the rst two fermion generations in twisted mass lattice qcd€¦ · the rst two fermion generations...

22
The first Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration Maximally twisted mass fermions, N f =2 results Introducing N f =2+1+1 flavours Using N f =2+1+1 flavours of quarks light meson physics Osterwalder-Seiler valence quarks non-perturbative renormalization

Upload: others

Post on 20-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

The first Two Fermion Generations inTwisted Mass Lattice QCD

Karl Jansen ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

for the European Twisted Mass Collaboration

• Maximally twisted mass fermions, Nf = 2 results

• Introducing Nf = 2 + 1 + 1 flavours

• Using Nf = 2 + 1 + 1 flavours of quarks

– light meson physics– Osterwalder-Seiler valence quarks– non-perturbative renormalization

Page 2: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Why the first two generations?

• want to include as many quarks as possible: charm still realistic

• charm quark mass

• needed for charmed mesons, e.g. η, η′, ηc and baryonsyesterdays talk by M. Shepherd

• decay constants fD, fDs

• heavy quark effects in operator matrix elements

• running of αs with Nf = 4

• very natural to include strange/charm doublet for twisted mass

1

Page 3: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

• Cyprus (Nicosia)C. Alexandrou, M. Constantinou

• France (Orsay, Grenoble)R. Baron, B. Bloissier, Ph. Boucaud, M. Brinet, J. Carbonell,P. Guichon, P.A. Harraud, O. Pene

• Italy (Rome I,II,III, Trento)P. Dimopoulos, R. Frezzotti, V. Lubicz, G. Martinelli, G.C. Rossi, L. Scorzato,S. Simula, C. Tarantino

• Netherlands (Groningen)E. Pallante, S. Reker

• Poland (Poznan)K. Cichy, A. Kujawa

• Spain (Huelva, Madrid, Valencia)V. Gimenez, D. Palao, J. Rodriguez-Quintero, A. Shindler

• Switzerland (Bern)A. Deuzemann, U. Wenger

• United Kingdom (Glasgow, Liverpool)G. McNeile, C. Michael

• Germany (Berlin/Zeuthen, Bonn, Hamburg, Munster)V. Drach, F. Farchioni, J. Gonzalez Lopez, G. Herdoiza, K. Jansen, I. Montvay,G. Munster, M. Petschlies, T. Sudmann, C. Urbach, M. Wagner

2

Page 4: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

Fermion action of twisted mass fermions

Sl =∑lx χx

[mq + 1

2γµ[∇µ +∇∗µ

]− ar12∇∗µ∇µ + iµtmτ3γ5

]χlx

Sh =∑x χ

hx

[mq + 1

2γµ[∇µ +∇∗µ

]− ar12∇∗µ∇µiγ5τ1µσ + τ3µδ

]χhx

• quark mass parameter mq , twisted mass parameter µtm

• strange and charm quark masses

ms,c = Z−1P (µσ ± ZP/ZSµδ)

simulation: ZP/ZS ≈ 0.65

• note, mq the same in Sl and Sh

3

Page 5: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Pros and Cons of a generic fermion action

Pro maximal twisted mass:

• O(a)-improvement for all physical quantities automatically

• helps to simplify mixing patterns in non-perturbative renormalization

• explicit infrared regularization through µtm

Con twisted mass:

• isospin violation at any a 6= 0

• observe large O(a2) effectin neutral pion mass(a similar large O(a2) effectexpected for Wilson fermions inanother quantity)

mπ ≈ 430MeVstout

mπ ≈ 330MeVmπ ≈ 260MeV

(−∆) Nf = 2

(+∆) Nf = 2 + 1 + 1

(a/r0)2

∆=

r2 0×( (m

± PS)2

−(m

0 PS)2)

0.050.040.030.020.010.00

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Controlling the effect theoretically:Frezzotti, Rossi (2007), Dimopoulos et.al (2010), Colangelo, Wenger, Wu (2010), Bar (2010)

what counts in the end: Universality

4

Page 6: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Tuning to maximal twist

Maximal twist: tune mq such that

mPCAC =∑

x〈∂0Aa0(x)Pa(0)〉2∑

x〈Pa(x)Pa(0)〉= 0

• tuning of mq at each µtm used

• demand mPCAC . 0.1µtm

• demand ∆(mPCAC) . 0.1µtm

5

Page 7: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Selected results for Nf = 2

Simulation results versus PDG Low energy constants

6

Page 8: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

I=2 Pion scattering length(X. Feng, D. Renner, K.J.)

energy determined fromR(t) = 〈(π+π+)†(t+ ts)(π

+π+)(ts)〉/〈(π+)†(t+ ts)π+(ts)〉2

→ ∆E = c/L3 · aI=2ππ (1 +O(1/L)

E865 (BNL) mπaI=0ππ = 0.203 (33) and mπa

I=2ππ = −0.055 (23) .

NA48/2 (CERN) mπaI=0ππ = 0.221 (5) and mπa

I=2ππ = −0.0429 (47).

our work mπaI=2ππ = −0.04385 (28)(38)

7

Page 9: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

The ρ-meson resonance: dynamical quarks at work(X. Feng, D. Renner, K.J.)

• usage of three Lorentz frames

0.3 0.35 0.4 0.45 0.5 0.55 0.6aE

CM

0

0.5

1

sin2 (δ

)

CMFMF1MF2sin

2(δ)=1=>aM

R

0 0.05 0.1 0.15 0.2mπ

2(GeV

2)

0

0.05

0.1

0.15

0.2

0.25

Γ R(G

eV)

a=0.086fma=0.067fmPDG data

mπ+ = 330 MeV, a = 0.079 fm, L/a = 32 fitting z = (Mρ + i12Γρ)2

mρ = 1033(31) MeV, Γρ = 123(43) MeV

8

Page 10: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Simulation setup for Nf = 2 + 1 + 1Configurations available through ILDG

β a[fm] L3T/a4 mπ[MeV] status

1.9 ≈ 0.085 24348 300 – 500 ready1.95 ≈ 0.075 32364 300 –500 ready2.0 ≈ 0.065 32364 300 ready2.1 ≈ 0.055 48396 300 – 500 running/ready

643128 230 thermalizing643128 200 planned963192 160 planned

• trajectory length always one

• 1000 trajectores for thermalization

• ≥ 5000 trajectores for measurements

9

Page 11: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Nf = 2 + 1 + 1 light quark sector: scaling

Nf = 2 r0mPS = 0.614Nf = 2 r0mPS = 1.100

Nf = 2 + 1 + 1 r0mPS = 0.728

r0fPS

(a/r0)2

0.060.040.020

0.42

0.38

0.34

0.30

0.26

Nf = 2 + 1 + 1 r0mPS = 0.614Nf = 2 + 1 + 1 r0mPS = 0.728

r0mN

(a/r0)2

0.040.030.020.010

3.1

2.9

2.7

2.5

2.3

2.1

1.9

pseudoscalar decay constant fPS nucleon mass

10

Page 12: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Nf = 2 + 1 + 1 light quark sector: χPT fit

• central values + stat. error : fπ = 130.4(2) MeV ; scale

• estimate systematic effects : lattice artifacts, FSE

Nf = 2 Nf = 2 + 1 + 1¯3 3.70(27) 3.50(31)

¯4 4.67(10) 4.66(33)fπ/f0 1.076(3) 1.076(9)B0 [MeV] 2437(120) 2638(200)

〈r2〉NLOs [fm2] 0.710(28) 0.715(77)

11

Page 13: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Nf = 2 + 1 + 1 light quark sector: adding strange quark

fπ (input)

fK

fK(a = 0.060 fm)

fK(a = 0.079 fm)

fπ(a = 0.060 fm)

fπ(a = 0.079 fm)

Fit

m2π [GeV2]

fPS[M

eV]

0.250.20.150.10.050

190

180

170

160

150

140

130

120

110

• fit β = 1.95 and β = 2.10 simultaneously

• from setting m2PS(µ`, µs, µs) = 2m2

K −m2π

• mπ = 135 MeV, fπ = 130.7 MeV,mK = 497.7 MeV

prelinimary fit results:

• fK/fπ = 1.224(13), fK = 160(2) MeV, ¯4 = 4.78(2)

• errors statistical only

12

Page 14: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Nf = 2 + 1 + 1 heavy quark sector

Wilson twisted mass Dirac operator for (c, s) pair:

Dh =

(γµ∇µ + µσ + µδ iγ5

(a2∇∗µ∇µ −mq

)

iγ5(a2∇∗µ∇µ −mq

)γµ∇µ + µσ − µδ

)

• mixing of c and s flavour and of parity

• Kaon is the ground state : good precision

• D meson appears as an excited state

• three independent methods:

– generalised eigenvalue problem– multi-exponential fits– imposing parity and flavour restoration

at finite a

• they provide consistent results for mD

• overcome mixing of flavour ; mixed action

cs

cO(a)O(a)

c

j = {strange, Γ = 1}j = {strange, Γ = γ5}j = {charm, Γ = 1}j = {charm, Γ = γ5}

t/a

eigenvectors

|v(c,γ

5)

j|2

20151050

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

symmetry restaurationmulti-exponential

GEP

method

am

D

321

0.95

0.9

0.85

0.8

0.75

13

Page 15: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Nf = 2 + 1 + 1 approaching the charm quark

• introduce Wilson twisted mass doublets in the valence sector

Dtm(µval) = D +mcrit + i µvalγ5τ3

(Osterwalder, Seiler (1990), Pena et al. (2004); Frezzotti, Rossi (2004))

• mcrit from unitary set-up

• 4− 6 values for µval in the strange µs and the charm µc regioninversions with multi-mass solver

• matching to unitary set-up using mK and mD

⇒ obtain simulated µs and µc

14

Page 16: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Unitary versus Osterwalder-Seiler: fK

• the unitary fK can be computed from: fK = (m` +ms)〈0|PK|K〉m2K

with ms = µσ − (ZP/ZS)µδ

• similar formula for fD

• PK is the physical Kaon projecting operator

• the mixed action fK computed from: fPS =(µ(1)val + µ

(2)val

)|〈0|P |PS〉|

mPS sinhmPS,

fPS(OS) mixedfPS(OS,Mtm) unit.

(af0)2

0.0050.0040.0030.0020.0010.000

1.70

1.65

1.60

1.55

1.50

1.45

1.40

1.35

1.30

Test for Nf = 2 situation for Nf = 2 + 1 + 1

15

Page 17: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Projection operator

• unitary kaon decay constant

fK = µ`+µσ−(ZP/ZS)µδ2m2

K· 〈0|(PK − PD) + i(ZS/ZP )(SK + SD)|K〉

• Kaon is lowest state, so flavour mixings should play no role

• mixing of scalar and pseudoscalar

16

Page 18: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Preliminary analysis of fD and fDs in MA set-up

• SU(2) heavy meson χPT fit to our datafor fDs

√mDs and fDs

√mDs/(fD

√mD)

(ETMC, Blossier et al. (2009))

• including terms proportional to a2m2Ds

and 1/mDs

• results very encouragingfDs = 250(3) MeV, fD = 204(3) MeV, fDs/fD = 1.230(6)

• very preliminary but very first results from Nf = 2 + 1 + 1 !

17

Page 19: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Nucleon structure for Nf = 2 + 1 + 1(C. Alexandrou, M. Constantinou, S. Dinter, V. Drach, D. Renner, K.J.)

First calculation for 〈x〉 comparison to Nf = 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25

<x>

u−

d

m2π[GeV2]

N f = 2, a = 0.079 fmN f = 2, a = 0.063 fmN f = 2, a = 0.051 fm

N f = 2 + 1 + 1, a = 0.078 fmABKM09

same effect as for Nf = 2: need to explore smaller quark mass region

simulations are underway

18

Page 20: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Non-perturbative renormalization for Nf = 2 + 1 + 1

renormalisation factors computed from dedicated Nf = 4 flavoursimulations of Wilson fermions

• RI-MOM scheme at non zero values of both the standardand twisted mass parameters

MR = 1ZP

√(ZAmPCAC)2 + µ2

q → 0

• O(a) improvement via average of simulations with +mPCAC and −mPCAC

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012(aMsea)

2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Z_AZ_SZ_V(WI)Z_P

study at β = 1.95

a = 0.08 fm, L = 1.9 fm

• linear mass dependence

• allows for chiral extrapolation

19

Page 21: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Topology

20

Page 22: The rst Two Fermion Generations in Twisted Mass Lattice QCD€¦ · The rst Two Fermion Generations in Twisted Mass Lattice QCD Karl Jansen for the European Twisted Mass Collaboration

Summary

• successful simulations with Nf = 2 flavours

– using maximally twisted mass fermions– automatic O(a)- improvement

• First simulations with Nf = 2 + 1 + 1 flavours

– using maximally twisted mass fermions in the sea– use Osterwalder-Seiler fermions in the heavy valence sector– already precise results for fK/fπ, fD, fDs– non-perturbative renormalization under way

• our conclusion: adding stange and charm as dynamical degrees of freedomperfectly feasible

21