the role of biochar in a negative emissions portfolio · dominicwoolf,june2012 the role of biochar...

23
Dominic Woolf, June 2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Upload: duongdat

Post on 17-Feb-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Dominic  Woolf,  June  2012  

The role of biochar in a negative emissions portfolio

Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Biochar: An intervention in the terrestrial carbon cycle

Anthropogenic  emissions:    8  Pg  C  yr-­‐1  

Terrestrial  NPP:    60  Pg  C  yr-­‐1  

Heterotrophic    respiraDon:  

(60  –  X)  Pg  C  yr-­‐1  

Biochar:  X  Pg  C  yr-­‐1  

Dominic  Woolf,  June  2012  

Sensitivity of Avoided Emissions to Biochar Stability !   Biochar  consists  of  both  labile  (short-­‐lived)  

and  recalcitrant  (long-­‐lived)  components  !   Biochar  stability  depends  primarily  on  (1)  

the  labile  fracDon  &  (2)  T½  of  recalcitrant  fracDon  

!   Centennial  avoided  emissions  insensiDve  to  T½  >  200  yrs  

!   Centennial  avoided  emissions  are  sharply  reduced  for  T½  <  100  yrs  

!   Increasing  soil  BC  stocks  give  rise  to  increasing  soil  CO2  emissions  from  BC  decomposiDon  

!   Eventually,  “peak  biochar”  occurs  when  losses  ≈  addiDons  

!   Long-­‐term  biochar  sequestraDon  requires  high  biochar  stability  (T½  ≳  500  yrs  over  500  yr  Dmescale)  

(Leh

man

n et

al.,

201

0)  

SequestraDon  

Dominic  Woolf,  June  2012  

Influence of Temperature on Biochar Structure

!   Biomass  conversion  to  biochar  fundamentally  changes  the  chemistry  of  organic  ma]er  !   Both  decomposiDon  and  condensaDon  reacDons  occur  !   Increasing  temperature:    

!   reduces  H  &  O  content    !   increases  aromaDcity  !   increases  condensaDon  of  biochar  (increased  size  of  conjugated  aromaDc  sheets)  !   increases  3D  order  !   increases  porosity  &  surface  area  !   increases  pH  &  CEC  

Dominic  Woolf,  June  2012  

Biochar stability increases with pyrolysis temperature

!   EsDmates  of  biochar  ½  life  span  6  orders  of  magnitude  (101  –  107  yrs)  

!   T½  corellates  with  O:C  raDo  !   Lower  O:C    =>    higher  T½  !   O:C  reduced  by    

!   higher  pyrolysis  temperature  !   longer  reacDon  Dme  

!   Feedstock  also  contributes  to  stability  !   Manure  biochar  least  stable  !   Grasses  less  stable  !   Wood  most  stable  

!   T  ½  >  1000  yrs  can  be  achieved  by  use  of  slow  pyrolysis  at  >500°C  

(Spokas,  2011)  

Poultry-­‐manure  biochars  

Dominic  Woolf,  June  2012  

Global Distribution of soil BC

!   BC  is  ubiquitous  in  global  soils  

!   BC%  of  SOC  peaks  at  20-­‐30°  laDtude  (arid  zone  &  regions  with  pronounced  dry  season)  

!   High  BC%  generally  associated  with  most  ferDle  soils  (anthrosols,  mollisols,  chernozems)  

(Krull  et  al.,  2008)  

Dominic  Woolf,  June  2012  

!   Anthropogenic  Dark  Earths  in  Amazonia,  West  Africa  &  Borneo  highly  ferDle  relaDve  to  adjacent  soils  !   ADEs  built  gradually  over  many  decades/centuries.  !   Also  contain  raised  non-­‐pyrogenic  SOC  !   Higher  pH,  Ca,  n,  P  ,  K,  Ca  and  water  holding  capacity  !   High  P  content  possibly  due  to  addiDon  of  bones  or  reduced  

leaching  !   May  not  be  possible  to  replicate  in  short  Dme  scale  

!   Short-­‐term  field  &  pot  trials  have  typically  shown  a  5-­‐40%  increase  in  yield  

!   Mechanisms  include:  !   reducing  pH  constraints  !   lowering  Al  toxicity  !   Increased  CEC  !   SorpDon  of  anionic  nutrients  (nitrate,  phospate)  !   Increased  water  retenDon  !   Synergies  with  mycorrhizae    

!   Yields  can  also  be  supressed  by    !   raising  pH  on  neutral/alkaline  soils  !   N  immobilisaDon  from  high  labile-­‐content  biochar  !   lowering  water  retenDon  in  clayey  soils  

!   Different  biochars  need  to  be  tailored  to  local  soil  constraints  

!   Long-­‐term  field  trials  sDll  required.    

++  CEC  ++  SOC  ++  water  retenDon  -­‐  -­‐  nutrient  leaching  

Verheijen  et  al.  (2009)  

Effect on crop yields

Dominic  Woolf,  June  2012  

Fertility effect on yield response

!   Yield  improvements  most  pronounced  on  degraded  or  inferDle  (low  CEC,  low  OM,  sandy  or  nutrient  constrained)  soils  

!   Highly  ferDle  soils  typically  do  not  show  any  improvement  in  yields  

!   Site-­‐specificity  is  a  common  feature  of  all  types  of  organic  amendment  

!   Yield  generally  shows  a  strong  synergisDc  posiDve  interacDon  with  mineral  &  organic  ferDlisers  

Dominic  Woolf,  June  2012  

Char   Gas  

Water  Tar  &  VolaDles  

Products of Pyrolysis

!   Biochar  yield  falls  with  temperature,  but...  !   C  yield  falls  less  strongly    !   Fixed-­‐C  yield  has  li]le  temperature  response  for  T  >  400°C  !   C-­‐sequestraDon  fairly  independent  of  pyrolysis  temp.  !   Pyrolysis  condiDons  should  be  opDmised  for  energy  producDon,  

economics,  and  emissions.  

Dominic  Woolf,  June  2012  

Coproduction of Energy with Biochar

!   Per  unit  feedstock,  increased  biochar  producDon  implies  reduced  energy  producDon  

!   IniDal  biomass  (dry,  ash-­‐free)  has  ~  19  GJ  Mg-­‐1  

!   approx  7  –  8  GJ  remains  in  biochar  (slow  pyrolysis)  

!   Once  losses  accounted  for,  up  to  ~7  GJ  energy  available  

!   Several  pathways  to  produce  liquid  &  gaseous  fuels  or  electricity  

Dominic  Woolf,  June  2012  

Sustainable Global Potential

Cropland  soil    (top  15cm)  

begins  to  saturate  

Cropland  soil    (top  15cm)  saturated  

Sustainable  Biomass  availability  scenarios  (Pg  C  yr-­‐1)  

Moderate  1.0  Pg  C  

Extreme  2.3  Pg  C  

AmbiDous  1.6  Pg  C  

!   Biochar  can  be  produced  sustainably  or  unsustainably  !   Feedstock  source  of  prime  importance  (as  with  all  

biomass  technologies)  !   Pyrolysis  emissions  and  energy  producDon  also  

important  !   Sustainability  criteria:  

!   Agricultural  &  forestry  residues  procured  at  a  rate  that  does  not  cause  soil  erosion  or  degradaDon  or  reduce  food  security  

!   Li]le  C  debt  from  land-­‐use  change  or  long-­‐lived  feedstocks  

!   No  loss  of  habitat  or  biodiversity  from  direct  or  indirect  land  conversion  

!   No  contaminated  wastes  used  !   Low-­‐emissions  conversion  technology  !   Energy  co-­‐producDon  

Dominic  Woolf,  June  2012  

Avoided emissions attributions

!   Main  contribuDon  due  to  sequestered  C  &  fossil-­‐fuel  offsets  

!   Significant  avoided  CH4  from  paddy  rice  producDon  

!   Avoided  N2O  accounts  for  9%  of  miDgaDon  impact  

!   Main  negaDve  impacts  are  BC  decomposiDon  and  SOC  loss  

!   Tillage  &  transport  losses  negligible  !   Avoided  emissions  from  bioenergy  

slightly  larger  than  C-­‐sequestraDon  effect  alone  of  biochar:  greater  benefit  of  biochar  requires  coproducDon  of  energy  

Dominic  Woolf,  June  2012  

Biochar vs Bioenergy

!   RelaDve  miDgaDon  potenDal  of  biochar  and  bioenergy  (combusDon)  depends  strongly  on  fossil  fuel  that  is  offset  and  local  soil  ferDlity  

!   ⨂  indicates  baseline  C-­‐intensity  and  global-­‐mean  cropland  soil-­‐ferDlity  

!   Least  ferDle  soils  yield  greater  benefit  from  biochar  than  bioenergy  

!   RelaDve  benefit  of  biochar  increases  as  C  intensity  decreases    

!   Contours  steepest  for  biomass  crops  !   Highest  relaDve  benefit  (>80%)  for  

poorest  soils  growing  biomass  crops  offseung  low  C-­‐intensity  fuels  

!   Lowest  relaDve  benefit  (-­‐19%)  for  most  ferDle  soil  growing  biomass  crops  and  offseung  coal  

!   RelaDve  benefits  of  biochar  and  bioenergy  depend  highly  on  local  condiDons!  

!   So  far,  comparison  has  only  been  on  a  per  unit  biomass  basis.    But…  

⨂  

⨂  

⨂  

⨂  

Dominic  Woolf,  June  2012  

SOC Priming

!   Biochar  affects  (primes)  turnover  rates  of  non-­‐pyrogenic  SOC  !   Both  increased  iniDal  

respiraDon  rates  (+ve  priming)  and  increased  stabilisaDon  (-­‐ve  priming)  have  been  observed  

!   In  the  long  term,  stabilisaDon  effects  dominate  !   biochar  may  significantly  

increase  npSOC  

!   SOC  depleDon  is  the  limiDng  factor  in  sustainable  biomass  residue  harvesDng    

Dominic  Woolf,  June  2012  

1  ha  of  corn   Total  crop    residues  per  ha  

Maximum  sustainably    harvestable  crop  residues  

144  GJ  (8  Mg)  

30%  conver

sion  

efficiency  

108  GJ  (6  Mg)  

Biochar  45  GJ    (1.4  Mg)  

Ethanol  32  GJ  

80%  conversion  efficiency  

Biochar  returned  to  soil  maintains  /  improves  soil  funcDon  and  builds  soil  carbon  

Liquid  biofuel  29  GJ  

36  GJ  (2  Mg)  

Biochar  /  bioenergy    conversion  

Dominic  Woolf,  June  2012  

Economic effects of C Credits & fertility

!   Payback  period  of  25  years  or  more  !   Net  profitability  of  biochar  depends  heavily  

on  crop  value  enhancements  !   Most  cost  effecDve  on  moderate  ferDlity  

soils  where  total  yield  responses  are  highest      

!   Least  ferDle  soils  that  benefit  most  from  biochar  are  constrained  by  lower  economic  return  and  by  lower  feedstock  availability  

!   No  payback  on  highly  ferDle  soil  

!   C  credits  have  essenDally  no  impact  on  relaDve  profitability  of  biochar  and  bioenergy  

JE  Amone]e    22Jan2012  

Without  C  credits   Solid  lines  show  effect  of  $200/Mg  C  credits  

Figures  courtesy  of  J.  Amone]e,    Pacific  Northwest  NaDonal  Laboratory  

Dominic  Woolf,  June  2012  

!   Cost  of  biochar  producDon  varies  considerably  with  feedstock  (-­‐£200  to  +£390  Mg-­‐1  for  large-­‐scale  biochar  systems  in  the  UK)  !   Biochar  from  waste  products  for  which  ‘Dpping  fees’  paid  may  have  

negaDve  producDon  cost  

!   Feedstock  cost  is  largest  component  of  producDon  cost  

!   In  UK,    

6x106  Mg  CO2    yr-­‐1  abatement  potenDal    

for  <  £20  Mg-­‐1  

(Shackley  et  al.  2010)  

Dominic  Woolf,  June  2012  

Global cost curve for GHG abatement

Source:    Enkvist  e

t  al.  

(200

7)  

€21-30 per tCO2e (from  McCarl 2009)

3.7-­‐6.6  GtCO2e/yr  abatement  (Woolf  et  al  2010)

Biochar

Dominic  Woolf,  June  2012  

Summary & Conclusions

!   Biochar  can  be  engineered  to  be  sufficiently  stable  to  sequester  C  for  several  centuries  

!   Short  term  field  &  pot  trials  typically  show  improved  yields  in  poor  soils  

!   FerDle  soils  typically  show  no  improvement  in  yield  (although  water  and  ferDliser  inputs  and  runoff  may  be  reduced)  

!   No  long-­‐term  field-­‐trial  data  are  available,  although  BC-­‐rich  soils  o~en  have  high  ferDlity  

!   Climate  miDgaDon  potenDal  of  biochar  is  greater  than  bioenergy  except  where  ferDle  soils  coexist  with  high  C-­‐intensity  energy  supply  

!   Short-­‐term  economics  favour  bioenergy  over  biochar;  long-­‐term  favours  biochar  

!   Payback  Dmes  before  biochar  is  more  economic  than  bioenergy  range  from  25-­‐70  yrs  (shortest  on  soils  with  moderate  ferDlity  constraints)  

!   If  applied  equally,  C  credits  have  li]le  impact  on  relaDve  economics  of  biochar  and  bioenergy  

!   A  more  comprehensive  comparaDve-­‐analysis  of  the  uses  of  biomass  for  GHG-­‐miDgaDon  is  required,  looking  at  a  wide  range  of  opDons  (co-­‐firing,  AD,  burial,  biochar,  biofuels,  electricity,  BECCS...)  for  an  array  of  potenDal  feedstocks  and  geographic  locaDons  

!   Comparisons  between  uses  of  biomass  must  consider  not  just  economics,  energy  and  GHGs,  but  also  wider  issues  including  soil  conservaDon,  biodiversity,  hydrology  &  nutrient  cycling.  

Dominic  Woolf,  June  2012  

References

!   Antal  M,  Grønli  M  (2003)  The  Art,  Science,  and  Technology  of  Charcoal  ProducDon†.  Ind  Eng  Chem  Res  42:1619–1640.  !   Enkvist  P-­‐A,  Naucler  T,  Rosander  J  (2007)  A  Global  Cost  Curve  for  Greenhouse  Gas  ReducDon.  The  McKinsey  Quarterly  1  

!   Krull  et  al.  (2008)  Grasslands:  Ecology,  Management  &  RestoraDon,  Nova  Science  Publ.    !   Lehman  et  al.  (2011)  Role  of  biochar  in  miDgaDon  of  climate  change,  Imperial  College  Press  !   McCarl  B,  Peacocke  C,  Chrisman  R,  et  al.  (2009)  Chapter  19:  Economics  of  biochar  producDon,  uDlisaDon  and  emissions.  

Biochar  for  environmental  management:  science  and  technology,  Lehmann,  J.  &  Joseph,  S.  (eds)    !   Neves  D,  Thunman  H,  Matos  A,  et  al.  (2011)  CharacterizaDon  and  predicDon  of  biomass  pyrolysis  products.  Progress  in  

Energy  and  CombusDon  Science  

!   Shackley  S,  Hammond  J,  Gaunt  J,  Ibarrola  R  (2011)  The  feasibility  and  costs  of  biochar  deployment  in  the  UK.  Carbon  2:335–356.  

!   Spokas  K  (2010)  Review  of  the  stability  of  biochar  in  soils:  predictability  of  O:C  molar  raDos.  Carbon  Manage  1:289–303.    

!   Verheijen  F,  Jeffery  S,  Bastos  AC,  et  al.  (2009)  Biochar  ApplicaDon  to  Soils:  A  CriDcal  ScienDfic  Review  of  Effects  on  Soil  ProperDes,  Processes  and  FuncDons.  Joint  Research  Centre.  InsDtute  for  Environment  and  Sustainability,  Ispra,  Italy    

!   Woolf  D,  Amone]e  JE,  Street-­‐Perro]  FA,  et  al.  (2010)  Sustainable  biochar  to  miDgate  global  climate  change.  Nature  CommunicaDons  1:1–9.  

Dominic  Woolf,  June  2012  

Dominic  Woolf,  June  2012  

Economic Model Assumptions

!   Crop  Value—Maize:  $300/Mg  

!   Yield  increase  builds  with  addiDonal  biochar  amendments  !   Biomass  Amount:  1  Mg  C/yr;  biochar  from  this  applied  to  1  ha  

annually.  

!   Fossil  Fuel  Carbon  Intensity:  17.5  KgC/GJ  !   Energy  Value:  $3.00/GJ  !   Cost  of  ProducDon/TransportaDon:  

!   $70/  MgC  slow  pyrolysis  

!   $50/  MgC  combusDon  

!   C  Credits:  $0-­‐$200/Mg  C  

!   Soil  FerDlity  Response  Factor:  0-­‐1  !   Time:  0-­‐100  years  

Dominic  Woolf,  June  2012  

C intensity of fuel offsets

!   On  average,  biochar  has  higher  miDgaDon  potenDal  than  bioenergy  except  when  in  most  C-­‐intense  economies  (e.g.  where  coal  is  only  fuel)  

!   SensiDvity  to  C  intensity  is  lower  than  bioenergy  

!   In  low  carbon-­‐intensity  locaDon  or  future,  biochar  maintains  significant  GHG  reducDons  

Amb.  

Ext.  

Mod.