the safety assessment of proteins introduced into crops ... · thus, the safety evaluation of...

30
259 11 The Safety Assessment of Proteins Introduced into Crops Developed through Agricultural Biotechnology: A Consolidated Approach to Meet Current and Future Needs Bruce Hammond and Andrew Cockburn CONTENTS 11. 1 Introduction ................................................................................................. 260 11.2 Biochemical Differences between Proteins and Low-Molecular-Weight Chemicals: Impact on Safety Assessment of Proteins ................................ 260 11.3 Absorption of Proteins from the GI Tract ................................................... 262 11.4 Summary of Safety Assessments on Proteins............................................. 262 11.5 Safety Assessment Strategy for Proteins Introduced into Food/Feed Crops ................................................................................. 268 11.5.1 Mode of Action and Functionality ................................................. 268 11.5.2 Bioinformatics................................................................................ 269 11.5.3 Digestibility.................................................................................... 269 11.5.4 Confirmatory Safety Studies.......................................................... 269 11.6 Dietary Risk Assessment ............................................................................ 272 11.7 Threshold of Toxicological Concern ........................................................... 273 11.8 The Future ................................................................................................... 276 11.8.1 Applications of Protein Engineering for Food-Processing Enzymes ....................................................... 277 11.8.2 Modification of Insect Control Proteins to Improve Potency or Broaden Selective Activity against Targeted Pests ................... 277 11.8.3 Introduction of Transcription Factor Proteins to Modify Endogenous Plant Metabolic Pathways ......................................... 278 11.9 Conclusion ................................................................................................... 281 References .............................................................................................................. 281

Upload: others

Post on 24-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

259

11 The Safety Assessment of Proteins Introduced into Crops Developed through Agricultural Biotechnology:A Consolidated Approach to Meet Current and Future Needs

Bruce Hammond and Andrew Cockburn

Contents

11.1 Introduction.................................................................................................26011.2 BiochemicalDifferencesbetweenProteinsandLow-Molecular-Weight

Chemicals:ImpactonSafetyAssessmentofProteins................................26011.3 AbsorptionofProteinsfromtheGITract................................................... 26211.4 SummaryofSafetyAssessmentsonProteins............................................. 26211.5 SafetyAssessmentStrategyforProteinsIntroduced

intoFood/FeedCrops.................................................................................26811.5.1 ModeofActionandFunctionality.................................................26811.5.2 Bioinformatics................................................................................26911.5.3 Digestibility....................................................................................26911.5.4 ConfirmatorySafetyStudies..........................................................269

11.6 DietaryRiskAssessment............................................................................ 27211.7 ThresholdofToxicologicalConcern........................................................... 27311.8 TheFuture................................................................................................... 276

11.8.1 ApplicationsofProteinEngineeringforFood-ProcessingEnzymes....................................................... 277

11.8.2 ModificationofInsectControlProteinstoImprovePotencyorBroadenSelectiveActivityagainstTargetedPests................... 277

11.8.3 IntroductionofTranscriptionFactorProteinstoModifyEndogenousPlantMetabolicPathways......................................... 278

11.9 Conclusion................................................................................................... 281References.............................................................................................................. 281

3967_C011.indd 259 10/24/07 10:55:02 AM

Page 2: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

260 Food Safety of Proteins in Agricultural Biotechnology

11.1 IntroduCtIon

Theconcludingchapterofthisbookdistillsinformationfrompreviouschapterstoconsolidateanoverallriskandsafetyassessmentstrategyappropriateforproteinsintroducedintobiotechnology-derivedfoodandfeedcrops.Thestrategybuildsontheinformationfromsafetyassessmentsofproteinsusedinfoodproduction(enzymesand animal somatotropins), proteins used as therapeutic agents, proteins that arecomponentsofmicrobialpesticidesappliedtoagriculturalcrops,andproteinsintro-ducedintobiotechnology-derivedcrops.Thesafetyassessmentschemeadoptsthewell-establisheddietaryexposureproceduresusedforlow-molecular-weightchemi-calsaddedtofoods,butdiffersfundamentallyinsomerespectsregardingtheoverallhazardidentification.Thesedifferencesareaconsequenceofuniquestructural,func-tional,andbiochemicalpropertiesofproteinsthatdifferinmanyrespectsfromlow-molecular-weightchemicalsusedasfoodadditivesorpesticides.Thesedifferenceshaveaprofoundimpactonthehazardpotentialofproteinsscreenedforintroduc-tionintofoodcrops,whichisgenerallylessthanthatofmanylow-molecular-weightchemicalsthatenterthehumanfoodchain.Thereare,ofcourse,proteinsknowntobetoxictohumansorpharmacologicallyactiveinman,buttheyhaveintentionallynotbeenselectedforintroductionintofoodandfeedcrops.

Thischapterwillalsolookintothefuturetoexploretheanticipateduseofpro-teinstodevelopnewandimprovedfoodandfeedcrops.Theproposedriskassess-mentstrategyisconsideredtoberelevanttobothexistingandnewproteinsthatwillensurethatfutureimprovedfoodandfeedcropvarietiesaresafeforconsumption.Potentialhazardsthatmightresultfromanunexpectedorunintendedchangetotheplantfromtheintroductionoftheproteinarenotthefocusofthischapterbutareneverthelessaddressedinsubsequentdiscussions.

11.2 BIoChemICaldIfferenCesBetweenProteInsandlow-moleCular-weIghtChemICals:ImPaCtonsafetyassessmentofProteIns

Aspointedoutinthefirstchapterinthebook,therearesomefundamentalstructuralandbiochemicaldifferencesbetweenproteinsandlow-molecular-weightchemicals.Examplesareasfollows:

Low-Molecular-Weight Chemicals

1. Chemicalstructuresvaryconsiderablyandmaybenovel(notfoundinnature)orrelatedtobiochemicalsfoundinnature.Forexample,thechemicalstructureoftheinsecticidechloropyriphoswouldbeconsiderednovel,whereastheherbicideglyphosate is structurally related to the aminoacidglycine.Examplesof foodadditives with novel structure could include the artificial sweetener saccharin,whereas another artificial sweetener, aspartame, is structurally related to theaminoaciddipeptideaspartate-phenylalanine.

2. Low-molecular-weightchemicalfoodadditivesandcontaminantshavemolecularweightsgenerallyrangingfromapproximately200–800MW.

3. Absorptionfromthegastrointestinal(GI)tractvariesdependingonthestructuralproperties of the low-molecular-weight chemical. For example, lipid solubility

3967_C011.indd 260 10/24/07 10:55:02 AM

Page 3: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 261

cansignificantlyenhancesystemicabsorptionfromtheGItract.Approximately47% to 69% of an oral dose of two different lipophilic low-molecular-weightchemicalinsecticideswereabsorbedintactfromtheGItractoftheratwithinanhouroforaldosing.1Othermorepolarlow-molecular-weightchemicalsthatareionizedatthepHoftheintestinaltractoraremorewater-solublearelesslikelytobe absorbed systemically, such asglyphosate (~30%absorbed).2Plants alsometabolizefoliar-andsoil-appliedpesticidestomorepolarderivativesthataremuchlesslikelytobeabsorbedsystemicallythantheparentcompound.Acaseinpointistheherbicideacetochlor,whichisabsorbedsystemicallyat>80%whenfedtorats.Itstwomajorplantmetabolites,t-ethanesulfonicacidmetaboliteandt-oxanilicacidmetabolite,whicharemorepolarthanacetochlor,arelessreadilyabsorbed,upto12%and39%,respectively.3

Proteins

1. Virtuallyallproteinsarepolymerscomposedofdifferentcombinationsandper-mutationsofthesame20commonaminoacidmonomers.Therearemillionsofproteinsofdiversestructureandfunctionfoundinnatureandtheyaremadeupofsomeorallofthese20aminoacids.Aminoacidspersehaveloworaltoxicityandareessentialtohumanlifeandnutrition(Chapter1).

2. Molecularweight(MW)ofproteinscanvaryfrom10,000(~50aminoacids)tomorethanamillion(>3000aminoacids,seeChapter1).Proteinsareordersofmagnitude larger than low-molecular-weight chemicals, which greatly reducestheirpotentialsystemicabsorptionacrossGIcellmembranes.

3. Ingested proteins are subjected to degradation to polypeptides, peptides, andaminoacidsby thecombinedactionof lowpHandpepsin in thestomachandassortedproteasessecretedintotheintestinaltract.Lossofquaternaryandter-tiarystructureoftheproteinduringdigestionresultsinlossofstructuralintegrityandusuallylossofbiochemicalfunction.

4. Proteins produced in mammalian cells can have important physiological andpharmacologiceffectswheninjectedintravenouslyfortherapeuticapplications,buttheseeffectsarenotgenerallyapparentwhentheseproteinsareingestedduetorapiddenaturationanddegradationwithintheGItract(Chapters6,10).

Asaconsequenceof thefundamentalstructuralandsizedifferencesbetweenproteinsandlow-molecular-weightchemicals,theprobabilityforsystemicabsorp-tionof themajorityof intactproteins from theGI tract is exceedingly lowwhencomparedtolow-molecular-weightchemicals.Theneedfortoxicologicalassessmentoflow-molecular-weightchemicalsislargelydrivenbyobservationsofpharmaco-logicalortoxicresponsesinoraldosingstudies.

Aswillbeshownlater,thevastmajorityofproteinsinvolvedinfoodusethathavebeenselectedandsubjectedtosafetytestingdonotcausesystemictoxicity.Thereisalonghistoryofsafeconsumptionofplantandanimalproteinsinthediet.Asdis-cussedabove,dietaryproteinsaregenerallydegradedandthuspoorlyabsorbedintactfromtheGItract(seediscussionbelow);hence,thereisverylowsystemicexposure.Thus,thesafetyevaluationofproteinsintentionallyselectedandsubsequentlyintro-ducedintofoodgenerallyrequireslesstoxicologytestingthanthatcarriedoutforlow-molecular-weightchemicalsinfoodorfeedwheresystemicabsorptionofbio-logicallyactiveparentcompoundormetabolite(s)generallyoccurswiththepotentialforend-organtoxicitypriortoandorduringexcretion/elimination.

3967_C011.indd 261 10/24/07 10:55:03 AM

Page 4: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

262 Food Safety of Proteins in Agricultural Biotechnology

11.3 aBsorPtIonofProteInsfromthegItraCt

Astudyofthesystemicabsorptionofpeptides(3to51aminoacidsinlength)foundthatpeptidesgreaterthan10aminoacidsinlengthwerepoorlyabsorbedintactfromtheGItract.4Othershavereportedthatgastricabsorptionisinverselyrelatedtothesizeofthemoleculesothatsmallmoleculesaremorereadilyabsorbedthanlargeones.5Anumberofanimalfeedingstudieswithbiotechnology-derivedcropshaveinvestigatedthedigestibilityandpotentialsystemicabsorptionofintactintroducedproteinsinvarioustissuesandbloodsamplesusingsensitiveimmunologicalassays.6–

15 These published reports confirm that proteins, including those introduced intobiotechnology-derivedcrops,aredigestedandhavenegligibleoralbioavailability.

It is recognized that forproteinsstable todigestion,minutequantitiescanbetakenupintactbyPeyerspatchesliningtheGItract,ormaypassthroughintestinalcellsviaphagocytosisorpermeationbetweenepithelialcelljunctions.Anexampleistheeggallergenovalbumin,whichisstabletodigestioninsimulatedgastricfluidforatleast60minutes.Mostcommonplantproteins,incontrast,aredigestibleinlessthan15secondsinsimulatedgastricfluid(SGF).16Eggovalbuminwasadministeredto ratsasanoralbolusdose (50mg/rat).Bolusdosing increases thepotential forabsorptionduetoadministrationofaconcentratedsolutionstraightintothestomach.Asaresult,higherpeakbloodlevelsareachievedcomparedtolowerdosesresultingfromconsumptionofalbuminasacomponentoffoodinthediet.Nevertheless,evenafterbolusdosingofthestableeggovalbuminprotein,only0.007%to0.008%oftheadministereddosewasabsorbedfromtheGItract.17

Similar resultswerereportedforotherproteinallergens thatarealsostable todigestion,suchas thesoybeanallergenGlymBd30k,whereonlyapproximately0.004%ofalargebolusdosewasabsorbed.18Therearealsohumanstudiesreportingverylowbloodlevels(generallylessthan0.0001%ofingestedprotein)ofstablefoodproteins suchasovalbumin,ovomucoid, andβ-lactoglobulin after consumptionoffoodscontainingtheseproteins.19–21Theseproteinsareallhighlyabundantallergenicproteinsinfoodsthatarecomparativelystabletodigestion.16Forproteinsthatarenotstabletodigestion,thepotentialforsystemicabsorptionofintactproteinwouldbeexpectedtobeordersofmagnitudelowerthantheverylowlevelsofabsorptionforstableproteinsalludedtoearlier.ThisgenerallackofsystemicbioavailabilityfromtheGItractforintactproteinswouldminimizeanypotentialfortoxicitycomparedwithsinglelow-molecular-weightchemicalsubstancesfollowingoraladministration.

11.4 summaryofsafetyassessmentsonProteIns

Asdiscussedearlier,theoralbioavailabilityofdigestibleproteinsisnegligible,thustheirpotentialtoexertsystemicadverseeffects,ifsuchactivityweretobecharac-teristic,isalsoverylow.Asaconsequence,thereisnotnormallythescientificcasetosubjectproteinsscreenedforintroductionintofoodandfeedcropstothesameextensivebatteryof safety tests required for low-molecular-weightchemicals thatendupinfoodorfeed.Asdiscussedinprecedingchapters,nosystemictoxiceffectshavebeenidentifiedinthemanydietarytoxicitystudiesthathavebeencarriedoutwithproteinsofvariablestructureandfunctionthatareusedinfoodproduction.

3967_C011.indd 262 10/24/07 10:55:04 AM

Page 5: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 263

AlistofacuteandsubchronicoraltoxicitystudiesconductedwiththeseproteinsispresentedinTables11.1and11.2.Thesetableslistthe“no-observed-adverse-effect-levels”(NOAELs)which,foralltheproteinslisted,representsthehighestdosagesthatweretested.Manyoftheseproteinsareenzymesthathavebeenproducedbymicrobial fermentation and areused in foodprocessing. It hasbeen a regulatoryrequirementthattheseenzymepreparationsbetestedforpotentialacuteandsub-chronictoxicity.AsdiscussedinChapter5,thistestinghasnotbeenundertakentoresolvequestionsaboutsafetyoftheenzymesthemselves.Rather,testinghasbeen

taBle11.1summaryofnoaelsinacutehigh-dosestudieswithdifferentProteins

Protein function noaela,b reference

Cry1Ab Insectcontrol 4000mg/kg 22

Cry1A.105 Insectcontrol 2072mg/kg 23

Cry1Ac Insectcontrol 4200mg/kg 22

Cry2Aa Insectcontrol 4011mg/kg 22

Cry2Ab Insectcontrol 1450mg/kg 22

Cry3A Insectcontrol 5220mg/kg 22

Cry3Bb Insectcontrol 3780mg/kg 22

Cry1F Insectcontrol 576mg/kg 24

Cry34Ab1 Insectcontrol 2700mg/kg 25

Cry35Ab1 Insectcontrol 1850mg/kg 25

Vip3a Insectcontrol 3675mg/kg 26

ACCdeaminase Enzyme 602mg/kg 27

Alkalinecellulase Enzyme 10,000mg/kg 28

Dihydrodipicolinate-synthase(cDHDPS) Enzyme 800mg/kg 29

β-galactosidase Enzyme 20,000mg/kg 30

Enolpyruvyl-shikimate-3-phosphatesynthase(CP4-EPSPS)

Enzyme 572mg/kg 31

β-glucanase Enzyme 2000mg/kg 32

Glutaminase Enzyme 7500mg/kg 33

Hexoseoxidase Enzyme 2000mg/kg 34

Laccase Enzyme 2700mg/kg 35

Lactase Enzyme 10,000mg/kg 36

Lactoseoxidase Enzyme 900mg/kg 37

Lipase Enzyme 2000mg/kg 38

Lipase Enzyme 5000mg/kg 39

Neomycinphosphotransferase Enzyme 5000mg/kg 40

Phosphinothricinacetyltransferase Enzyme 2500mg/kg 41

Phosphomannoseisomerase Enzyme 3030mg/kg 42

Pullulanase Enzyme 10,000mg/kg 43

Xylanase Enzyme 239mg/kg 44

Xylanase Enzyme 2000mg/kg 45

aHighestdosagetestedthatcausednoadverseeffects.bActualdelivereddosagemaybelowerbasedonthepurityoftheenzymepreparationstested.

3967_C011.indd 263 10/24/07 10:55:05 AM

Page 6: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

264 Food Safety of Proteins in Agricultural Biotechnology

taBle11.2summaryofnoaelsinsubchronicfeedingstudieswithdifferentProteins

Protein function study noaela reference

Bovinesomatotropin Hormone 13weeks 50mg/kg 46

DipelBtmicrobialCryproteinmixture

Insectcontrol 13weeks 8400mg/kg 22

DipelBtmicrobialCryproteinmixture

Insectcontrol 2years 8400mg/kg 22

TeknarBtmicrobialCryproteinmixture

Insectcontrol 13weeks 4000mg/kg 22

BtBerlinermicrobialCryproteinmixture

Insectcontrol 5days(human) 1000mg/adult 22

Cry1Ab Insectcontrol 28days 0.45mg/kg/day 22

Amylase Enzyme 90days 17.5mg/kg/day 47

Amylase Enzyme 90days 890mg/kg 48

Amyloglucosidase Enzyme 14days 1640mg/kg 49

Aminopeptidase Enzyme 90days 2000mg/kg 50

Arabinofuranosidase Enzyme 14days 103mg/kg 49

Chymosin Enzyme 90days 1000mg/kg 51

Chymosin Enzyme 90days 11.9mg/kg 51

β-galactosidase Enzyme 6months(rat)30days(dog)

4000mg/kg1000mg/kg

30

Glucanase Enzyme 90days 1258mg/kg 52

Glutaminase Enzyme 90days

365days

9000mg/kg/day(yeastCK)1200mg/kg/day(yeastCKD10)10,000mg/kg/day(yeastTK)

13,000mg/kg(yeastCK)

33

Hexoseoxidase Enzyme 90days 5000HOXunits/kg 34

Laccase Enzyme 90days 1720mg/kg 35

Lactase Enzyme 28days 1540mg/kg 36

Lactoseoxidase Enzyme 90days 900mg/kg 37

Lipase Enzyme 90days 658mg/kg 39

Lipase Enzyme 90days 1680mg/kg 38

LipaseG Enzyme 90days 1516mg/kg 53

LipaseAY Enzyme 90days 2500mg/kg 54

Pectinmethylesterase Enzyme 14days 133mg/kg 49

Phosphodiesterase Enzyme 28days 165mg/kg 55

Phospholipase-A Enzyme 90days 1350mg/kg 49

Phytase Enzyme 90days 1260mg/kg 49

Pullulanase Enzyme 28days 5000mg/kg 56

Tannase Enzyme 91days 660mg/kg 57

Xylanase Enzyme 90days 1850mg/kg 49

3967_C011.indd 264 10/24/07 10:55:06 AM

Page 7: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 265

considerednecessarytoconfirmtheabsenceofpossibletoxiccontaminants(myco-toxins,bacterialtoxins)fromthefermentationmediumthatmightbepresentintheenzyme preparation. Such testing, also applied to protein based vaccines, is alsoknownas“freedomfromabnormaltoxicity”(FAT)testing.

Thesestudiesconfirmtheabsenceoforaltoxicityevenwhentheproteinprepara-tionswereadministeredatveryhighdosagelevels.ThestudieslistedinTables11.1and11.2havebeenpublished,buttherearemanyothersthathavebeencompletedand have not been published. According to a recent review,63 as of 2001 almost800 toxicity tests have been conducted on approximately 180 enzymes by mem-bercompaniesof theEuropeanAssociationofManufacturersandFormulatorsofEnzymeProducts(AMFEP).AccordingtoAMFEP,thesestudiesraisednoissuesoftoxicologicalconcern.63Giventhehistoryofsafeuseforcertainmicroorganismstomakeenzymepreparations,ithasbeenproposedthatroutinetoxicologytestingofhighlycharacterizedspecificenzymepreparationspreparedfromthesemicroorgan-ismsisnolongerscientificallyjustifiedandisinhumanebecauseofitsunnecessaryuseoflaboratoryanimalsfortoxicologytesting.63

Although the vast majority of subchronic feeding studies with food enzymeshaveconsistentlyfoundnoevidenceoftreatment-relatedadverseeffectsintestani-mals,acoupleofstudiesreportedlocalirritationtothestomachcausedbyfeedinghigh levelsofproteaseenzymes to rats.Sucheffectsmightbeanticipateddue toproteolyticeffectsof theenzymeson thestomachmucosaathighexposures.64Afewothersubchronicfeedingstudiesreportedadverseeffectsusuallylimitedtothehighestdosagestested,andatlowerdosagesnoadverseeffectswerereported.Sincelowerdosageswerestillmanytimeshigherthanpotentialhumandietaryexposures,a very large safety margin existed for the use of these enzymes in food produc-tion.Theadverseeffectswerenotattributedtotheenzymesthemselves,butrathertootherconstituentsintheenzymepreparation.Forexample,enzymepreparationswithhighlevelsofash(saltsandminerals)fromthefermentationmediumproducednephrocalcinosis43orincreasedwaterconsumptioninrats.64Othereffects,suchasslightanemia32orreducedurinepH,foundinotherstudieswereeithernotcorre-latedwithanymicroscopicevidenceofpathologicchangesorwerenotreproducible

taBle11.2(ContInued)summaryofnoaelsinsubchronicfeedingstudieswithdifferentProteins

Protein function study noaela reference

Xylanase Enzyme 90days 4095mg/kg 49

Lactoferrin(human) Irontransport 90days 2000mg/kg/d 58

Lactoferrin(bovine) Irontransport 90days 2000mg/kg/d 59

Silkwormpupaeprotein

Notdefined 30days 1500mg/kg/d 60

Thaumatins Sweetner 90days 2696mg/kg/d 61

Ice-structuringprotein

Cryopreservation

90days 580mg/kg/d 62

a Inallcases,theNOAELswerethehighestdosetested.

3967_C011.indd 265 10/24/07 10:55:07 AM

Page 8: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

266 Food Safety of Proteins in Agricultural Biotechnology

(salivaryglandenlargementwhenratswerefedtheenzymeinthedietbutnotbystomachtube).65Atarecent(2005)EuropeanToxicologyForumconferenceonthesafetyassessmentoffoodenzymes,aEuropeanregulatorwasaskedwhetherhehadeverseenevidenceofadverseeffectsinsubmittedsubchronictoxicologystudiesthatweredirectlyattributabletotheenzymefedtorats.66Herespondedthatinhismanyyearsofexperience,hehadnot.

Noevidenceofpre-neoplasticmicroscopicchangeshavebeenreported in thetissuesoflaboratoryanimalsfedproteins(enzymes,etc.)insubchronicfeedingstud-ies.AsdiscussedinChapters5and6,proteinsarenotconsideredtobecapableofmutagenic interactionswithDNA,and thiswouldbeeven less likelyforproteinsconsumedinthediet.Mutagenicitystudieshavebeencarriedoutwithmanyenzymepreparationstoconfirmtheydidnotcontaingenotoxiccontaminants(e.g.,mycotox-ins)fromthefermentationmedium.MembersoftheUnitedStatesEnzymeTechni-calAssociation(ETA)reportedthat,asof1999,102bacterialmutagenesistestsand63mammalianchromosomalaberrationmutagenesistestshadbeencarriedoutwithenzymepreparationsthatwerefromconventionalandgeneticallymodifiedmicroor-ganisms.67Thevastmajorityofthesetestsfoundnoevidenceofmutagenicactivity;thefewteststhathadpositiveresultswereconsideredtobelargelyattributabletoartifactsinthetestsystem(e.g.,presenceoffreehistidineintheenzymepreparationgavefalsepositiveresultsinthehistidinereversionbacterialmutagenicitytests).67Itwasconcludedthattestingenzymesforpotentialgenotoxicitywasnotnecessaryforsafetyevaluation.67

SimilarconclusionswerestatedinChapter6regardingInternationalConferenceonHarmonization (ICH)guidelines for safety testingofproteinpharmaceuticals.TheICHguidelinesforgenotoxicitytestingcommentthatbiologicals(whichincludeprotein therapeutics) are not expected to interact directly with DNA. They aredegradedtopeptidesandaminoacidswhicharenotconsideredtohavegenotoxicpotential.Routinegenotoxicitytestingofproteinpharmaceuticalsisnotconsiderednecessarytoconfirmsafety.

Thereareafewpublishedexamplesofenzymepreparationsbeingtestedinratteratologyand/oronegenerationratreproductionstudiestoconfirmtheabsenceoffermentationcontaminantsthatmightexertadverseeffects.Noevidenceofadverseeffectsattributabletotheenzymesonprogenydevelopmentorreproductiveperfor-mancewerereportedinthesestudies.28,30,64,68

Afewchronicfeedingstudieshavebeencarriedoutwithproteinpreparationsproducedbyfermentation.22,69Thiswasdonetodeterminewhethertherewereanychronicadverseeffectsattributabletopotentialcontaminantsfromthemicroorgan-ismsusedinthefermentationproduction.Thesestudiesdidnotreportthatproteinpreparationscausedcancerinlaboratoryanimals.Thereisnoevidencetothatpro-teinsdirectlyinducedcancer,birthdefects,ormutageniceffectswhenfedinthedietoflaboratoryanimals.67

Inthe1980stherewassomecontroversyregardingthechroniceffectsoftrypsininhibitorproteinsontheratpancreasandtherelevanceofthesefindingstohumans.Trypsininhibitorsareconsideredtobeantinutrientsandmembersofalargerfamilyofproteaseinhibitorsfoundnaturallyinavarietyoffoodcropssuchaslegumes,cere-als,andpotatoes.70Asthenameimplies,trypsininhibitorsblocktheproteaseactivity

3967_C011.indd 266 10/24/07 10:55:08 AM

Page 9: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 267

oftrypsininthegut,interferingwithproteindigestion.Proteaseinhibitorsmayplayaroleinplantdefensebyinterferingwithinsectdigestionandreducinginsectfeedingonthecrop.ThesafetycontroversybeganintheUKwhenratsthathadbeenfedadietcontainingraw(unprocessed)soybeanmealweredosedwithazaserine,a low-molecular-weight chemical that inducespancreatic cancer.71Soybeanmealmustbesubjectedtothermalprocessingtoinactivatetrypsininhibitorsbeforethemealisusedasfood/feedorthetrypsininhibitorswillinterferewithproteindigestion.Theafore-mentionedstudyfoundthattrypsininhibitorsinsoybeanspromotedthedevelopmentofpancreaticcancerinducedbyazaserine.Inaddition,controlanimalsthathadnotbeentreatedwithazaserine,butmaintainedchronicallyonunprocessedsoybeanmealalsodevelopedhypertrophicandhyperplasticchangesinthepancreas.

Itwassubsequentlyshownthatthisresponsewasnotduetoadirecteffectoftrypsin inhibitors on the pancreas but, rather, to negative hormone feedback bycholecystokinin (CCK), a hormone produced in the stomach. CCK is released inresponsetoundigestedproteinandfeedsbackonthepancreastoincreaseproduc-tion of proteases for release into the digestive tract to increase protein digestion.Thecontinuedpresenceoftrypsininhibitorpreventedproteindigestion;moreCCKwasreleasedtostimulatethepancreasandthecyclecontinued.RatschronicallyfedunprocessedsoybeanmealhadveryhighlevelsofbloodCCKlevelsduetoimpairedproteindigestion,resultinginchronicstimulationofpancreaticgrowthwhicheven-tuallyledindirectlytothedevelopmentoftumors.72

Questionswereraisedabouttherelevancetohumanfoodsafety72–74sinceitwasreportedthattheaverageadultintakeoftrypsininhibitorsfromconsumptionofnor-malfoodsintheUKdietwasapproximately330mg/person/day.74Feedingstudieswithrawsoybeanmealinotherspecies(dog,pig,calf)didnotdemonstratehyper-trophic or hyperplastic changes in the pancreas,74 suggesting that rats were moresensitive thanother species andmaynot be a relevantmodel for humans. Itwasrecognizedthattrypsininhibitorsmediatedtheireffectsontheratpancreasthroughtheendocrinesystem.Moreover,accordingtoGumbmannetal.in1986,“[T]hereisnoevidenceofabsorptionfromthegastrointestinaltract,directneoplasticactionor tumor induction,genotoxicity, interactionwithcellulargeneticmaterialorepi-demiological indicationofapotential risk inman.”75 Itwasultimatelyconcludedthat“humansarenotatincreasedriskforpancreaticneoplasiaforfoodscontainingnaturaltrypsininhibitoractivity.”72Thus,theearlierobservationoflackofevidencefordirectcarcinogeniceffectsofproteinsfedinthedietremainstrue.

AsdiscussedinChapter2,certainproteinsareknowntobetoxic tohumans.76Someof these toxinsareproducedbypathogenicbacteria thatelaborate the toxinsintheGItractwheningested.Somepathogenicbacteriaarepresentinfoodandformproteintoxinsinfood.Understandingeachstepinthelifecycleofproteintoxinscanhelptodefinetheirmodeofactionandexplainwhysomearetoxicwheningestedandothersarenot(Chapter2).Therearealsoproteinantinutrients,suchasproteaseinhibi-torsandlectins,thatarenaturallypresentinanumberoffoodsthataretraditionallyconsumed(legumes,grain,potatoes,etc.).70,77Althoughthereisahistoryofsafecon-sumptiontomanyoftheseproteins,afewofthemaretoxic,particularlywhenthefoodisnotproperlycookedtoinactivatethetoxin(e.g.,kidneybeanlectin).78Theareotherexamples,suchasthecastorbeanplant,whichisnotconsumedforfoodbutitsoilhas

3967_C011.indd 267 10/24/07 10:55:09 AM

Page 10: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

268 Food Safety of Proteins in Agricultural Biotechnology

beenusedasacathartic.Castorplantsproducesricin,ahighlytoxiclectinthatcausespoisoninginhumansandanimalsthataccidentallyconsumethebean.79

Lastly,thereistheexampleofauniqueclassofproteinsknownasprionsthatarecomponentsofmammalianneurons.Prionstructurecanbemodifiedbyspontane-ousmutationsinthepriongenetoformstable,pathogenicformsthatcauseneuro-degenerativediseases.Themodifiedprionscauseunmodifiedprionsinneuronstoassume thealteredstructuralconfiguration that inducesneuropathologicchanges.Modifiedprionscancontaminatesurgicalequipmentorbloodandbetransmittedtoothers.Ruminantswithbovinespongioformencephalopathy(BSE)causedbymodi-fiedprionsmay“infect”thosewhoconsumemeatfromtheseanimals.80Modifiedprionproteinsareunusuallystableastheyareresistanttoproteases,standardsteril-ization,anddisinfectionagents.

Aswillbediscussedbelow,developersofimprovedcropvarietiesinitiallyscreentheproteinsthatarebeingconsideredforintroductionintoagriculturalcropsforarangeofattributes. Inparticular, theefficacyof the trait tobeconferred (e.g., insecticidalactivity),andtheydonothavepropertiesthatwouldposearisktoconsumersorfarmanimals.Subsequently,followingselectionandfirstproofofconcept,theyundergosys-tematicbioinformatics,in vitroandin vivotestingonacase-by-casebasis.Todate,noneoftheproteinsintroducedintoagriculturalcropshasshownanyevidenceofadverseeffects,confirmingtherigorousnessofthescreeningsystemthathasbeendeveloped.

11.5 safetyassessmentstrategyforProteInsIntroduCedIntofood/feedCroPs

InChapter10,asafetytestingapproachwasoutlinedforproteinsintroducedintobiotechnology-derived crops. This strategy was based on guidelines provided bytheOrganisationforEconomicCo-operationandDevelopment(OECD),theWorldHealthOrganization(WHO),theEuropeanFoodSafetyAuthority(EFSA),etc.Thebasicelementsofthistestingstrategyare:

HistoryofSafeUse(HOSU):Proteinsintroducedintobiotechnology-derivedcropsthathaveahistoryofsafeuse/consumptioninfood,orarestructurallyandfunctionallyrelatedtoproteinswithaHOSU,aregenerallyconsideredsafetoconsume.TheHOSUconcept iswidelyused in a regulatory context to provideguidanceon the level offamiliaritywithrespecttoprobablesafetyofchemicalsorproteinsinfood.Safetytest-ingguidelinesdevelopedbyEFSAstate,“Thestudiesrequiredtoinvestigatethetoxic-ityofanewlyexpressedproteinshouldbeselectedonacase-by-casebasis,dependingontheknowledgeavailablewithrespecttotheprotein’ssource,function/activityandhistoryofhuman/animalconsumption.InthecaseofproteinsexpressedintheGMplantwhereboththeplantandthenewproteinshaveahistoryofsafeconsumptionbyhumansandanimals,specifictoxicitytestingmightnotberequired.”81

11.5.1 ModeofActionAndfunctionAlity

Understandingthemodeofactionand/orbiologicalfunctionoftheintroducedpro-teinwillinformthesafetyassessmentsothatappropriatetestingcanbeundertaken

3967_C011.indd 268 10/24/07 10:55:10 AM

Page 11: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 269

toaddressanysafetyconcernsthatmayexist.Ifthemodeofactionisspecificforacertainbiologicalfunction(forexample,enzymaticconversionofsubstrateAtoproductB)andtheproductsoftheenzymaticreactionposenosafetyconcerns,thennoadditionalsafetytestingmaybewarrantedbeyondthebioinformaticsanddigest-ibilityassessmentspreviouslydiscussedinChapter10.

If the mode of action is not established (control insect pests by an unknownmechanism) or the function is related to the mode of action of known mamma-lianproteintoxinsorpharmacologicallyactiveproteins[antifungalprotein(AFP)example,Chapter10],thenadditionalsafetytestingiswarrantedtoassesswhethertheproteincanbesafelyused.

11.5.2 BioinforMAtics

Theproteinintroducedintobiotechnology-derivedcropsshouldnotshowaminoacidsequence similarity to known mammalian toxins, allergens, or pharmacologicallyactiveproteins.Ifsimilaritytothoseproteinsisfound,additionalsafetyevaluationswillbeneededtodeterminewhethertheseproteinscanbesafelyconsumedinthediet.

11.5.3 digestiBility

Proteinsthatarereadilydigestedin vitro usingsimulatedgastricand/orintestinalflu-idswouldnormallybecapableofbeingdigestedordegradedwhenconsumedinthediet.AsdiscussedinChapter10,digestibleproteinswould,inthemajorityofcases,belesslikelytoactasfoodallergenswhicharegenerallymorestabletodigestion.

11.5.4 confirMAtorysAfetystudies

AsdiscussedinChapters3and10,high-doseacutetoxicologystudiesarerequiredbytheU.S.EnvironmentalProtectionAgency(EPA)toassessthepotentialhazardsofplant-incorporatedprotectants (PIPs).This testing requirement isbasedon theneedtodemonstratethatthetoxicmechanismoftheplantprotectantisnotrelevanttoanimalsandman.Forexample,theknowledgethatexistingcommercialinsecti-cidalCryproteins(derivedfromBacillus thuringiensis bacteria)actthroughacutemechanismsatlowdosestocontrolinsectpests(Chapter3)andthatdoesnotoccurinmanisimportantandreassuringfromthesafetyperspective.TheEPArequiresthatPIPsbetestedathighdosagelevels(generallyg/kgbodyweightwherefeasible)toconfirmtheirsafety.Further,althoughmostconsumedproteinsarenottoxic,thosethataretoxicgenerallyexerttheireffectsthroughacutemodesofaction.82

Theproceduresforcarryingouthigh-doseacutetestingofproteinswerepresentedinChapter10.Todate,notreatment-relatedadverseeffectshavebeenobserveduptothehighestdosagestested(Table11.1).Aswillbeshownlater,thehighdosagesofproteinsadministeredtomiceareordersofmagnitudehigherthanpotentialhumandietaryexposuresfromconsumingfoodfrombiotechnology-derivedcrops.ForPIPsthathaveahistoryofsafeuseanddefinedmodeofaction,theEPAdoesnotrequireadditionaltoxicologytestingbeyondacuteoralmaximumhazarddosetesting.22

Acute toxicology studies are generally conducted via the oral route becausethedietisthemostlikelyrouteofhumanexposuretotheproteinsintroducedinto

3967_C011.indd 269 10/24/07 10:55:11 AM

Page 12: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

270 Food Safety of Proteins in Agricultural Biotechnology

biotechnology-derived crops. Mice are generally used instead of rats as they areapproximately1/10thebodyweightofratsandrequiremuchlessproteinfordosing.Micearealsoknowntobesensitivetotheadverseeffectsofknownproteintoxinsandaremostcommonlyusedtoassesstheirtoxiceffects.83

Intravenous(IV)dosinghasalsobeenusedtoassesstheintrinsicsafetyofproteinsintroducedintobiotechnology-derivedcrops.41Generally,lowdosages(~10mg/kg)oftheintroducedproteinareadministeredasitisassumedthatonlysmallamountsofingestedproteinscouldbeabsorbedintact,andIVdosingposesthemostconserva-tivetestofpotentialtoxicity.However,dosingbythisroutemaynotsimulatewhatoccurs locallyin theGItract,andthusitsrelevancetodietaryexposurecouldbequestioned.Forexample,thepotentialtoxicityofantinutrientproteinsthatinterferewithproteindigestion anduptake (protease inhibitors, lectins)maynot bemani-festinthesamewayiftheywereadministeredintravenouslyinsteadofbytheoralroute.ForIVdosing,proteinsproducedinbacteriawouldneedtobehighlypurifiedto removebacterial/fermentation contaminants (e.g., lipopolysaccharides) that arethemselvestoxicwhenadministeredparenterally.84IftherewasevidenceoftoxicityfollowingIVdosingof theprotein,acuteoral toxicologystudieswouldstillneedtobeconductedtoresolvewhethertheseeffectswererelevanttodietaryexposure.RepeatIVdosingisalsonotrecommendedasplant-derivedproteinswouldberec-ognizedasforeigntorodents,leadingtothedevelopmentofneutralizingantibodiesinthebloodthatwouldconfoundinterpretationofstudyfindings.Thisphenomenoniswelldocumentedfortherepeatedadministrationofprotein-basedpharmaceuti-calsthatarenotnativetothetestspecies(Chapter6).

EFSAguidelines for testing the safetyofbiotechnology-derivedcropsdonotrecommendacutehigh-dosetestingforinsecticidalproteinsorforothernonpesti-cidalproteins.81Rather,EFSAproposesacase-by-caseassessmentofthesafetyofintroducedproteins,andifthebiologicalprofile/activityoftheproteinraisesques-tionsaboutsafetyortheproteinisconsideredtobe“novel,”thena28-dayfeedingstudy with the protein is recommended. This recommendation is appropriate forcertain classes of potentially toxic proteins such as lectins or protease inhibitorswhosetoxicityismanifestafterashort-termfeedingstudy.85–86Thecharacteristicsthat define an introduced protein as novel have not been elaborated and are bestdeterminedonacase-by-caseassessment.

Itmaynotbepossibletocarryoutrepeat-dosingstudiesforcertainmembrane-boundenzymesiftheyareconsideredtobenovel.Purificationandisolationofcertainmembrane-boundenzymescan lead to their immediate inactivationasmembranelipidsand thecofactorsneeded forcatalytic functionof theenzymeare removedduringpurification.87Asapracticalmatter,therecouldbenegligibledietaryexpo-suretofunctionallyactivemembrane-boundenzymesinfoodsifsolventextractionandheatprocessing(e.g.,foodsderivedfromsoybeans)resultsintheirinactivation.Thismayobviate theneedforconfirmatorysafety testingofproteins inanimals,giventhenegligiblepotentialforhumanandanimaldietaryexposure.

Whenanintroducedproteinisfunctionallyorstructurallyrelatedtoproteinsthataretoxictomammals(AFPexample,Chapter10),thenanacutehigh-dosetoxicitystudymaynotbesufficienttoconfirmsafety.Otherhypothesis-drivenstudies(basedonknowledgeoftheprotein’smodeofaction)maybenecessary,asoutlinedforthe

3967_C011.indd 270 10/24/07 10:55:11 AM

Page 13: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 271

AFPexample.Thesestudiescouldincludea28-daydietarystudywiththepurifiedproteininrodents,assumingitcouldbepreparedinsufficientquantitiestotest.

Not all introduced proteins have pesticidal properties, as some impart otherdesiredtraitsintocropssuchasherbicidetolerance,virusresistance,improvementsinnutrientcontent,etc.Oftentheseproteinsareenzymesthatcatalyzespecificbio-chemicalreactions.Basedontheirknownmodeofaction,specificity,lackoffunc-tionalorstructuralsimilaritytoproteintoxins,digestibility,historyofsafeuse,etc.,theweightofevidencewouldsuggesttheseproteinswouldnotraisefoodsafetycon-cerns.However,incertaincountriesoutsidetheUnitedStatesorEurope,regulatorshaverequestedhigh-doseacutestudiestoprovidefurtherconfirmationofsafety,andproteinsthathavebeensotestedarealsolistedinTable11.1(seealsoChapter10).AswiththecaseofPIPs,therehasbeennoevidencetodateofadverseeffectsinmicedosedwithhighlevelsofnonpesticidalproteins.

Proteins introduced into biotechnology-derived crops are also components ofgrainorseedthatareformulatedintodietsandfedtoratsforapproximately90daystoconfirmthelackofanyunintendedeffectsinthebiotechcrop.Thus,theirsafetyistestedasacomponentofthegrain/seedfedtorats.Otherstudies,suchasmolecularcharacterization of the gene insert, the nutrient/antinutrient composition of food/feed,thephenotypicandagronomiccharacteristicsoftheplantgrownindifferentenvironmentalconditions,andanimalperformancestudieswithfeedwillalsohavebeencarriedouttoassessthepotentialforunintendedeffects.

The study design for a 90-day rat feeding study is adapted from OECD 408guidelines for subchronic studies that includemeasurement a comprehensivebat-teryoftoxicologyparameters.Commercialrodentdietsusedbytoxicologytestingfacilitiesoftenincludeprocessedsoybeanmealandcornmealindietformulationsasa sourceofdietaryprotein.Whennewbiotechnology-derivedcornor soybeancropsaredeveloped,theycanbeincorporatedintocommercialrodentdietstosub-stituteforconventionalcorngrainorprocessedsoymeal,andtheirsafetycanbeassessed.Sincetheratsarefedlevelsofcorngrainapproximately100timeshigherthanhumanswouldconsumeinEurope(assumesconservativelythat100%ofthecorngrainisderivedfromthebiotechnology-derivedcrop),thesestudiescanprovideconfirmation of an acceptable safety margin for the biotechnology-derived cropsincludingtheintroducedprotein(s).Iftriggered,forexample,byresultsfromcompo-sitionalanalysisordifferencesinphenotypicoragronomicperformance,subchronicfeedingstudiesmaybeconductedtodeterminewhetherthebiotechnology-derivedfood is“assafeas”conventional,nonbiotechcomparators inaccordancewith thegeneralprinciplesofsubstantialequivalence.88–90

Subchronicfeedingstudiesareoftenrequiredtoobtainregistrationofthebio-technology-derived crop in the EU even though the aforementioned triggers didnotoccur. Itwas recentlyacknowledged inadraftEFSAguideline91 that “In thesituationwheremolecular,compositional,phenotypicandagronomicanalysishavedemonstratedequivalencebetweentheGMplantderivedfoods/feedandtheirnearisogeniccounterpart,exceptfortheinsertedtrait(s),anddonotindicatetheoccur-renceofunintendedeffects,theperformanceof90-dayfeedingtrialswithrodentsorwithtargetanimalspecieswouldbeconsideredtoaddlittleifanythingtotheoverallsafetyassessment.…Thesestudiesdidnotshowanyindicationfortheoccurrence

3967_C011.indd 271 10/24/07 10:55:12 AM

Page 14: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

272 Food Safety of Proteins in Agricultural Biotechnology

ofunintendedeffects.”Thishasbeendemonstratedin90-dayratstudiesconductedtodate,someofwhichhavebeenpublishedinpeer-reviewedjournals.92–96

11.6 dIetaryrIskassessment

Riskassessmentsareroutinelyperformedtoassessthesafetyimplicationsfortheintentional or unintentional presence of low-molecular-weight chemicals in foodand feed. The procedures and mathematical models used to predict risk haveevolvedovertheyearsandhavebeenextensivelyreviewed.97–99Thedietaryassess-mentincludesbothacuteandchronicexposureassessments.Acuteexposureassess-mentsaddressshort-termexposuresusingapproximately95th-or97.5th-percentilefood consumption data (where available) and acute toxicity data generated withthelow-molecular-weightchemical.Some,however,mayquestiontheuseofacutedietaryriskassessmentsforproteinswhenthereisnoevidencethattheyareacutelytoxic.Chronicexposureassessmentsusemean(50th-percentile)foodconsumptiondata anduse the lowest no-effect level from thebatteryof toxicology studies toestablishanacceptabledailyintake(ADI)forthelow-molecular-weightchemicaladdedtofood.CalculationofanADIhasnotbeenconsiderednecessaryforcertainproteins such as the Cry insecticidal proteins. Cry proteins, whether introducedintobiotechfoodcrops,orsprayedonfoodcropsascomponentsofcommercialmicrobialpesticideformulations,havegenerallybeenexemptedfromtherequire-mentofatolerance.

Thesameprocedureshavebeenusedforpreparingdietaryriskassessmentsforproteins introduced into biotechnology-derived food and feed crops. The dietaryintake of the introduced protein can then be estimated by multiplying the intakeestimatesbytheconcentrationoftheintroducedproteininthefood.Chapter9pro-vides listsoffoodconsumptiondatabasesthatareavailableforvariouscountries.Somefoodconsumptiondataisbasedontheannualdisappearanceoffoodwithinthebordersof thecountry,whichisdividedbytheoverallpopulationtoestimatedailyintakeofthefoodcommodity.Thesedatabasesoverestimatedailyintakeofthefoodbyadults.Themoreaccurateconsumptiondatabasesarebasedonsurveyinfor-mationofindividualsover24to48hours.Thisinformationcanbecollectedforbothadultsandchildren.Thereisaneedforcountriestodevelopmorecomprehensivefoodsurveydataontheirrespectivepopulationssothatdietaryriskassessmentscanbemoreaccuratelyperformed.Atpresent,95th-or97.5th-percentilefoodconsump-tiondataareonlyavailableforcertaincountriessuchastheUnitedStates,theUK,andAustralia.However,asshowninChapter9,anumberofcountrieshavebeencarryingoutfoodconsumptionsurveysanditishopedthatthiswillbemorepub-liclyavailableforthosethathaveaneedforthisinformationtocarryoutdietaryriskassessments.Anexample foradietary riskassessment forYieldGard®Cornborer(MonsantoTechnology,LLC.), an insect-protected,biotechnology-derivedcrop isprovidedbelow.

Cry1Ab protein derived from Bacillus thuringiensis (Bt) was introduced intocornplantstoprovideprotectionagainstcornborerpeststhatdamageboththestalkandears.ThelevelsofCry1Abproteininleafandstalksisaround12ppm,andingrain,0.3ppm.100AsshowninTable11.1,miceweredosedupto4000mg/kgwithCry1Abproteinandexperiencednoadverseeffects.

3967_C011.indd 272 10/24/07 10:55:13 AM

Page 15: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 273

1. Acute Dietary Exposure Assessment

• The97.5th-percentilecornendosperm�fractionconsumptionintheUKforadultsis113g/person/day÷70kgbodywt/person=1.6g/kg.

• The97.5th-percentileadultdietaryintakeofCry1Abproteinwouldbe:1.6g/kg/day×0.3mg/gcorn=0.48mg/kgforanadult(0.00048mg/kg).

• The margin of safety for acute exposure to Cry1Ab protein is 4000 mg/kg ÷0.00048mg/kg=8,333,333X.

Putanotherway,a70-kg-bodyweighthumanadultwouldneedtoconsume>900,000kg(900metrictonnes)ofgraininonedaytoattainthesameacutedosage(4000mg/kg)ofCry1Abproteingiventomicewhichproducednoadverseeffects.

2. Chronic Dietary Exposure Assessment

• Theaverage(50th-percentile)cornconsumptionintheUKforadultsis~16gcorn/person/day÷70kgbodywt/person=0.23g/kg.

• TheaverageadultdietaryintakeofCry1Abproteinwouldbe:0.23g/kg/day×0.3mg/gcorn=0.07mg/kgforanadult(0.00007mg/kg).

• TheaverageratdietaryintakeofCry1Abproteinina90-dayfeedingstudyis25gcorn/kgBW×0.3mg/gcorn=7.5mg/kg

• ThemarginofsafetyforchronicdietaryexposuretoCry1Abproteinis7.5mg/kgdividedby0.07mg/kg=107X

Thisdietaryexposureassessmentmakessomeveryconservativeassumptions.Itassumesthat100%ofthecornconsumedinthedietisYieldGard®CornborerthatcontainstheCry1Abprotein.Inreality,manyvarietiesofcornaresoldcom-mercially,sothatYieldGard®Cornborerrepresentsonlyafraction(~20%)ofthetotalcornvarietiesconsumedinthediet(asof2002).101Italsoassumesthat theCry1Ab protein is not denatured by thermal processing of corn grain into foodproducts.Soybeansarebothheat-processedtoinactivatetrypsininhibitorsandsol-vent-extractedtoremoveoil.ProcessingdenaturesproteinslikeCP4EPSPS,whichhavebeenintroducedintosoybeanstoimparttolerancetoglyphosateherbicide.

ThedietaryriskassessmentshownaboveusescornconsumptiondataforadultsintheUK.IfadietaryriskassessmentwaspreparedforCentralAmerica,thesafetymarginwouldbesomewhatlower,ascornconsumptionishundredsofgramsperpersonperday.102However, the safetymarginwould still bevery large since thelevelofCry1Abincorngrainisverylow.Thus,riskassessmentscanbetailoredforindividualcountrieswhenthereareaccuratefoodconsumptiondataavailable.

11.7 thresholdoftoxICologICalConCern

Introducedproteinsaregenerallypresentatlowlevelsinthegrain/seedofbiotechnol-ogy-derived crops commercialized to date (Table11.3). One could assume that thepresenceinfoodoflowlevelsofintroducedproteinsposesminimalrisksandshouldnotrequirecomprehensivesafetyassessment.Thereisaregulatorymandateinmost

� Humandietaryexposures areestimatedusing thecornendosperm fraction.This fractioncontainsmostoftheproteinwhichwouldincludetheintroducedprotein.Othercornfractionssuchasbran,sweeteners,andoilcontainverylittleprotein.ItalsoassumesthattheCry1Abproteinhasnotbeenintroducedintosweetcorn.DataderivedfromtheDEEM-UKdatabase(Exponent,Inc.).

3967_C011.indd 273 10/24/07 10:55:13 AM

Page 16: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

274 Food Safety of Proteins in Agricultural Biotechnology

countriestoassessthesafetyofthemanysubstancesfoundinfood,whethertheyoccurnaturallyorareaddedinsomemannertofood.Withoutsomemeanstoprioritizeallsubstancesthatneedfurtherevaluation,regulatorswouldbeutilizingscarceresourcestoassesssafetyformanysubstancesthatmaynotrequireacomprehensivesafetyeval-uation.Moreover,withoutprioritization, the costswouldbeenormous to carryoutindiscriminatesafetytestingandmanyresearchanimalswouldbeusedunnecessarily.Thereisagrowingdemandtoreduceanimalexperimentationwherepossible.112

A risk assessment strategy has been proposed for evaluating low-level expo-suretolow-molecular-weightchemicalsinthediet.Ifadequatesafetymarginsexistfor human exposure to these substances, then no further safety testing would berequired.Thiswouldenable regulators to focus resourcesonhigher-priority foodsafetyissues.112Thisriskassessmentstrategyisdescribedasthethresholdoftoxi-cologicalconcern(TTC).112–114AccordingtoKroesetal.,theTTC“isapragmaticriskassessmenttoolthatisbasedontheprincipleofestablishingahumanexposurethreshold value for chemicals, below which there is a very lowprobability of anappreciable risk tohumanhealth.Thisconcept…is inherent in settingacceptable

taBle11.3levelsofIntroducedProteinsinthegrain/seedofBiotechnology-derivedCrops

Crop IntroducedProtein Concentrationa(ppm) reference

Corn

RoundupReady® CP4EPSPS 10–14 103

YieldGard®Cornborer Cry1Ab 0.3 100

YieldGard®Rootworm Cry3Bb1 70 94

YieldGard®Plus Cry3Bb1Cry1Ab

20(range15–26)0.38(range0.2–0.47)

104

YieldGard®RootwormPlus

Cry3Bb1Cry1AbCP4EPSPS

32(range22–48)0.56(range0.48–0.67)9.6(range7–14)

105

Herculex1®InsectProtection

Cry1F 71–115 106

LysineMaize Dihydrodipicolinate-synthase(cDHDPS)

24(range13–43) 107

Cotton

RoundupReady® CP4EPSPS 47–117 108

Bollgard® Cry1Ac 1.62 106

BollgardII® Cry2Ab2/Cry1Ac 34–60/1.3–1.6 109

RoundupReadyFlex® CP4EPSPS 67–580 110

soy

RoundupReady® CP4EPSPS 186–395

a fwt,freshweight.® Registeredtrademark,MonsantoTechnology,LLC.

3967_C011.indd 274 10/24/07 10:55:14 AM

Page 17: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 275

dailyintakes(ADIs)forchemicalswithknowntoxicologicalprofile.”113Thisconceptcouldalsobeappliedtoproteinsintroducedintofoodandfeedcrops.

TheTTCvaluesforlow-molecular-weightchemicalsareaslowas1.5μg/person/dayforthosethathavenotbeentestedforcarcinogenicitybuthavestructuralprop-erties(alerts)similartoknownchemicalcarcinogens.Exposuresbelowthe1.5μg/person/daylevelareconsideredtoposeaverylowrisk(<1inamillion)ofproducingcancer inman.Other low-molecular-weightchemicals thatdonothave structuralproperties or alerts that raise questions about potential toxicity have TTC levelsmuchhigher,rangingupto1800μg/person/dayinthediet.113

ProteinswerenotinitiallyincludedindeterminingTTClevelsbecause,againcitingKroesetal.,“[T]hereareinsufficientdose–responsedataregardingallergenicityofpro-teinsandlow-molecular-weightchemicals,onwhichaTTC(oranyotherassessment)canbebased.”113However, asdiscussed inChapter8,developersofbiotechnology-derivedcropsrigorouslyavoidintentionallyintroducingpotentiallyallergenicproteinsintofoods,forobviousreasons.AsindicatedinChapter8,thereisabatteryoftestsundertakentoconfirmthatintroducedproteinsdonotfittheprofileforknownaller-gens.Basedontheverylowprobabilitythatproteinsintroducedintobiotechnology-derivedcropsposeanallergenicrisk,theTTCriskassessmenttoolcouldbeappliedtolow-levelexposuretointroducedproteinsinbiotechnology-derivedfoodcrops.

One fundamental difference between proteins introduced into foods and low-molecular-weightchemicalsisthegenerallackofevidencefortoxiceffectlevelsinanimalsafetystudieswithselectedproteins(Tables11.1and11.2).Forlow-molecular-weightchemicals,TTCvalueswerecalculatedusingthe5thpercentileofthedistri-butionoftheNOELs(basedonanimaltoxicologystudies)dividedbyanuncertaintyfactorof100,andassuminganaveragehumanbodyweightof60kg.114Low-molecu-lar-weightchemicalsweredividedintothreedifferentclassesbasedontherelatednessoftheirchemicalstructurestothosethateitherposedminimalsafetyconcernsorthosethatsuggestedpotentialfortoxicity.Proteinscouldlikewisebecataloguedintothreestructuraldivisionsbasedontheirrelatedness,orlackthereof,toproteinsknowntobetoxic.Relatednessisalreadyevaluatedbybioinformaticssearches,asdiscussedinChapter10.Themosttoxicproteinstohumansaregenerallythosederivedfrommicro-organismsthatcausefoodpoisoning,andthesecouldrepresentoneclass.Thenextclassofproteinscouldincludethosegenerallyfoundinplantsthatactasantinutrients(lectins,proteaseinhibitors).Asapracticalmatter,proteinswithpotentialmammaliantoxicityareobviouslynotconsideredforadditiontofoodorfeedcrops,althoughthereisahistoryofconsumptiontomanyendogenousantinutrientproteinsfoundinfood(lectins,proteaseinhibitors,etc.).Thelastcategoryofproteinswouldincludeproteinsbeingintroducedintofoodandfeedcropsthatarestructurallyandfunctionallyrelatedtothosecurrentlypresentinfoodorhavebeensafelyusedinfoodproduction(e.g., CryproteinsfromBacillus thuringiensismicrobialspraysandfoodprocessingenzymes).

Asanexercise,NOAELsforallofthenon-toxicproteinslistedinTables11.1and11.2wereaveragedforeitheracuteorsubchronictoxicity.Sincetheenzymecon-centrationpresentinfermentationpreparationscanvaryfrom2%to70%,63anarbi-traryassignmentof10%enzymeconcentratewasappliedtoallNOAELsforthoseenzymespreparedbycustomaryfermentationtechniques(somepublicationslistedtheconcentrationofenzymeinthepreparation,whereasmanyothersdidnot).This10%

3967_C011.indd 275 10/24/07 10:55:15 AM

Page 18: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

276 Food Safety of Proteins in Agricultural Biotechnology

correctionfactorwasapplied toall theNOAELspresentedinTables11.1and11.2.TheadjustedNOAELswereusedindeterminingtheoverallaveragesforacuteandsubchronictoxicitystudies.Themeanvaluesweredividedbya100-folduncertaintyfactortoestimateTTClevelsforacuteandchronicexposures.

For acute exposure, the average NOAEL (always the highest dosage tested)across30acutestudieswas1790mg/kg,andwhendividedbya100-folduncertaintyfactor,wouldprovideaTTCof17.9mg/kg,or1074mg/adultperson/dayforacutedietaryexposure(assumesadultbodyweightof70kg).Forchronicexposure,theaverageNOAEL(alwaysthehighestdosagetested)across40subchronicstudieswas249mg/kg,whichdividedbya100-folduncertaintyfactorwouldprovideaTTCof2.49mg/kg,or149mg/adultperson/day.

Thechronicdietaryexposurestovariousintroducedproteinshavebeencalculatedinpublicationsforthreebiotechnology-derivedcornproducts[RoundupReady®corn;YieldGard®Rootwormcorn,andYieldGard®Cornborercorn;(MonsantoTechnology,LLC.)]thatwerefedtoratsinsubchronictoxicologystudies.92–94Theintakeofintro-ducedproteinswas0.27mg/person/dayforCP4EPSPSprotein,1.3mg/person/dayforCry3Bb1protein,and0.005mg/person/dayforCry1Abprotein.Thesedietaryexposureswerebasedontheveryconservativeassumptionsthat100%ofthecornconsumedwasderivedfromeachbiotechvarietythatwastested,andtherewasnolossoftheintroducedproteinsduringthermalprocessingofcorngrainintofoodproducts.Evenatthe95th-percentileU.S.cornconsumption level (which isapproximately4× themeandietaryexposure),themg/person/dayintakeswouldstillbefarbelowtheTTC(149mg/person/day)forchronicdietaryexposuretointroducedproteins.ForpartsofMexicoandAfrica,where thepercapitacornconsumption is approximately20 times that in theUnitedStates,themg/person/dayintakeswouldstillbewellbelowthecalculatedTTClevel.

The levels of the aforementioned introduced proteins in the grain from threebiotechnology-derivedcornproductsarequite low:14ppm(CP4EPSPS),70ppm(Cry3Bb1),and0.3ppm(Cry1Ab).Toachievealevelofproteinconsumptionequiva-lenttothe149mg/person/dayTTClevel,andusinga50th-percentiledailyU.S.adultcornendospermconsumptionfigureof0.27g/kg/day(DEEMdatabase,Exponent,Inc.),thelevelsofanintroducedproteinwouldhavetobeapproximately7800ppminthegrainfordietaryconsumptiontoreachtheTTClevel.IfthedietaryexposureforanintroducedproteinexceededtheTTC,thiswouldnotmeanthattherewasasafetyconcern. Appropriate toxicology studies could be done to assess safety at dietarylevelsabovetheTTC,asdiscussedpreviously.AdoptionoftheTTCconceptforriskassessmentwouldmeanthatdietaryexposurestoproteinsbelowtheTTCwouldnotrequireconfirmatoryanimalsafetytestingbasedonthefollowingconditions:(1)thesourceoftheproteinraisesnosafetyconcerns;(2)themodeofactionoftheproteinisknownandposesnosafetyconcerns;(3)theproteinisnotstructurallyorfunctionallyrelatedtoproteinsthatareknownmammaliantoxinsorantinutrients;(4)theproteinisdigestible;and(5)theproteindoesnotfittheprofileofknownfoodallergens.

11.8 thefuture

As thenextgenerationofbiotechnology-derivedcropsapproachescommercializa-tion,it is importanttoconfirmwhethertheexistingsafetyassessmentparadigmisappropriateforthesenewproducts.Thesafetyassessmentparadigmforintroduced

3967_C011.indd 276 10/24/07 10:55:16 AM

Page 19: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 277

proteins presented earlier in this chapter is aligned with existing internationallyacceptedapproachesprovidedinnumerouspublications.115–122Adiscussionofthenewkindsofintroducedproteinsthatarebeingdevelopedandtheefficacyandutilityoftheexistingsafetytestingparadigmtoconfirmtheirsafetywillbepresentedbelow.

11.8.1 ApplicAtionsofproteinengineeringforfood-processingenzyMes

The advent of biotechnology hasmade it possible tomodify proteins to increasetheirexistingfunctionalactivity,ortoimpartnewfunctionalpropertiesforadesiredapplication.Proteinengineeringincludeschangingaminoacidsatkeypositionsinthemoleculethatcanmodifytheirstructuraland/orfunctionalproperties.Thefirstapplicationshavefocusedontheengineeringoffoodenzymestoimprovetheirsta-bilityunderfood-processingconditions.Forexample,proteinengineeringhasbeenusedtomodifyproteasesbychangingkeyaminoacidstoincreasetheirstabilitytohightemperaturesandpH—conditionsthatcanoccurduringfoodprocessing.123Anotherexampleisthemodificationofα-amylasestoincreasethermostabilityforproductionofsweetenersfromcornstarch.124Biotechnologyhasalsomadeitpossi-bletoidentifyandproduceenzymesfromthermophillicandpsychrophilicmicrobesthatexhibitunique thermostableproperties,as theorganisms thatproduced themliveinextremeenvironmentalconditions(e.g.,volcanicheatedpoolsorvents).

ArecentreviewbySpokdiscussesothertoolsusedtoimproveenzymeperfor-mance:“Combinatorialapproachesofrationalproteindesignanddirectedevolutionmethodsturnouttoefficientlyalterthepropertiesofenzymes,enzymestability,cata-lyticmechanism,substratespecificityandrange,surfaceactivity,foldingmechanisms,cofactordependency,pHandtemperatureoptima,andkineticparametershavebeensuccessfullymodified.”63Othertechniquessuchasproteinshufflingcanincreasethevariabilityofenzymesthatcanbeproducedandmayyieldenzymesthatcancarryoutcatalyticactivitiesthatwereheretoforenotpossiblewithexistingenzymes.63

Biotechnologyisbeingusedtoreducethepotentialforcontaminationofenzymeconcentrateswithtoxicimpurities,whichcanbenefittheconsumer.Itisnowpos-sibletointroducethegenecodingforfoodenzymesintomicroorganismsthathavebeenwellcharacterizedandhaveanestablishedhistoryof safeusebecause theydonotmaketoxicimpurities.63Giventhisscenario,itisprobablynotnecessarytocontinuecarryingout90-dayratsafetystudieswhenthefermentationorganismsareknowntonotproducetoxiccontaminantsandtheenzymeisfullycharacterized.

11.8.2 ModificAtionofinsectcontrolproteinstoiMprovepotencyorBroAdenselectiveActivityAgAinsttArgetedpests

AwiderangeofactivityofCryproteinsagainstseveralordersofinsectshasresultedfromanaturallyoccurringrecombinationandsequencediversity.125Generally,Crypro-teinshaveadefinedspectrumofinsecticidalactivitywithinaparticularinsectorder.

Cry proteins are composed of several functional domains that have highlyconserved areas between the classes.126 For example, Cry1A proteins are highlyconservedindomainsI,II,andIII.Sequenceidentitycanindicatesimilarityinbio-logicalfunction,i.e.,activitytowardasimilarspectrumofinsects.ThesefunctionaldomainshavebeenshowntodeterminethespecificityofCryproteins:domainsI,

3967_C011.indd 277 10/24/07 10:55:17 AM

Page 20: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

278 Food Safety of Proteins in Agricultural Biotechnology

II,andIIIformthetoxinportion(trypticcore),andaC-terminalprotoxindomainiscleaveduponentryintotheinsectmidgut.126DomainIisinvolvedinmembraneinsertionandporeformationanddomainIIisinvolvedinspecificreceptorrecog-nition and binding, as shown by mutagenesis studies. Domain III plays a role inreceptorbinding.ThecombinationofdomainsIandIIhasbeenshowntodetermineinsectspecificity.TheC-terminalprotoxindomainplaysaroleincrystalformation.Domainswappingisawell-knownmechanismforgeneratingdiversity.Mutagenesisanddomainswappingiswidelyusedinresearchinordertobetterunderstandfunc-tionofeachdomainandhavebeendescribedpreviously.125,127

ThesafetyassessmentoffutureCryinsecticidalproteinswithenhancedinsecticidalpropertiesdevelopedthroughdomainswappingorothertechniquescanbeconfirmedusingexistingtoxicologicalstudydesigns.Thiswouldincludethestandardbioinformat-ics,in vitrodigestibility,andhigh-doserodentacutetoxicitytestrequiredbytheEPAforregistrationofPIPs.Ifindicated,confirmationofsafetywouldalsobepossiblethrougha90-dayratfeedingstudywithgrainorseedcontainingtheinsecticidalprotein.Otherenvironmentaltoxicitytests,asoutlinedinChapter4,wouldalsobeneededtoconfirmselectivity toxicityagainst targeted insectpests andabsenceof toxicity tonontargetorganisms,asexistsforconventionalCryproteins.Ifthemodeofactionfortheinsec-ticidalproteinisnotwellcharacterized,orraisesquestionsaboutsafetyforconsumers(suchas theAFPexamplediscussedearlier), thentargetedtoxicity testsdesignedtoresolvesafetyquestionsmaybeneededbasedonacase-by-caseassessment.

11.8.3 introductionoftrAnscriptionfActorproteinstoModifyendogenousplAntMetABolicpAthwAys

Modulation of regulatory control proteins and regulatory processes has occurredduringplantdomesticationthroughbothnaturalandselectedbreedingofimprovedcropvarieties.128–131Forexample,thechangesresponsibleforimprovedwheatyieldsas part of the “green revolution” involved selection for mutant Reduced height-1 genes throughconventionalbreeding.132Theproteinsencodedby thesegenesareregulatorsofendogenousgene transcription thatmakewheatplants insensitive togiberellin,aplantgrowthregulator,thusmakingtheplantsshorterandprotectingthemfromcollapsingundertheirownweight.132Asaconsequence,yieldisincreasedatharvest.WheatdomesticationalsoinvolvedtheQgene,anAP-2-liketranscrip-tionfactorthatconfersfree-threshingcharacterandreducesfragility,enablingmoreefficientgrainharvesting.133Thedomesticationofmaizefromitsancestralform,teo-sinte,hasinvolvedselectionforenhancedexpressionoftheteosinte branched 1tran-scriptionfactor134andregulatorychangesinthemaizealleleoftheteosinte glume architechture transcriptionfactor.135Anotherexampleoftheimpactoftranscriptionfactors in corn breeding is a mutation in the opaque 2 transcription factor. ThismutationledtothegenerationofQualityProteinMaize(QPM),animprovednutri-tionmaizevariety(highinlysinecontent)thatwasthewinneroftheWorldFoodPrizein2000.136ReducedgrainshatteringresultingfromasinglebasepairmutationintheDNAbindingdomainoftheputativetranscriptionfactorsh4hasbeenthoughtto be a key event in the domestication of rice.137 Tomato hybrid cultivars with amutanttranscriptionfactoryieldfruitwithalongershelflife.138

3967_C011.indd 278 10/24/07 10:55:18 AM

Page 21: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 279

Wearenowlearningthatthedomesticationandbreedingofmoderncropswithbeneficialtraitscarriedoutoverthepastcenturieshasinvolvedselectionforchangesinproteinsregulatingendogenousplantgeneexpression.Transcriptionfactorshaveplayedaprominentroleintheseprocesses.Thesecropvarietiesproducedasaresultof altered transcription factor expressionhaveanestablishedhistoryof safe con-sumptionastheyarestaplesinthehumandiet.Thisdemonstratesthatplantswithalterations inendogenousgeneexpressionofproteins thatmodulateother endog-enousplantgeneshavebeensafelyconsumed.

Profiling technologies such as genomics, proteomics, and metabolomics havefacilitatedidentificationofgenesthatregulateendogenousplantprocessesandthephenotypiceffectselicitedbytheirproteinproducts.139Therefore,proteinsthataffectendogenouspathwaysareamongthelikelytargetstoimprovethenextgenerationofbiotechnology-derivedcrops.Duringthelastfewyears, therehasbeenagrowingnumberofbiotechnology-derivedplantswithmodificationsinendogenoustranscrip-tionalregulatoryprocesses.140–142

A fundamentalprinciple toconsiderwhenevaluating the safetyof thesebio-technology-derived crops is that the transcription factor proteins operate throughregulationofendogenousplantprocesses.Thustheyareunlikelytoproducenovelmetabolitesnotpreviouslypresentinplants.Theseproteinswillbestructurallyorfunctionally homologous to endogenous plant transcription factor proteins. Theycould alsobeobtained from the samecrop intowhich theywill be reintroducedthroughbiotechnology.

Duringthegrowingseason,plantsarenormallysubjectedtoavarietyofbioticandabioticstressconditions.Inresponsetotheseenvironmentalconditions,avari-etyof transcription factor-mediatedchanges inendogenousplantgeneexpressionoccur. Humans and animals consume food or feed from crops that contain thecumulativegeneexpressionchangesthatoccurinplantsgrownundervariablestressconditions.

There isahistoryofconsumptionof transcription factorsas theyarepresentinalleukaryoticcells,someofwhichareconsumedasfood.Outofanestimated59,000genesinthericegenome,approximately1600(∼3%)arepredictedtoencodetranscriptionfactors.143Thesoybeangenomeispredictedtocontainapproximately1300transcriptionfactorsoutofanestimated63,500genes,representingabout2%ofthegenome.144Questionsconcerningthesafetyoffoodorfeedderivedfromcropscontainingintroducedtranscriptionfactorsshouldbeconsideredinthecontextofthehistoryof safe consumptionof food and feedderived fromplants containingthesenaturallyandregularlyoccurringchangesintranscriptionalprofiles.

Anadditionalexposureconsiderationformanyregulatoryproteinsisthattheyusuallyhaveasmallnumberofspecific targets.Moreover,although transcriptionfactorsareexpressedineverycell,theyaregenerallypresentinlowlevelsinplantandanimaltissues.InArabidopsis,forexample,thenumberofmRNAsencodinganindividualtranscriptionfactorhasbeenreportedtorangefrom0.001to100cop-iespercell,illustratingtherelativelylowlevelofthesetranscriptsinplantcells.145Thewiderangeinpotentiallevelsforagiventranscriptionfactormayresultfromspatial(celltype),temporal(cellcycle),anddevelopmental(lifecycle)regulationofgeneexpression.141Transcriptionfactorproteinsalsotendtobepresentatverylow

3967_C011.indd 279 10/24/07 10:55:19 AM

Page 22: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

280 Food Safety of Proteins in Agricultural Biotechnology

amountsinplanttissue.Forexample,only50μg(80pmol)ofKAP-2transcriptionfactorwasobtainedfrom6kgofbeancells,correspondingtoabout8ngoftran-scriptionfactorproteinpergramoftissue.146

Even with large uncertainties in available estimates, it is apparent that tran-scriptionfactorsrepresentonlyatinyfractionoftotalplantproteins,andtheircon-centrations(~ppb)arelikelytobeseveralordersofmagnitudelowerthanproteinsintroduced intobiotechnology-derivedcrops (ppm) todate (Table11.3)or typicalfoodproteins thatmight constitute1% (10,000ppm)ormoreof the totalproteinpresent in the food.16 Total protein levels in food crops can range from 10% formaizeto40%forsoybeans.147Tissuesconsumedfromfoodanimalsalsoprovideadietarysourceoftranscriptionfactorsandotherregulatorycontrolproteinsastheyareubiquitousinthecellsofanimals,albeitatlowlevels.Iflevelsofthesetranscrip-tionfactorsorotherregulatorycontrolproteinsareelevatedinfoodorfeedbeyondthatnormallyobservedintheplantproduct,thisinformationwouldalsobeusedintheevaluationofthehistoryofsafeconsumptionofrelatedproteins.

The assessment of potential oral activity for introduced transcription factorsneedstotakeintoconsiderationthefollowingfactors:

1. Thelackofaspecifictransportsystemforregulatorycontrolproteinsmayprovideanexplanation,inpart,astohowGItractepitheliaarecontinu-ouslyexposedtotheseproteinsfromdietarysources(plant-andanimal-derivedfoods)withoutanyevidenceofbiologicalresponseinmammals.

2. Transcriptionfactorsandmanyotherproteinsthatregulategeneexpres-sionfunctioninthenucleus.Inorderforingestedregulatorycontrolpro-teinstobeactiveintheconsumingorganism,theproteinwouldthusneedtonotonlysurvivedigestivebarriers,gainaccesstothesystemiccircula-tion,andbetransportedtoatargettissue,butwouldalsohavetoundergocellularuptake,evadecytoplasmicdegradation,andwouldrequiresubse-quenttransportacrossthenuclearmembraneandintothenucleus.Selec-tiveimportofproteinsacrossthenuclearmembranerequiresthepresenceofanuclearlocalizationsignalwithintheproteinsequence.148Whetheranexogenoustranscriptionfactororotherregulatorycontrolproteinwouldenter the nucleus would depend partly on the interaction between thatproteinandnuclearimportmachineryincellsoftheconsumingorganism.Thespecificityrequiredforsuchinteractionsaddsyetanotherbarriertofunctionofdietaryproteinsthatregulategeneexpression.

Basedonallof theaforementionedconsiderations,onecanconclude that theexistingriskassessmentproceduresusedtoassesssafetyofproteinsintroducedintobiotechnology-derivedcropsarealsoapplicabletotranscriptionfactors.

Sinceendogenousmetabolicpathwaysmaybemodifiedtoachievethedesiredplantimprovement,theagronomicperformanceandphenotypicappearanceoftheplant will be examined under a variety of environmental conditions to confirmthattherearenodeleteriousunintendedchanges.Thecompositionofgrainorseedwill also be analyzed to confirm that endogenous nutrients or antinutrients havenot changed, unless the intended technical effect results in changes in levels of

3967_C011.indd 280 10/24/07 10:55:19 AM

Page 23: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 281

endogenousnutrients.Inthiscase,thesafetyandnutritionalimpactofthosechangeswillbeevaluatedindependently.

If there isevidenceofsignificantunexpected/unintendedmolecular,composi-tional,agronomic,and/orphenotypicchangesthatcouldbeadverse,thenthesafetyimplicationsofthesechangeswouldrequirefurtherstudybeforeadecisioncouldbemadewhetherthecropcouldbesafetyused.Thissafetyassessmentprocesswhichisalignedwithinternationalguidelinesdiscussedpreviouslyisconsideredtobefullyadequate toconfirmthesafetyof food/feedderivedfromplantswhosemetabolicpathwaysaremodifiedtoachieveintendedimprovementsinthecrop.

11.9 ConClusIon

Aconsolidatedriskassessmentstrategyisproposedfortheintroductionofproteinsofdiversestructureandfunctionintofoodandfeedcrops.Thestrategyisbasedon,andalignedwith,internationalguidelinesandrecommendationsandcanbeadaptedtoeval-uatethesafetyofnewandimprovedvarietiesofbiotechnology-derivedcropsthatareunderdevelopment.Basedontheoverallweightofevidencefromassessingthesafetyofproteinsofdiversestructureandfunctionusedinfoodproductionandprocessing,aswellasthoseintroducedintobiotechnology-derivedcrops,itisclearthatintroducedproteinscanbesafelyusedintheproductionoffoodandfeed.Thesafetyassessmenttoolsareinplacetoandwillcontinuebeusedasneededtoensurethatfoodandfeedderivedfromnewvarietiesofbiotechnology-derivedcropscanbesafetyconsumed.

referenCes

1. Hayes, W.J. and Laws, E.R., Handbook of Pesticide Toxicology, Vol. 1. AcademicPress,NewYork,1991.

2. World Health Organization and Food and Agriculture Organization of the UnitedNations(WHO/FAO),Pesticidesresiduesinfood—2004,ReportoftheJointMeetingoftheFAOPanelofExpertsonPesticideResiduesinFoodandtheEnvironmentandtheWHOCoreAssessmentGrouponPesticideResidues(JMPR),Rome,Italy,20–29September2004,FAOPlantProductionandProtectionPaper178,WorldHealthOrga-nizationandFoodandAgricultureOrganizationoftheUnitedNations,Rome,2004.

3. U.S.EnvironmentalProtectionAgency(EPA),Acetochlor.RevisedHEDChapteroftheToleranceReassessmentEligibilityDecision(TRED)Document,March1,2006.

4. Roberts,P.R.etal.,Effectofchainlengthonabsorptionofbiologicallyactivepeptidesfromthegastrointestinaltract,Digestion,60,332,1996.

5. Fricker,G.andDrewe,J.,Currentconceptsinintestinalpeptideabsorption.J. Pept. Sci.,2,195,1996.

6. Yonemochi,C.,etal.,EvaluationoftransgeniceventCBH351(Starlink)corninbroilerchickens,Anim. Sci. J.,71,221,2002.

7. Ash,J.A.,Scheideler,S.E.,andNovakC.L.,ThefateofgeneticallymodifiedproteinfromRoundupReadysoybeansinlayinghens.J. Appl. Poult. Res.,12,242,2003.

8. Calsamiglia,S.,etal.,EffectsoffeedingcornsilageproducedfromcorncontainingMON810andGA21geneonfeedintake,milkproductionandcompositioninlactatingdairycows,J. Dairy Sci.,86(Suppl.1),62,2003.

9. Jennings, J.C.,Attempts todetect transgenicandendogenousplantDNAand trans-genicproteininmusclefrombroilersfedYieldGardCornBorerCorn, Poult. Sci.,82,371,2003.

3967_C011.indd 281 10/24/07 10:55:20 AM

Page 24: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

282 Food Safety of Proteins in Agricultural Biotechnology

10. Jennings,J.C.,etal.,DeterminingwhethertransgenicandendogenousplantDNAandtransgenicproteinaredetectableinmusclefromswinefedRoundupReadysoybeanmeal,J. Anim. Sci.,81,1447,2003.

11. Chowdhury, E.H., Detection of genetically modified maize DNA fragments in theintestinalcontentsofpigsfedStarLinkCBH351,Vet. Human Toxicol.,45,95,2003.

12. Chowdhury,E.H.,etal.,DetectionofcornintrinsicandrecombinantDNAfragmentsandCry1Abprotein in thegastrointestinalcontentsofpigs fedgeneticallymodifiedcornBt11,J. Anim. Sci.,81,2546,2003.

13. YonemochiC.,etal.,Influenceoftransgeniccorn(CBH351,namedStarlink)onhealthconditionofdairycowsandtransferofCry9Cproteinandcry9Cgenetomilk,blood,liverandmuscle,Anim. Sci. J.,74,81,2003.

14. Flachowsky,G.,Chesson,A.,andAulrich,K.,Animalnutritionwithfeedsfromgeneti-callymodifiedplants,Arch. Anim. Nutr.,59,1,2005.

15. CouncilforAgriculturalScienceandTechnology(CAST),Safetyofmeat,milk,andeggs from animals fed crops derived from modern biotechnology, Issue Paper 34,CAST,Ames,IA,2006.

16. Astwood,J.D.,Leach,J.N.,andFuchs,R.L.,Stabilityoffoodallergenstodigestioninvitro,Nat. Biotech.,14,1269,1996.

17. Tsume,Y.,etal.,Quantitativeevaluationofthegastrointestinalabsorptionofproteinintothebloodandlymphcirculation,Biol. Pharm. Bull.,19,1332,1996.

18. Weangsripanaval,T.,etal.,Dietaryfatandanexogenousemulsifierincreasethegas-trointestinalabsorptionofamajorsoybeanallergen,GlymBd30K,inmice,J. Nutr.,135,1738,2005.

19. Kilshaw, P.J. and Cant, A.J., The passage of maternal dietary proteins into humanbreastmilk,Intern. Arch. Aller. Appl. Immunol.,75,8,1984.

20. Husby,S.,Jensenius,J.C.,andSvehag,S.E.,Passageofundegradeddietaryantigenintothebloodofhealthyadults.Quantification,estimationofsizedistribution,andrelationofuptaketolevelsofspecificantibodies,Scand. J. Immunol.,22,83,1985.

21. Husby,S.etal.,Passageofdietaryantigensintothebloodofchildrenwithcoeliacdis-ease.Quantificationandsizedistributionofabsorbedantigens,Gut,28,1062,1987.

22. Betz,F.,Hammond,B.G.,andFuchs,R.L.,SafetyandadvantagesofBacillus thuring-iensis-protected plants to control insect pests, Regul. Toxicol. Pharmacol., 32, 156,2000.

23. MonsantoCompany,unpublished. 24. U.S. Environmental Protection Agency (EPA), Bacillus thuringiensis Cry1F protein

and the genetic material necessary for its production in corn: Exemption from therequirementforatolerance,Federal Register,66(109),30321,June6,2001.

25. GovernmentofCanadaCanadianFoodInspectionAgency(CFIA),DeterminationofthesafetyofDOWAgroSciencesCanada,Inc.andPioneerHi-BredProductionInc.’sInsectResistantandGlufosinate-AmmoniumHerbicideTolerantCorn(Zea mays L.)Line59122,DecisionDocumentDD2005-55,GovernmentofCanadaCanadianFoodInspectionAgency,November18,2005.

26. U.S. Environmental Protection Agency (EPA), Bacillus thuringiensis VIP3A insectcontrolproteinandthegeneticmaterialnecessaryforitsproduction.Noticeofafilingtoapesticidepetitiontoamendtheexemptionfromtherequirementforatoleranceforacertainpesticidechemicalinthefood,Federal Register, 69(178),55605,September15,2004.

27. Reed,A.J.,etal.,Safetyassessmentof1-Aminocyclopropane-1-carboxylicaciddeami-naseproteinexpressedindelayedripeningtomatoes,J. Ag. Food Chem.,44,388,1996.

28. Greenough,R.J.andEverett,D.J.,Safetyevaluationofalkalinecellulase,Food Chem. Toxicol.,29,781,1991.

29. MonsantoCompany,unpublished.

3967_C011.indd 282 10/24/07 10:55:21 AM

Page 25: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 283

30. Flood,M.T.,Kondo,M.,Toxicityevaluationofaβ-galactosidasepreparationproducedbyPenicillium multicolor,Regul. Toxicol. Pharmacol.,40,281,2004.

31. Harrison, L.A., et al., The expressed protein in glyphosate-tolerant soybean, 5-enolypyruvylshikimate-3-phosphatesynthasefromAgrobacteriumsp.strainCP4,israp-idlydigestedin vitroandisnottoxictoacutelygavagedmice,J. Nutr.126,728,1996.

32. Coenen,T.M.M.,Schoenmakers,A.C.M.,andVerhagen,H.,Safetyevaluationofβ-glucanase derived from Trichoderma reesei: Summary of toxicological data, Food Chem. Toxicol.,33,859,1995.

33. Ohshita,K.etal.,Safetyevaluationofyeastglutaminase,Food Chem. Toxicol., 38,661,2000.

34. Cook,M.W.andThygesen,H.V.,SafetyevaluationofahexoseoxidaseexpressedinHansenula polymorpha, Food Chem. Toxicol., 41,523,2003.

35. Brinch,D.S.andPedersen,P.B.,ToxicologicstudiesonlaccasefromMyceliophthora ther-mophila expressedinAspergillus oryzae,Regul. Toxicol. Pharmacol.,35,296,2002.

36. Coenen,T.M.M.etal.,SafetyevaluationofalactaseenzymepreparationderivedfromKluyveromyces lactis,Food Chem. Toxicol.,28,671,2000.

37. Ahmad,S.K.etal.,ToxicologicalstudiesonlactoseoxidasefromMicrodochium nivaleexpressedinFusarium venenatum,Regul. Toxicol. Pharmacol.,39,256,2004.

38. Ciofalo,V.etal.,Safetyevaluationofalipaseenzymepreparation,expressedinPichia pastoris, intendedforuse in thedegummingofediblevegetableoil,Regul. Toxicol. Pharmacol.,45,1,2006.

39. Coenen,T.M.M.,Aughton,P.,andVerhagen,H.,Safetyevaluationof lipasederivedfromRhizopus oryzae:Summaryoftoxicologicaldata,Food Chem. Toxicol., 35,315,1997.

40. FuchsR.L.,etal.,SafetyassessmentoftheneomycinphosphotransferaseII(NPTII)protein,Biotechnology,13,1543,1993.

41. HérouetC.etal.,Safetyevaluationofthephosphinothricinacetyltransferaseproteinsencodedbythepatandbarsequencesthatconfertolerancetoglufosinate-ammoniumherbicideintransgenicplants,Regul. Toxicol. Pharmacol.,41,134,2005.

42. Reed, J. et al.,Phosphomannose isomerase:Anefficient selectablemarker forplanttransformation,In Vitro Cell. Dev. Biol.—Plant,37,127,2001.

43. Stavnsbjerg,M.H.etal.,ToxicologicalsafetyevaluationofaBacillus acidopullulyti-cusPullanase,J. Food Protect.,49,146,1986.

44. MonsantoCompany,unpublished. 45. Harbak,L.andThygesen,H.V.,SafetyevaluationofaxylanaseexpressedinBacillus

subtilis.Food Chem. Toxicol., 40,1,2002. 46. Hammond, B.G. et al., Food safety and pharmacokinetic studies which support a

zero(0)meatandmilkwithdrawaltimeforuseofsometriboveindairycows,Annals Recherche Veterinaire,21(Suppl.1),107S,1990.

47. Bui,Q.Q.,etal.,Safetyevaluationofanewanti-stalingamylaseenzymeforbakeryapplications,Toxicologist,84,1290,2005.

48. Landry, T.D., et al., Safety evaluation of anα-amylase enzyme preparation derivedfrom the archael order Thermococcales as expressed in Pseudomonas fluorescensbiovar1,Reg. Toxicol. Pharmacol., 37,149,2003.

49. VanDijck,P.W.M.,Selten,G.C.M.,andHempenius,R.A.,Onthesafetyofanewgen-erationofDSMAspergillus nigerenzymeproductionstrains,Regul. Toxicol. Pharma-col.,38,27,2003.

50. Coenen,T.M.M.andAughton,P.,Safetyevaluationofaminopeptidaseenzymeprepa-rationderivedfromAspergillus niger,Food Chem. Toxicol., 36,781,1998.

51. Lin, F.S.D., Chymosins A and B from genetically modified microorganisms, IPCSINCHEM, www.inchem.org/documents/jecfa/jecmono/v28je08.htm (accessed Nov14,2006).

3967_C011.indd 283 10/24/07 10:55:22 AM

Page 26: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

284 Food Safety of Proteins in Agricultural Biotechnology

52. Elvig,S.G.andPedersen,P.B.,Safetyevaluationofaglucanasepreparationintendedforuseinfoodincludingasubchronicstudyinratsandmutagenicitystudies,Regul. Toxicol. Pharmacol.,37,11,2003.

53. Kondo,M,etal.,SafetyevaluationofLipaseGfromPenicillium camembertii.Food Chem. Toxicol.,32,685,1994.

54. Flood,M.T.andKondo,M.,SafetyevaluationoflipaseproducedfromCandida rugosa:Summaryoftoxicologicaldata,Regul. Toxicol. Pharmacol., 33,157,2001.

55. Steensma,A.,vanDijck,P.W.M.,andHempenius,R.A.,Safetyevaluationofphsophodi-esterasederivedfromLeptographium procerum, Food Chem. Toxicol.,42,935,2004.

56. Moddeerman,J.P.andFoley,H.H.,SafetyevaluationofPullulanaseenzymeprepara-tionderivedfromBacillus licheniformiscontainingthePullulanasegenefromBacil-lus deramificans,Regul. Toxicol. Pharmacol.,21,375,1995.

57. Lane, R.W., et al., Safety evaluation of Tannase enzyme preparation derived fromAspergillus oryzae, Food Chem Toxicol., 35,207,1997.

58. Appel,M.J.,etal.,Sub-chronic(13-week)oraltoxicitystudyinratswithrecombinanthumanlactoferrinproducedinthemilkoftransgeniccows,Food Chem. Toxicol.,44,964,2006.

59. Yamauchi, K., et al., 13-week oral repeated administration toxicity study of bovinelactoferrininrats,Food Chem. Toxicol.,38,503,2000.

60. Zhou, J. and Han, D., Safety evaluation of protein of silkworm (Antheraea pernyi)pupae,Food Chem. Toxicol.,44,1123,2006.

61. Hagiwara,A.,etal.,Thirteen-weekfeedingstudyofthaumatin(anaturalproteinaceoussweetener),sterilizedbyelectronbeamirradiationinSprague-Dawleyrats,Food Chem. Toxicol.,43,1297,2005.

62. Hall-Manning, T., et al., Safety evaluation of ice-structuring protein (ISP) type IIIHPLC 12 preparation. Lack of genotoxicity and subchronic toxicity, Food Chem. Toxicol.,42,321,2004.

63. Spok,A.,Safetyregulationsoffoodenzymes,Food Technol. Biotechnol.,44,197,2006. 64. Hjortkjaer,R.K.etal.,SafetyEvaluationofEsperase,Food Chem. Toxicol.,31,999,1993. 65. Burdock,G.A.,Flamm,W.G.andCarabin,I.G.,Toxicityandmutagenicitystudiesof

DN-5000andRP-1enzymes,Food Chem. Toxicol., 38,429,2000. 66. Knudsen,I.,RetrospectonscientificapproachesbytheEUScientificCommitteeonFood

andbyDenmarkinthesafetyassessmentoffoodenzymes,inSessionIV,SafetyofFoodEnzymes,EuropeanToxicologyForum,November8–10,2005,Brussels,Belgium.

67. Pariza,M.W.,andJohnson,E.A.,Evaluatingthesafetyofmicrobialenzymeprepara-tionsusedinfoodprocessing:Updateforanewcentury,Regul. Toxicol. Pharmacol.,33,173,2001.

68. Ashby,R.etal.,SafetyevaluationofStreptomyces murinusglucoseisomerase,Toxicol. Lett.,36,23,1987.

69. Rogers,P.J.,Demonstrationofsafety:Mycoprotein,inFood Safety Evaluation, OECDWorkshoponSafetyEvaluationofFoods,Oxford,UK,12–15September,1994.Organ-isationforEconomicCo-operationandDevelopment.

70. Leiner, I.E. and Kakade, M.L., Protease Inhibitors, in Toxic Constituents of Plant Foodstuffs,2ndedition,Leiner,I.E.,Ed.,AcademicPress,NewYork1980,chapter2.

71. McGuiness,E.E.,Morgan,R.G.H.,andWormsley,K.G.,Effectsofsoybeanflouronthepancreasofrats,Envir. Hlth. Perspect., 56,2051984.

72. Garthoff,L.H.etal.,Pathologicalevaluation,clinicalchemistryandplasmacholecys-tokinininneonatalandyoungminiatureswinefedsoytrypsininhibitorfrom1to39weeksofage,Food Chem. Toxicol., 40,501,2002.

73. Leiner, I.E.,Trypsin inhibitors:Concern forhumannutritionornot?J. Nutr., 116,920,1986.

74. Roebuck,B.D.,Trypsininhibitors:Potentialconcernforhumans,J. Nutr., 117,398,1987.

3967_C011.indd 284 10/24/07 10:55:23 AM

Page 27: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 285

75. Gumbmann, M.R. et al., Safety of trypsin inhibitors in the diet: Effects on the ratpancreas of long-term feeding of soy flour and soy protein isolate: Nutritional andtoxicologicalsignificanceofenzymeinhibitorsinfood,inAdvances in Experimental Medicine and Biology,Vol.199,Friedman,M.,Ed.,PlenumPress,NewYork,1986.

76. Middlebrook,J.L.andDorland,R.B.,Bacterialtoxins:Cellularmechanismsofaction,Microbiol. Rev., 48,199,1984.

77. Pusztai,A.etal.,Antinutritiveeffectsofwheat-germagglutininandotherN-acetylglu-cosamine-specificlectins,Br. J. Nutr.,70,313,1993.

78. Noah,N.D.etal.,Foodpoisoningfromrawredkidneybeans,Brit. Med. J.,281,236,1980.

79. CornellUniversityPoisonousPlantsInformationalDatabase,Ricintoxinfromcastorbean plant Ricinus communis, www.ansci.cornell.edu/plants/toxicagents/ricin/ricin.html(accessedJanuary5,2007).

80. Belay,E.D.andSchonberger,L.B.,Thepublichealthimpactofpriondiseases,Annu. Rev. Publ. Hlth.,26,191,2005.

81. EuropeanFoodSafetyAuthority(EFSA),Guidancedocumentofthescientificpanelon genetically modified organisms for the risk assessment of genetically modifiedplantsandderivedfoodandfeed.EFSA J, 99,1-94,2004(finaleditedversionMay,2006),http://www.efsa.eu.int/cf/consultation.cfm.

82. Sjoblad,R.D.,McClintock,J.T.,andEngler,R.,Toxicologicalconsiderationsforpro-tein components of biological pesticide products, Reg. Toxicol. Pharmacol., 15, 3,1992.

83. Gill,M.D.,Bacterialtoxins:Atableoflethalamounts,Microb. Rev., 46,86,1982. 84. Risco,C.,Carrasccosa,J.L.,andBosch,M.A.,Uptakeandsubcellulardistributionof

Escherichia colilipopolysaccharidebyisolatedrattypeIIpneumocytes,J. Histochem. Cytochem., 39,607,1991.

85. Leiner,I.E.,Implicationsofantinutritionalcomponentsinsoybeanfoods,CRC Food Sci. Nutr.,34,31,1994.

86. Pusztai, A., and Bardocz, S., Lectins. Biomedical Perspectives, Taylor & Francis,London,1995.

87. MonsantoCompany,unpublished. 88. Organisation for Economic Co-operation and Development (OECD), Report of the

WorkshopontheToxicologicalandNutritionalTestingofNovelFoods,OECD,SG/ICGB(98)1,1997.

89. WorldHealthOrganization(WHO),applicationoftheprinciplesofsubstantialequiva-lencetothesafetyevaluationoffoodsorfoodcomponentsfromplantsderivedbymod-ernbiotechnology,ReportofaWHOworkshop, WHO/FNU/FOS/95.1,WorldHealthOrganization,Geneva,1995.

90. Kuiper,H.A.,etal.,Substantialequivalence—Anappropriateparadigmforthesafetyassessmentofgeneticallymodifiedfoods,Toxicol.,181,427,2002.

91. EuropeanFoodSafetyAuthority(EFSA),SafetyandnutritionalassessmentofGMplantderivedfoods/feed:Theroleofanimalfeedingtrials,Draftreportforpublicconsulta-tion,December,2006,http://www.efsa.europa.eu/en/science/gmo/gmo_consultations/gmo_AnimalFeedingTrials.html.

92. Hammond,B.etal.,Resultsofa90-daysafetyassurancestudywithratsfedgrainfromcornrootworm-protectedcorn,Food Chem. Toxicol., 44,147,2006.

93. Hammond,B.etal.,Resultsofa90-daysafetyassurancestudywithratsfedgrainfromglyphosatetolerantcorn,Food Chem. Toxicol.,42,1003,2004.

94. Hammond,B.etal.,Resultsofa90-daysafetyassurancestudywithratsfedgrainfromcornborer-protectedcorn,Food Chem. Toxicol.,44,1092,2006.

95. MacKenzie,S.A.etal.,Thirteenweekfeedingstudywithtransgenicmaizegraincontain-ingeventDAS-Ø15Ø7-1inSpragueDawleyrats,Food Chem. Toxicol.,45,551,2007.

3967_C011.indd 285 10/24/07 10:55:24 AM

Page 28: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

286 Food Safety of Proteins in Agricultural Biotechnology

96. Schroder, M. et al., A 90-day safety study of genetically modified rice expressingCry1Abprotein(Bacillus thuringiensis toxin)inWistarrats,Food Chem. Toxicol.,45,339,2007.

97. Wolt,J.D.,Exposureendpointselectioninacutedietaryriskassessment,Regul. Toxi-col. Pharmacol.,29,279,1999.

98. Edler,L.etal.,Mathematicalmodelingandquantitativemethods,Food Chem. Toxi-col.,40,283,2002.

99. Herrman, J.L.andYounes,M.,Background to theADI/TDI/PTWI,Regul. Toxicol. Pharmacol.,30,S109,1999.

100. Sanders,P.R.etal.,Safetyassessmentofinsectprotectedcorn,inBiotechnology and Safety Assessment, Thomas,J.,Ed,2ndedition,Taylor&Francis,London,1998.

101. James,C.,ISAAABriefs,GlobalReviewofcommercializedTransgenicCrops:2002Feature:BtMaize,ISAAABriefsNo.29-2003.

102. Marasas,W.etal., Fumonisinsdisruptsphingolipidmetabolism,folatetransport,andneural tube development in embryo culture and in vivo: A potential risk factor forhuman neural tube defects among populations consuming fumonisin-contaminatedmaize,J. Nutr.,134,711,2004.

103. Heck,G.R.etal.,DevelopmentandcharacterizationofaCP4EPSPS-based,glyphosate-tolerantcornevent,Crop Sci., 44,329,2005.

104. MonsantoCompany,unpublished.105. MonsantoCompany,unpublished.106. Mendelsohn,M.etal.,AreBt cropssafe?,Nat. Biotech.,21,1003,2003. 107. MonsantoCompany,unpublished.108. Nida,D.L. et al.,Glyphosate-tolerant cotton:The compositionof the cotton seed is

equivalenttothatofconventionalcottonseed,J. Ag. Food Chem., 44,1967,1966.109. MonsantoCompany,unpublished. 110. MonsantoCompany,unpublished. 111. Padgette,S.R.etal.,Development,identification,andcharacterizationofaglyphosate-

tolerantsoybeanline,Crop Sci.,35,1451,1995.112. Kroes,R.,Kleiner,J.,andRenwick,A.,Thethresholdfortoxicologicalconcerncon-

ceptinriskassessment,Toxicol. Sci., 86,226,2005. 113. Kroes,R.etal.,Structure-basedthresholdsoftoxicologicalconcern(TTC):Guidance

forapplicationtosubstancespresentatlowlevelsinthediet,Food Chem. Toxicol.,42,65,2004.

114. Kroes,R.etal.,Thresholdfortoxicologicalconcernforchemicalsubstancespresentin thediet:Apractical tool for assessing theneed for toxicity testing,Food Chem. Toxicol.,38,255,2000.

115. FoodandAgricultureOrganizationoftheUnitedNations/WorldHealthOrganization(FAO/WHO),Safetyaspectsofgeneticallymodifiedfoodsofplantorigin,ReportofaJointFAO/WHOExpertConsultationofFoodsDerivedfromBiotechnology,Geneva,Switzerland,29May–2June,2000,FoodandAgricultureOrganizationoftheUnitedNations,Rome,ftp://ftp.fao.org/docrep/nonfao/ae584e/ae584e00.pdf.

116. Cockburn,A.,Assuringthesafetyofgeneticallymodified(GM)foods:Theimportanceofanholistic,integrativeapproach,J. Biotech.,98,79,2002.

117. Organization for Economic Cooperation and Development (OECD), Consider-ationsforthesafetyassessmentofanimalfeedstuffsderivedfromgeneticallymodi-fied plants, Series of the Safety of Novel Foods and Feeds No. 9, Organization forEconomic Cooperation and Development, Paris, 2003, http://www.olis.oecd.org/olis/2003doc.nsf/LinkTo/env-jm-mono(2003)10.

118. EuropeanCommission (EC), Guidance document for the risk assessment of geneti-cally modified plants and derived food and feed, health and consumer protection,European Commission, Health and Consumer Protection Directorate-General, The

3967_C011.indd 286 10/24/07 10:55:25 AM

Page 29: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

The Safety Assessment of Proteins 287

Joint Working Group on Novel Foods and GMO’s, 6–7 March, 2003, http://europa.eu.int/comm/food/fs/sc/ssc/out327_en.pdf.

119. Codex Alimentarius Commission (Codex), Principles for the risk analysis of foodsderivedfromrecombinant-DNAplants(CAC/GL44-2003),1-6,CodexAlimentariusCommission, Joint FAO/WHO Food Standards Programme, Food and AgricultureOrganisation, Rome, 2003, ftp://ftp.fao.org/codex/Publications/Booklets/Biotech/Biotech_2003e.pdf.

120. CodexAlimentariusCommission (Codex),Guideline for the conductof food safetyassessment of foods derived from recombinant-DNA plants (CAC/GL 45-2003), 7-26,CodexAlimentariusCommission,JointFAO/WHOFoodStandardsProgramme,FoodandAgricultureOrganisation,Rome,2003,ftp://ftp.fao.org/codex/Publications/Booklets/Biotech/Biotech_2003e.pdf.

121. InternationalLifeSciencesInstitute(ILSI),Nutritionalandsafetyassessmentsoffoodsand feedsnutritionally improved throughbiotechnology,Comprehensive Reviews in Food Science and Food Safety,2004.

122. Konig,A.etal.,Assessmentofthesafetyoffoodsderivedfromgeneticallymodified(GM)crops,Food Chem. Toxicol.,42,1047,2004.

123. Rao,M.B.,Molecularandbiotechnologicalaspectsofmicrobialproteases,Microbiol. Molec. Biol. Rev.,62,597,1998.

124. Olempska-Beer, Z.S., et al., Food processing enzymes from recombinantmicroorganisms—Areview,Regul. Tox. Pharmacol.,45,144,2006.

125. DeMaagd,R.A.etal.,Structure,diversityandevolutionofproteintoxinsfromspore-formingentomopathogenicbacteria,Annu. Rev. Genet.,37,409,2003.

126. DeMaagd,R.A.,Bravo,A.andCrickmore,N.,HowBacillus thuringiensishasevolvedspecifictoxinstocolonizetheinsectworld,Trends Genet.,17,193,2001.

127. Masson,L.etal.,MutagenicanalysisofaconservedregionofdomainIIIintheCry1ActoxinofBacillus thuringiensis,Appl. Env. Microbiol.,68,194,2002.

128. Wang,R.L.et al.,The limitsof selectionduringmaizedomestication,Nature,398,236,1999.

129. Frary,A.etal.,Fw2.2:Aquantitativetraitlocuskeytotheevolutionoftomatofruitsize.Science,289,85,2000.

130. Zhang,J.Z.,Overexpressionanalysisofplanttranscriptionfactors,Curr. Opin. Plant Biol.,6,430,2003.

131. Doebley,J.,andLukens,L.,Transcriptionalregulatorsandtheevolutionofplantform,Plant Cell,10,1075,1998.

132. Peng,J.etal.,Greenrevolutiongenesencodemutantgibberellinresponsemodulators,Nature,400,256,1999.

133. Simons,K.J.etal.,MolecularcharacterizationofthemajorwheatdomesticationgeneQ,Genetics,172,547,2006.

134. Doebley,J.,Stec,A.,andHubbard,L.,Theevolutionofapicaldominanceinmaize,Nature,386,485,1997.

135. Wang,H.etal.,Theoriginofthenakedgrainsofmaize,Nature,436,714,2005.136. Gibbon,B.C.,Wang.X.,andLarkins,B.A.,Alteredstarchstructureisassociatedwith

endospermmodification inQualityProteinMaize,Proc. Nat. Acad. Sci.USA, 100,15329,2003.

137. Li,C.,Zhou,A.,andSang,T.,Ricedomesticationbyreducingshattering,Science,311,1936,2006.

138. Vrebolov, J. et al., A MADS-box gene necessary for fruit ripening at the tomatoripening-inhibitor(Rin)locus,Science,296,343,2002.

139. Chen,W.etal.,ExpressionprofilematrixofArabidopsistranscriptionfactorgenessug-geststheirputativefunctionsinresponsetoenvironmentalstresses,Plant Cell14,559,2002.

3967_C011.indd 287 10/24/07 10:55:26 AM

Page 30: The Safety Assessment of Proteins Introduced into Crops ... · Thus, the safety evaluation of proteins intentionally selected and subsequently intro-duced into food generally requires

288 Food Safety of Proteins in Agricultural Biotechnology

140. Memelink,J.,Geneticmodificationofplantsecondarymetabolitepathwaysusingtran-scriptionalregulators,Advan. Biochem. Engin. Biotech.,72,103,2001.

141. Zhang,J.Z.,Overexpressionanalysisofplanttranscriptionfactors,Curr. Opin. Plant Biol.,6,430,2003.

142. Vinocur,B.andAltman,A.,Recentadvancesinengineeringplanttolerancetoabioticstress:Achievementsandlimitations,Curr. Opin. Biotech.,16,123,2005.

143. Xiong, Y. et al., Transcription factors in rice: A genome-wide comparative analysisbetweenmonocotsandeudicots,Plant Molec. Biol.,59,191,2005.

144. Tian,A.G.etal.,IsolationandcharacterizationofaPti1homologuefromsoybean,J. Exper. Bot.,55,535,2004.

145. Czechowski,T.etal.,Real-timeRT-PCRprofilingofover1400Arabidopsistranscrip-tion factors: Unprecedented sensitivity reveals novel root- and shoot-specific genes,Plant J.,38,366,2004.

146. Lamb, C.J. and Dixon, R.A., Molecular mechanisms underlying induction of plantdefensegenetranscription,Biochem. Soc. Sympos.,60,241,1994.

147. InternationalLifeSciencesInstituteCropCompositionDatabase,http//www.cropcom-position.org.

148. Hicks,G.R.andRaikhel,N.V.,Nuclearlocalizationsignalbindingproteinsinhigherplantnuclei,Proc. Nat. Acad. Sci.USA,92,734,1995.

3967_C011.indd 288 10/24/07 10:55:26 AM