.901893 -4.925136 -0.242361 H -2.310766 -3.371782 -0.707784 C 0.414394 -5.237380 0.116758 H 2.364415 -4.430459 0.562090 H -1.633958 -5.719402 -0.367944 H 0.712743 -6.270926 0.269515 C -0.783497 -1.171544 -0.528882 C -0.558230 -0.995996 -2.701752 H -1.863093 -1.030611 -0.542629 C -0.844233 0.252287 -3.200889 H 0.485246 -1.289904 -2.683913 H -1.279692 -1.782230 -2.891863 O 0.141638 1.179594 -3.369858 O -2.114664 0.567643 -3.592166 C -0.201005 2.549350 -3.115479 C -2.586375 1.905020 -3.321344 C -1.522336 2.908561 -3.781222 H -0.260228 2.710567 -2.028205 H 0.633559 3.135842 -3.506727 H -2.719195 2.006393 -2.232328 C -3.920826 2.086672 -4.007069 H -1.425044 2.856576 -4.871567 H -1.823370 3.928068 -3.514512 C -4.184518 1.492139 -5.246722 C -4.895105 2.902870 -3.421545 C -5.403318 1.714424 -5.888000 H -3.439337 0.842157 -5.693953 C -6.110884 3.132121 -4.066678 H -4.704374 3.358285 -2.451777 C -6.368025 2.537153 -5.302813 H -5.600503 1.241633 -6.846541 H -6.859315 3.766219 -3.598948 H -7.316864 2.708236 -5.804128 H -0.456752 0.945104 -0.317083 Sum of electronic and thermal Enthalpies = - 886.664163 Hartree

Imaginary frequency = i473.15 cm-1 AT_A44-ST_add1

C -0.413668 0.039185 0.135731 H -0.840700 0.025623 1.144331 H 0.675159 0.125149 0.234970 C -0.335170 -2.494911 0.058943 C 1.028577 -2.760456 0.255662 C -1.262687 -3.431247 0.533113 C 1.449527 -3.921593 0.903549 H 1.772859 -2.052266 -0.101025 C -0.847642 -4.595017 1.183900 H -2.325023 -3.244784 0.390249 C 0.511825 -4.844841 1.371485 H 2.511840 -4.105851 1.043509 H -1.587981 -5.305481 1.543200 H 0.839024 -5.749616 1.877027 C -0.804273 -1.229309 -0.645204 C -0.291543 -1.176173 -2.105529 H -1.899119 -1.266952 -0.695997 C -0.908515 -0.072102 -2.910850 H 0.794697 -1.034010 -2.126667 H -0.493812 -2.144405 -2.593593 O -0.188092 0.246042 -4.042809 O -2.274785 -0.224702 -3.071157 C -0.722231 1.349183 -4.782931 C -2.935898 0.860829 -3.744295 C -2.206351 1.136184 -5.068777 H -0.570777 2.275105 -4.207694 H -0.131705 1.408368 -5.700738 H -2.856719 1.755946 -3.107651 C -4.392591 0.501728 -3.931367 H -2.341052 0.276616 -5.735379 H -2.634211 2.017665 -5.560818 C -4.788299 -0.821375 -4.161226 C -5.362792 1.510321 -3.925772 C -6.131513 -1.126389 -4.383419 H -4.040495 -1.607703 -4.146850 C -6.705209 1.207138 -4.155580 H -5.067311 2.540115 -3.734794 C -7.093164 -0.113958 -4.385076 H -6.427604 -2.158244 -4.553891 H -7.447728 2.000713 -4.145662 H -8.138909 -0.353868 -4.557963 H -0.773240 0.933837 -0.384083 Sum of electronic and thermal Enthalpies = - 886.698347 Hartree

AT_A1414fer_ts4

C -0.009055 0.001942 0.001704 C 0.001241 0.000910 1.519666 C 1.421907 -0.001107 2.052211 C 2.089133 1.289310 1.512233 C 1.956971 1.465867 -0.019714 C 0.504973 1.319547 -0.542982 H 1.445449 -0.016052 3.147818 H 1.629449 2.154164 2.011216 H 3.149975 1.303056 1.788946 H 2.359143 2.443980 -0.309134 H 2.582835 0.714006 -0.520423 H -0.123818 2.146361 -0.187871 H 0.489192 1.339926 -1.638885 H 1.953787 -0.893913 1.699030 H -0.509667 0.911519 1.876532 H 0.629061 -0.815283 -0.368611 O -0.831315 -1.124102 1.822089 O -1.371651 -0.343750 -0.263455 C -3.143179 -1.410030 1.018783 H -3.278331 -2.243768 1.718512 C -3.752411 -0.126604 1.610278 H -3.650654 0.709517 0.910885 H -4.818033 -0.262275 1.828973 H -3.247033 0.144569 2.543758 H -3.658784 -1.686679 0.091441 C -1.676177 -1.308657 0.706959 C -1.076038 -3.298886 -0.210334 C -1.094121 -3.184335 -1.565933 H -0.117953 -3.282402 0.293948 H -1.868558 -3.872032 0.256946 O -2.239190 -3.316761 -2.329559 O -0.042342 -2.695335 -2.319330 C -1.812873 -3.133265 -3.685846 C -0.658392 -2.166413 -3.505400 C -2.825905 -2.597096 -4.676380 H -1.418894 -4.095356 -4.053581 C 0.184116 -2.078440 -4.760439 H -1.061882 -1.172191 -3.256162 C -2.063353 -2.414438 -6.013619 H -3.669963 -3.283816 -4.805007 H -3.228801 -1.640482 -4.320624 C -0.765552 -1.581692 -5.881340 H 0.597673 -3.064920 -5.006201 H 1.026953 -1.388963 -4.637548 H -1.810862 -3.408027 -6.409712 H -2.721930 -1.945993 -6.754119 H -0.235312 -1.578908 -6.840724 H -1.032924 -0.536338 -5.672595 Sum of electronic and thermal Enthalpies = - 964.441804 Hartree

Imaginary frequency = i380.09 cm-1 AT_A1414fer_add1

C 0.123264 0.041804 0.103428 C -0.057010 0.136121 1.606777 C 1.268701 0.388273 2.300119 C 1.808169 1.727836 1.739404 C 1.851559 1.782438 0.193327 C 0.514069 1.386311 -0.481293 H 1.152889 0.446124 3.388607 H 1.166851 2.542173 2.105421 H 2.810528 1.922221 2.139337 H 2.147512 2.788560 -0.127021 H 2.636054 1.100758 -0.164523 H -0.266168 2.129707 -0.270964 H 0.633283 1.333678 -1.569433 H 1.961375 -0.435584 2.086096 H -0.737695 0.976716 1.830649 H 0.917979 -0.687903 -0.114405 O -0.715754 -1.092861 1.898214 O -1.131002 -0.502743 -0.303977 C -3.020841 -0.995068 1.078156 H -3.607099 -1.121416 0.159267 C -3.648307 -1.779795 2.234223 H -3.022915 -1.709501 3.130142 H -4.638186 -1.378096 2.477567 H -3.776688 -2.840741 1.992084 H -3.031576 0.077024 1.306941 C -1.563544 -1.365557 0.764912 C -1.390908 -2.848701 0.389856 C -0.013164 -3.227837 -0.063231 H -1.618580 -3.452229 1.273674 H -2.128816 -3.097187 -0.389012 O 0.315917 -3.033710 -1.409203 O 0.421820 -4.480358 0.361949 C 0.914986 -4.260800 -1.850159 C 1.470537 -4.817770 -0.552973 C 1.989355 -4.188539 -2.917481 H 0.104927 -4.922667 -2.200959 C 1.838861 -6.280148 -0.696625 H 2.366981 -4.240144 -0.272720 C 2.491911 -5.640379 -3.124549 H 1.601912 -3.777449 -3.856345 H 2.805738 -3.535278 -2.583429 C 2.911335 -6.348116 -1.813886 H 0.951660 -6.865337 -0.970626 H 2.230672 -6.693401 0.239482

H 1.690232 -6.220885 -3.602417 H 3.334478 -5.644385 -3.825879 H 3.156405 -7.394924 -2.027921 H 3.835074 -5.885899 -1.438430 Sum of electronic and thermal Enthalpies = - 964.475572 Hartree

AT_AC55fer_ts

C -0.004099 -0.005738 0.002937 C -0.009277 -0.000903 1.536579 H 1.001814 -0.012131 -0.428785 H -0.575447 -0.848993 -0.407602 H 0.888741 0.476112 1.948963 H -0.140935 -0.989665 1.983068 C -2.613857 2.324598 0.647095 H -2.895267 2.810776 1.588456 H -2.544791 3.114932 -0.110115 C -3.677041 1.291813 0.234068 H -3.401715 0.813903 -0.712224 H -3.775483 0.510755 0.994884 H -4.655884 1.767336 0.103106 O -0.660936 1.220154 -0.332412 O -1.160950 0.787000 1.836838 C -1.237722 1.747147 0.830856 C 0.104939 3.448049 1.526675 C 0.209332 3.408411 2.883523 H 0.943514 3.092413 0.940755 H -0.498651 4.235839 1.091283 O -0.725015 3.944075 3.738684 O 1.113831 2.631672 3.570489 C -0.315439 3.630400 5.072882 C 0.547858 2.386750 4.864793 H -1.207309 3.459115 5.680000 H 0.262992 4.464052 5.493629 H -0.059637 1.472874 4.837026 H 1.361253 2.275943 5.584899 Sum of electronic and thermal Enthalpies = - 652.517905 Hartree

Imaginary frequency = i308.85 cm-1 AT_AC55fer_add_1

C -0.252244 -0.054384 0.018208 C 0.125173 0.072533 1.493850 H 0.551051 -0.455511 -0.608599 H -1.151310 -0.673078 -0.112379 H 1.198078 0.282394 1.619797 H -0.140773 -0.796846 2.101117 C -2.182419 2.656791 0.778641 H -2.335343 3.224641 1.702502 H -2.219151 3.381848 -0.043463 C -3.279107 1.604449 0.606745 H -3.148703 1.054771 -0.331296 H -3.264624 0.886600 1.432714 H -4.266685 2.078186 0.585746 O -0.511286 1.292620 -0.367163 O -0.670157 1.172493 1.917595 C -0.768072 2.072324 0.816434 C 0.339316 3.147944 0.884254 C 0.247825 4.074439 2.058922 H 1.303853 2.634396 0.942347 H 0.325910 3.712912 -0.060964 O -0.614947 5.162420 1.951778 O 1.461819 4.494718 2.574949 C 0.022892 6.298711 2.549060 C 1.178493 5.671101 3.334334 H -0.698834 6.829492 3.176024 H 0.379981 6.971586 1.758361 H 0.873684 5.397317 4.353387 H 2.081449 6.284065 3.371516 Sum of electronic and thermal Enthalpies = - 652.552397 Hartree

AT_AC55PP-ferA-ts_A2

C -0.000014 -0.001464 -0.002230 C 0.004319 -0.000311 1.534836 H 0.996520 -0.003207 -0.449653 H -0.581787 -0.850054 -0.388465 H 0.843668 0.613392 1.894037 C -1.824030 2.916360 0.977893 H -2.678838 2.981594 1.661325 H -2.133082 3.390112 0.038133 C -0.610964 3.655167 1.567403

H 0.241072 3.612884 0.880751 H -0.846642 4.709411 1.752662 H -0.308788 3.203975 2.518715 O -0.637379 1.234288 -0.310045 O -1.226801 0.691549 1.815952 C 0.056486 -1.358953 2.186044 C 1.263145 -1.820929 2.723744 C -1.069812 -2.192190 2.218671 C 1.353674 -3.099643 3.275842 H 2.137863 -1.173740 2.713151 C -0.979318 -3.467769 2.776095 H -2.014939 -1.832911 1.822809 C 0.230491 -3.927011 3.303019 H 2.297505 -3.444344 3.690130 H -1.858254 -4.107304 2.798962 H 0.295528 -4.921628 3.736458 C -1.577046 1.456326 0.695870 C -3.570156 0.692462 -0.062967 C -4.347494 0.171410 0.927333 H -3.836653 1.673061 -0.438625 H -3.127915 0.001096 -0.770978 O -4.261451 -1.128929 1.371116 O -5.153233 0.916906 1.751858 C -5.186526 -1.272280 2.451295 C -5.339353 0.167960 2.969394 H -4.764690 -1.960201 3.187113 H -6.143165 -1.663372 2.080783 H -4.513019 0.402930 3.654595 C -6.663755 0.485090 3.612510 C -6.773135 0.501244 5.007105 C -7.804952 0.716929 2.834049 C -8.006341 0.732395 5.618604 H -5.888078 0.337032 5.618102 C -9.034936 0.957494 3.444935 H -7.716933 0.728037 1.752026 C -9.140130 0.961411 4.838015 H -8.077951 0.743024 6.702845 H -9.912931 1.145005 2.832509 H -10.099829 1.149020 5.312005 Sum of electronic and thermal Enthalpies = - 1114.46386 Hartree

Imaginary frequency = i373.79 cm-1 AT_AC55PP-ferA_add_2

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.536218 H 0.999736 0.000000 -0.441623

H -0.567777 -0.859327 -0.387284 H 0.834006 0.619933 1.896004 C -1.610239 2.956628 1.041537 H -2.442314 3.143710 1.727404 H -1.829765 3.504990 0.116506 C -0.293630 3.450280 1.643898 H 0.541211 3.286544 0.955130 H -0.349416 4.523011 1.858819 H -0.074871 2.931650 2.583311 O -0.631272 1.232880 -0.312578 O -1.239866 0.661014 1.821834 C 0.072857 -1.363381 2.180889 C 1.288125 -1.813784 2.708714 C -1.042592 -2.211413 2.216606 C 1.397452 -3.094598 3.253015 H 2.154997 -1.156157 2.697081 C -0.933914 -3.488975 2.766166 H -1.993692 -1.856666 1.831515 C 0.284944 -3.936096 3.282716 H 2.348049 -3.430048 3.659360 H -1.805104 -4.138874 2.791854 H 0.364981 -4.932080 3.710372 C -1.620925 1.464429 0.692470 C -3.010878 0.989764 0.170221 C -4.053545 0.685145 1.206766 H -3.383936 1.757936 -0.517614 H -2.868582 0.078280 -0.418899 O -4.022242 -0.598540 1.726954 O -4.270708 1.602458 2.222455 C -4.534472 -0.526752 3.058822 C -4.182467 0.905872 3.488319 H -4.045508 -1.295909 3.660192 H -5.620916 -0.686101 3.057944 H -3.138874 0.942180 3.824641 C -5.098671 1.515461 4.515978 C -4.698632 1.576166 5.855333 C -6.371231 1.982405 4.162002 C -5.559248 2.082125 6.830890 H -3.706650 1.228400 6.135577 C -7.227916 2.495904 5.134814 H -6.674359 1.959082 3.119661 C -6.826455 2.543242 6.472232 H -5.235744 2.123663 7.867532 H -8.210049 2.862851 4.848377 H -7.495723 2.943916 7.228901 Sum of electronic and thermal Enthalpies = - 1114.500819 Hartree AT_AC66fer_ts

C 0.002857 0.000244 0.001444 C 0.007189 0.002909 2.472590 C 0.901275 -0.001004 1.235397 H -0.557045 -0.942683 -0.071681 H 0.574999 0.140038 -0.920326 H 0.575981 0.160326 3.393132 H -0.526705 -0.955351 2.557638 H 1.531551 0.895947 1.232587 H 1.555737 -0.881578 1.236220 O -0.916862 1.094617 0.057861 O -0.933970 1.074815 2.409977 C -2.526495 2.404074 1.240269 H -3.134602 2.373848 2.151820 H -3.218325 2.340618 0.392871 C -1.731748 3.720733 1.185086 H -1.133773 3.775231 0.269833 H -2.406464 4.584306 1.206440 H -1.051989 3.797226 2.039895 C -1.664172 1.169690 1.228714 C -3.204979 -0.532451 1.141284 C -3.623888 -0.730540 -0.144602 H -2.571458 -1.291613 1.584144 H -3.862796 0.006161 1.813016 O -3.027230 -1.667269 -0.951102 O -4.677156 -0.025721 -0.664398 C -2.763452 -1.246971 -2.300604 C -4.495527 0.477359 -1.997554 C -4.013955 -0.635087 -2.921715 H -1.942787 -0.514611 -2.295994 H -2.433185 -2.145423 -2.827953 H -5.468506 0.875600 -2.295648 H -3.767086 1.302121 -1.977775 H -4.793185 -1.399852 -3.017967 H -3.793304 -0.239160 -3.920572 Sum of electronic and thermal Enthalpies = - 731.08917 Hartree

Imaginary frequency = i329.78 cm-1 AT_AC66fer_add_1

C 0.009949 -0.055815 0.030204 C -0.075082 -0.065223 2.507259 C 0.856380 0.020721 1.299615 H -0.430470 -1.055823 -0.091553 H 0.600121 0.159289 -0.865650 H 0.448457 0.154425 3.442654 H -0.492524 -1.081325 2.591762 H 1.393384 0.976174 1.320470 H 1.595139 -0.790496 1.324873 O -1.010965 0.940622 0.060575 O -1.115324 0.906200 2.417462 C -2.643129 2.228356 1.184925 H -3.305788 2.224863 2.058641 H -3.281728 2.215049 0.294282 C -1.761207 3.478611 1.195811 H -1.109699 3.502762 0.317817 H -2.380450 4.382868 1.190358 H -1.130435 3.500982 2.089391 C -1.860026 0.910653 1.198467 C -2.821176 -0.311686 1.172866 C -3.596153 -0.453186 -0.100606 H -2.259582 -1.237783 1.353273 H -3.524213 -0.196431 2.002959 O -2.988949 -1.285065 -1.021843 O -4.953041 -0.638379 0.089363 C -3.638045 -1.311527 -2.298724 C -5.713519 -0.638259 -1.124919 C -5.122244 -1.628036 -2.127032 H -3.504362 -0.336697 -2.790279 H -3.117629 -2.073796 -2.884165 H -6.735107 -0.900191 -0.838024 H -5.715301 0.378168 -1.546662 H -5.238074 -2.649551 -1.746539 H -5.645490 -1.558902 -3.088775 Sum of electronic and thermal Enthalpies = - 731.126941 Hartree

AT_A44fer_ts

C -3.243325 -2.729053 -0.686861 C -2.616791 -0.346704 -0.337756 C -3.785639 -1.344084 -0.345942 H -2.892780 -2.754087 -1.729397 H -4.001025 -3.507550 -0.562076 H -2.189407 -0.292467 -1.349611 H -4.252326 -1.355689 0.645858 H -4.543487 -1.036469 -1.076196 O -2.174046 -3.082389 0.189007 O -1.601869 -0.830867 0.554621 C -0.160698 -2.565614 1.349286 H 0.703179 -1.895140 1.283987

H 0.190427 -3.564863 1.066759 C -0.709052 -2.595810 2.786778 H -1.566027 -3.273151 2.860007 H 0.059756 -2.939772 3.488073 H -1.035441 -1.599434 3.101964 C -3.031553 1.040664 0.102558 C -3.005809 1.416016 1.451318 C -3.499609 1.957798 -0.847208 C -3.440788 2.683862 1.840036 H -2.631428 0.713079 2.188231 C -3.941605 3.222813 -0.458441 H -3.514631 1.680404 -1.899420 C -3.912690 3.589890 0.888275 H -3.410897 2.964241 2.889878 H -4.300653 3.923387 -1.207913 H -4.251681 4.576488 1.192933 C -1.167171 -2.133056 0.315763 C 0.088596 -2.065366 -1.606118 C 0.775196 -0.885290 -1.683002 H 0.630971 -2.948530 -1.290412 H -0.725792 -2.217823 -2.304447 O 1.998041 -0.744723 -1.081379 O 0.283183 0.182507 -2.385057 C 2.214752 0.479933 -0.344951 C 0.424241 1.466485 -1.749658 C 1.848629 1.664608 -1.247090 H 1.540547 0.478285 0.525378 C 3.649906 0.502062 0.126449 H -0.290886 1.538378 -0.918711 H 0.150371 2.200273 -2.511755 H 2.548733 1.705713 -2.089614 H 1.930030 2.605029 -0.689691 C 4.679744 -0.011831 -0.670991 C 3.969340 1.084986 1.357923 C 6.005091 0.059623 -0.241950 H 4.432601 -0.483150 -1.616867 C 5.295869 1.163934 1.784060 H 3.174683 1.475274 1.990607 C 6.317944 0.650630 0.984170 H 6.795459 -0.349469 -0.865989 H 5.528624 1.617030 2.744155 H 7.351139 0.704822 1.316842 Sum of electronic and thermal Enthalpies = - 1193.033096 Hartree

Imaginary frequency = i336.53 cm-1 AT_A44ferB_add_1

C 2.597191 2.621399 -1.622125 C 2.751598 0.307318 -0.699112 C 3.554532 1.479652 -1.285773 H 1.967653 2.347647 -2.483715 H 3.136676 3.535859 -1.886609 H 2.081161 -0.097019 -1.470668 H 4.285300 1.814594 -0.540656 H 4.102048 1.159940 -2.180755 O 1.794793 2.965671 -0.495368 O 1.974274 0.792404 0.402041 C 0.620446 2.405029 1.481232 H 0.017795 1.611696 1.937774 H -0.051516 3.248362 1.282523 C 1.741912 2.841892 2.425510 H 2.361457 3.614073 1.960317 H 1.321954 3.250442 3.351644 H 2.386746 1.998358 2.688340 C 3.636399 -0.816792 -0.203199 C 4.203116 -0.785314 1.076819 C 3.940345 -1.888282 -1.050895 C 5.057100 -1.805419 1.496910 H 3.958353 0.034716 1.743906 C 4.800463 -2.905733 -0.635248 H 3.495542 -1.929362 -2.043231 C 5.361588 -2.867032 0.642132 H 5.485434 -1.771679 2.495551 H 5.024558 -3.731499 -1.305735 H 6.027359 -3.660659 0.971145 C 1.104958 1.882675 0.123558 C -0.097959 1.453051 -0.764766 C -0.816450 0.234719 -0.273548 H -0.801285 2.290085 -0.792997 H 0.236110 1.279989 -1.796538 O -2.192718 0.372147 -0.245971 O -0.330504 -0.940444 -0.805848 C -2.893181 -0.726758 0.365261 C -0.904037 -2.116690 -0.222741 C -2.427481 -2.041466 -0.282356 H -2.622209 -0.747202 1.432392 C -4.380668 -0.492847 0.226512 H -0.557015 -2.207325 0.816492 H -0.511331 -2.959175 -0.797391 H -2.762760 -2.063422 -1.325712 H -2.877554 -2.896159 0.236308 C -4.908758 0.190437 -0.874977 C -5.255722 -1.009505 1.189276 C -6.288365 0.351781 -1.008852 H -4.231934 0.607432 -1.613516 C -6.635498 -0.855727 1.051802 H -4.854909 -1.531001 2.056322 C -7.155911 -0.173283 -0.049236 H -6.686023 0.890805 -1.864893 H -7.302094 -1.260086 1.809014 H -8.229997 -0.046269 -0.155253 Sum of electronic and thermal Enthalpies = - 1193.06959 Hartree

AT_AC77fer_ts4

C -0.001589 -0.003970 0.001694 C -0.004767 -0.000824 1.534615 C 1.395060 -0.003454 2.146937 C 0.846578 1.107888 -0.615610 H 0.378125 -0.965601 -0.369394 H -0.534101 0.885748 1.908453 H 1.992917 -0.835786 1.756234 H 0.544164 2.094440 -0.247579 H -1.030210 0.095534 -0.371555 H -0.553069 -0.878624 1.903641 H 1.331401 -0.109819 3.234854 H 0.733396 1.102347 -1.704654 C 4.277773 1.177838 0.834772 H 4.661066 1.683676 1.728332 H 4.740544 1.666846 -0.029552 C 4.685790 -0.307898 0.867758 H 4.281929 -0.843733 0.002555 H 5.777800 -0.406367 0.848405 H 4.328128 -0.804795 1.776625 O 2.246066 0.903545 -0.380863 O 2.071450 1.252258 1.935715 C 2.792796 1.446651 0.767236 C 2.699959 3.717664 0.627618 C 3.042772 4.152031 -0.620931 H 1.655248 3.734858 0.910648 H 3.424617 3.828533 1.425454 O 2.104539 4.377192 -1.589646 O 4.358014 4.205261 -0.998025 C 2.324214 3.750616 -2.871578 C 4.743631 5.261406 -1.895089 C 3.143503 4.646744 -3.799478 H 2.792819 2.769545 -2.726406 H 1.322121 3.598732 -3.284720 C 4.598786 4.834038 -3.354669 H 4.162131 6.167048 -1.679941 H 5.793577 5.462505 -1.661347 H 2.639596 5.620991 -3.853397 H 3.117969 4.220233 -4.811379 H 5.155597 3.896759 -3.485623 H 5.086503 5.584907 -3.990962 Sum of electronic and thermal Enthalpies = - 809.658283 Hartree

Imaginary frequency = i379.31 cm-1 AT_AC77fer-add_3

C -0.046805 0.321845 0.323031 C 0.132733 0.619362 1.815873 C 1.585389 0.512881 2.287619 C 0.878125 1.139982 -0.578680 H 0.148766 -0.741574 0.129938 H -0.224272 1.632446 2.045445 H 2.006235 -0.456697 2.006292 H 0.732709 2.214277 -0.411201 H -1.087544 0.512511 0.025948 H -0.481175 -0.075728 2.405624 H 1.629375 0.593229 3.379666 H 0.652847 0.936047 -1.631427 C 4.383936 0.734634 0.606074 H 4.995906 1.247174 1.353234 H 4.869876 0.892298 -0.364905 C 4.346022 -0.769782 0.897729 H 3.643392 -1.285688 0.236753 H 5.340592 -1.201918 0.737087 H 4.069589 -0.981861 1.935488 O 2.247304 0.764606 -0.401310 O 2.379216 1.598406 1.803269 C 3.033857 1.481433 0.541904 C 3.248624 2.940012 0.068717 C 4.349724 3.705106 0.757950 H 3.470290 2.921892 -1.003342 H 2.296800 3.483022 0.187713 O 4.496317 4.956502 0.202629 O 4.491740 3.614850 2.114985 C 5.473386 5.822311 0.798493 C 3.745340 4.547263 2.933900 C 4.884320 6.627113 1.959536 H 6.345706 5.238021 1.116308 H 5.782091 6.496184 -0.006511 C 4.579998 5.794769 3.213354 H 2.795066 4.795015 2.445075 H 3.522982 4.008990 3.859484 H 3.968326 7.113279 1.597857 H 5.587779 7.430869 2.216258 H 5.519456 5.471037 3.680641 H 4.056434 6.417464 3.951723 Sum of electronic and thermal Enthalpies = - 809.691756 Hartree

AT_A00fer_ts5

C -0.002166 -0.001869 -0.002153 C 0.003656 -0.000286 3.036445 H 1.082118 -0.002700 -0.164001 H -0.484494 -0.039610 -0.983756 H 0.473227 -0.316465 3.973231 O -0.409468 1.254344 0.573440 C -0.342413 -1.227827 2.215273 C -0.405601 -1.213868 0.811190 C -0.797580 -2.375483 0.135053 C -1.118736 -3.543847 0.824190 C -1.052689 -3.558879 2.217056 C -0.664590 -2.406647 2.898816 H -1.297746 -4.461482 2.770318 H -1.421219 -4.432802 0.277376 H -0.852452 -2.360349 -0.951616 H -0.608858 -2.420196 3.985646 O 0.944809 0.889608 2.428606 H -0.902737 0.559031 3.297018 C 2.723490 2.166484 0.385966 H 3.467495 2.945507 0.181802 H 3.190385 1.411768 1.026766 H 2.471519 1.697431 -0.571490 C 1.484121 2.779110 1.068097 H 1.801678 3.354177 1.945291 H 0.999379 3.485663 0.384775 C 0.426496 1.805054 1.531949 C -1.073753 3.168700 2.566059 C -0.641438 3.557494 3.800816 H -1.018743 3.888445 1.758102 H -1.854622 2.421813 2.500157 O -0.958178 2.871753 4.941281 O 0.284132 4.555097 3.949234 C 0.168707 2.521457 5.770258 C 0.029945 5.452610 5.042534 H 1.004237 2.219029 5.125573 H -0.157432 1.643267 6.334883 C 0.591731 3.614479 6.729880 H 0.512327 6.393166 4.761192 C 0.576437 4.973988 6.372198 H -1.051160 5.636825 5.110094 C 1.059251 3.249513 7.997476 C 1.035177 5.926327 7.289094 C 1.514118 4.205054 8.905405 H 1.064788 2.197941 8.277067 C 1.500025 5.553109 8.549520 H 1.029322 6.977556 7.008047 H 1.872553 3.897784 9.884024 H 1.852041 6.309908 9.245169 Sum of electronic and thermal Enthalpies = - 1114.451988 Hartree

Imaginary frequency = i375.85 cm-1 AT_A00fer-add_1

C -0.218901 0.253431 0.033154 C 0.284325 -0.017605 3.017021 H 0.835664 0.142889 -0.232331 H -0.788003 0.312578 -0.900544 H 0.929186 -0.489072 3.766377 O -0.452626 1.493970 0.699534 C -0.394093 -1.099684 2.194228 C -0.673902 -0.957503 0.824580 C -1.347604 -1.988147 0.157823 C -1.740330 -3.149510 0.821264 C -1.460637 -3.290413 2.180302 C -0.790416 -2.269983 2.853043 H -1.758182 -4.189272 2.713662 H -2.263207 -3.934848 0.282099 H -1.568608 -1.873899 -0.901562 H -0.566812 -2.383414 3.912386 O 1.144892 0.851631 2.285293 H -0.471243 0.556238 3.569679 C 2.697484 1.868476 0.059550 H 3.568810 2.481958 -0.197205 H 3.054348 0.984397 0.595755 H 2.246130 1.546597 -0.884356 C 1.727163 2.690877 0.916300 H 2.295252 3.171072 1.722831 H 1.287503 3.494203 0.318914 C 0.556837 1.949176 1.599100 C -0.178911 2.897188 2.575693 C -0.523960 4.261042 2.033871 H -1.102686 2.400851 2.912436 H 0.448233 3.037405 3.462506 O -1.035198 4.393150 0.771138 O -1.129679 5.035825 2.995101 C -2.454306 4.156126 0.637282 C -1.535052 6.336805 2.547204 H -2.736986 3.302384 1.266135 H -2.602092 3.855538 -0.403577 C -3.299653 5.372746 0.956902 H -1.557583 6.957160 3.447372 C -2.895628 6.356658 1.878606 H -0.765334 6.738612 1.875826 C -4.549371 5.492665 0.337866 C -3.759477 7.422728 2.157345 C -5.401156 6.559252 0.621318

H -4.857845 4.735582 -0.380433 C -5.002888 7.532744 1.536734 H -3.449565 8.179014 2.875612 H -6.366765 6.629632 0.127903 H -5.655468 8.369564 1.770177 Sum of electronic and thermal Enthalpies = - 1114.483769 Hartree

AT_AC88OOfer_ts1

C 0.000668 -0.001165 -0.002608 C -0.003260 -0.006609 1.526069 H 1.029377 0.001220 -0.376462 H -0.998448 -0.254321 1.908178 H -0.486188 -0.924918 -0.361686 H 0.698902 -0.769990 1.886832 C -1.917052 1.462545 -0.182849 H -2.483788 0.561146 0.094313 H -2.401426 1.901471 -1.064662 C -1.989245 2.499873 0.940768 H -1.264948 3.295293 0.737524 H -2.996675 2.933191 0.938938 O -1.811363 1.983269 2.261082 O 0.403285 1.279490 2.019475 O -0.593053 1.144580 -0.587426 C -0.535096 1.948344 2.804761 C -0.589506 1.469372 4.240011 H 0.417462 1.589884 4.655988 H -0.795044 0.384030 4.246812 C -1.630303 2.171793 5.117932 H -1.598891 1.776376 6.139275 H -1.452987 3.251109 5.172570 H -2.638912 2.021358 4.722778 C 0.367560 4.054248 2.930433 C 1.622090 4.114535 2.389594 H 0.287435 4.047119 4.010050 H -0.442318 4.513681 2.378412 O 1.866119 4.503867 1.110460 O 2.695852 3.699092 3.131284 C 2.124219 3.489060 0.108786 C 3.982332 4.262952 2.829220 H 1.202100 2.932788 -0.094466 H 2.405244 4.064757 -0.777086 C 3.232544 2.502893 0.454079 C 4.849456 3.290613 2.038457 H 4.456836 4.459272 3.798186 H 3.871750 5.204648 2.284586 H 3.357010 1.842389 -0.415992

H 2.941922 1.882271 1.309264 O 4.485172 3.139360 0.679206 H 4.847133 2.315734 2.552630 H 5.879402 3.666792 2.028513 Sum of electronic and thermal Enthalpies = - 960.042182 Hartree

Imaginary frequency = i369.75 cm-1 AT_AC88OOfer-add1

C -0.265084 -0.593991 0.879731 C 0.135682 0.448767 1.923752 H 0.628652 -1.053341 0.445186 H -0.739973 0.768721 2.494448 H -0.842769 -1.389660 1.383648 H 0.850927 -0.000887 2.626353 C -2.136778 0.690158 0.055121 H -2.610560 0.378526 0.998113 H -2.844406 0.478267 -0.757545 C -1.885151 2.199682 0.062089 H -1.279722 2.450926 -0.814701 H -2.851159 2.710192 -0.037947 O -1.322223 2.709055 1.271019 O 0.742418 1.565472 1.278519 O -0.973306 -0.071432 -0.228374 C 0.089254 2.826109 1.437923 C 0.256745 3.341353 2.880440 H 1.325430 3.340982 3.107451 H -0.222094 2.609104 3.541526 C -0.335169 4.727165 3.156010 H -0.277865 4.956020 4.226290 H 0.216117 5.509855 2.625219 H -1.386304 4.773701 2.855336 C 0.703807 3.762792 0.356484 C 2.180838 4.013183 0.332113 H 0.176160 4.719811 0.451037 H 0.461249 3.355816 -0.627880 O 3.008918 3.358737 -0.525472 O 2.727896 4.498250 1.500643 C 3.459612 2.007889 -0.246058 C 4.102452 4.910254 1.458749 H 2.612770 1.316515 -0.312176 H 4.168711 1.798863 -1.051612 C 4.146275 1.842973 1.103366 C 5.029410 3.860216 2.063767 H 4.160344 5.823342 2.063280 H 4.399342 5.136745 0.431173

H 4.532732 0.815122 1.154681 H 3.425627 1.967797 1.920228 O 5.257415 2.717638 1.260798 H 4.636998 3.568481 3.051883 H 6.015878 4.315161 2.213952 Sum of electronic and thermal Enthalpies = - 960.077955 Hartree

III.2 - Kinetic rate constants used for the PREDICI modeling

Table S7. Kinetic rate constants for the initiation and termination used for the PREDICI modeling of

the bulk polymerization of CKA monomers.

Rate Constant Unit 50-100°C

120-150°C

kd s-1 4.10 × 10-6 1.1 × 10-5

kdism L.mol-1.s-1 2.00 × 109 2.00 × 109

kadd L.mol-1.s-1 9,10 × 101 6.3 × 102

kt,mixed L.mol-1.s-1 1.00 × 108 or 1.00 × 106 (stabilized macroradicals)

kt,open L.mol-1.s-1 1.00 × 109 or 1.00 × 106 (stabilized macroradicals)

kt, closed L.mol-1.s-1 1.00 × 106

[CKA] mol.L-1 8.0

Table S7. Kinetic rate constants for the propagation used for the PREDICI modeling of the bulk

polymerization of CKA monomers.

kadd,closed

kadd,open

%

Ester

Temperature (°C)

50 70 100 120 150

C5 1,13E+03 5,49E+02 1,64E+02

39,4 4,05E+03 9,90E+02 3,17E+02

55,9 2,13E+04 2,13E+03 7,47E+02

74,1 5,58E+04 3,32E+03 1,23E+03

82,3 2,00E+05 5,99E+03 2,38E+03

89,9

C6 4,14E+02 1,13E+03 6,94E+02

14,0 1,57E+03 1,95E+03 1,23E+03

24,1 8,91E+03 3,97E+03 2,61E+03

43,0 2,44E+04 6,00E+03 4,03E+03

55,8 9,29E+04 1,04E+04 7,17E+03

71,9

C7 1,68E+06 1,32E+02 4,20E+02

100 3,94E+06 2,59E+02 7,69E+02

100 1,19E+07 6,19E+02 1,69E+03

100 2,26E+07 1,03E+03 2,67E+03

100 5,30E+07 2,02E+03 4,88E+03

100

C5H 5,71E+01 4,91E+02 2,51E+01

6,5 2,44E+02 8,91E+02 5,42E+01

12,1 1,60E+03 1,93E+03 1,47E+02

23,9 4,80E+03 3,03E+03 2,63E+02

35,6 2,05E+04 5,50E+03 5,68E+02

54,0

C5P 2,86E+06 4,53E+02 1,78E-01

100 6,48E+06 8,25E+02 5,14E-01

100 1,88E+07 1,80E+03 2,03E+00

100 3,50E+07 2,83E+03 4,51E+00

100 7,94E+07 5,17E+03 1,30E+01

100

C6P 6,29E+04 2,91E+03 4,08E-01

75,3 1,78E+05 4,76E+03 1,12E+00

85,2 6,91E+05 9,02E+03 4,15E+00

94,0 1,52E+06 1,31E+04 8,90E+00

96,6 4,31E+06 2,14E+04 2,44E+01

98,1

C7B 1,23E+06 1,12E+02 1,44E+00

100 2,94E+06 2,22E+02 3,67E+00

100 9,08E+06 5,39E+02 1,24E+01

100 1,75E+07 9,03E+02 2,51E+01

100 4,18E+07 1,79E+03 6,40E+01

100

C8O 5,18E+06 9,00E+01 5,83E+02

100 1,14E+07 1,80E+02 1,05E+03

100 3,15E+07 4,44E+02 2,24E+03

100 5,70E+07 7,52E+02 1,35E+07

100 1,25E+08 1,51E+03 1,35E+07

100