the symbol rate is measured in baud

Upload: adil

Post on 10-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 The Symbol Rate is Measured in Baud

    1/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page1, Total33

    The Symbol rate is measured in baud (Bd) or symbols/second.

    Each symbol can represent or convey one or several bits of data

    A sending device places symbols on the channel at a fixed and known symbol rate, and the

    receiving device has the job of detecting the sequence of symbols in order to reconstruct the

    transmitted data. There may be a direct correspondence between a symbol and a small unit of data

    (for example, each symbol may encode one or several binary digits or 'bits') or the data may be

    represented by the transitions between symbols or even by a sequence of many symbols.

    The symbol duration time Ts can be calculated as: Ts=1/fs, where fs is the symbol rate.

    A simple example: A baud rate of 1 kBd = 1,000 Bd is synonymous to a symbol rate of 1,000

    symbols per second. In case of a modem, this corresponds to 1,000 tones per second, and in case

    of a line code, this corresponds to 1,000 pulses per second. The symbol duration time is 1/1,000

    second = 1 millisecond.

    Relationship to gross bitrate

    The term baud rate has sometimes incorrectly been used to mean bit rate, since these rates are the

    same in old modems as well as in the simplest digital communication links using only one bit per

    symbol, such that binary "0" is represented by one symbol, and binary "1" by another symbol. In

    more advanced modems and data transmission techniques, a symbol may have more than two

    states, so it may represent more than one binary digit (a binary digit always represents exactly two

    states). For this reason, the baud rate value will often be lower than the gross bit rate.

    If N bits are conveyed per symbol, and the gross bit rate is R, inclusive of channel coding

    overhead, the symbol rate can be calculated as:

    fs=R/N

    1 Digital television and OFDM example

    Indigital televisiontransmission the symbol rate calculation is:

    symbol rate in symbols per second = (Data rate in bits per second * 204) / (188 * bits

    per symbol)

    The 204 is the number of bytes in a packet including the 16 trailingReed-Solomonerror

    checking and correctionbytes. The 188 is the number of data bytes (187 bytes) plus the

    leading packetsync byte(0x47).

    http://en.wikipedia.org/wiki/Digital_televisionhttp://en.wikipedia.org/wiki/Digital_televisionhttp://en.wikipedia.org/wiki/Digital_televisionhttp://en.wikipedia.org/wiki/Reed-Solomonhttp://en.wikipedia.org/wiki/Reed-Solomonhttp://en.wikipedia.org/wiki/Error_detection_and_correctionhttp://en.wikipedia.org/wiki/Error_detection_and_correctionhttp://en.wikipedia.org/wiki/Error_detection_and_correctionhttp://en.wikipedia.org/wiki/Error_detection_and_correctionhttp://en.wikipedia.org/wiki/Syncwordhttp://en.wikipedia.org/wiki/Syncwordhttp://en.wikipedia.org/wiki/Syncwordhttp://en.wikipedia.org/wiki/Syncwordhttp://en.wikipedia.org/wiki/Error_detection_and_correctionhttp://en.wikipedia.org/wiki/Error_detection_and_correctionhttp://en.wikipedia.org/wiki/Reed-Solomonhttp://en.wikipedia.org/wiki/Digital_television
  • 7/22/2019 The Symbol Rate is Measured in Baud

    2/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page2, Total33

    The bits per symbol is the (modulation's power of 2)*(Forward Error Correction). So for

    example in 64-QAM modulation 64 = 26

    so the bits per symbol is 6. The Forward Error

    Correction (FEC) is usually expressed as a fraction, i.e., 1/2, 3/4, etc. In the case of 3/4

    FEC, for every 3 bits of data, you are sending out 4 bits, one of which is for errorcorrection.

    Example:

    given bit rate = 18096263

    Modulation type = 64-QAM

    FEC = 3/4

    then

    In digital terrestrial digital television (DVB-T,DVB-Hand similar

    techniques)OFDMmodulation is used, i.e. multi-carrier modulation. The above

    symbol rate should then be divided by the number of OFDM sub-carriers in view to

    achieve the OFDM symbol rate. See theOFDM system comparison tablefor further

    numerical details.

    2 [edit]Relationship to chip rate

    3 Relationship to chip rate

    Some communication links (such asGPStransmissions,CDMAcell phones, and

    otherspread spectrumlinks) have a symbol rate much higher than the data rate (they

    transmit many symbols calledchipsper data bit. Representing one bit by a chip sequence of

    many symbols overcomesco-channel interferencefrom other transmitters sharing the same

    frequency channel, includingradio jamming, and is common inmilitary radioandcell phones.

    Despite the fact that using morebandwidthto carry the same bit rate gives lowchannel

    spectral efficiencyin (bit/s)/Hz, it allows many simultaneous users, which results in

    highsystem spectral efficiencyin (bit/s)/Hz per unit of area.

    In these systems, the symbol rate of the physically transmitted high-frequency signal rate

    is calledchip rate, which also is the pulse rate of the equivalentbase bandsignal.

    However, in spread spectrum systems, the term symbol may also be used at a higher

    layer and refer to one information bit, or a block of information bits that are modulated

    using for example conventional QAM modulation, before the CDMA spreading code is

    applied. Using the latter definition, the symbol rate is equal to or lower than the bit rate.

    4 Orthogonal frequency-division multiplexing

    From Wikipedia, the free encyclopedia(Redirected fromOFDM system comparison table)

    http://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/OFDMhttp://en.wikipedia.org/wiki/OFDMhttp://en.wikipedia.org/wiki/OFDMhttp://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/w/index.php?title=Symbol_rate&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Symbol_rate&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Symbol_rate&action=edit&section=6http://en.wikipedia.org/wiki/GPShttp://en.wikipedia.org/wiki/GPShttp://en.wikipedia.org/wiki/GPShttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/Spread_spectrumhttp://en.wikipedia.org/wiki/Spread_spectrumhttp://en.wikipedia.org/wiki/Spread_spectrumhttp://en.wikipedia.org/wiki/Chip_(CDMA)http://en.wikipedia.org/wiki/Chip_(CDMA)http://en.wikipedia.org/wiki/Chip_(CDMA)http://en.wikipedia.org/wiki/Co-channel_interferencehttp://en.wikipedia.org/wiki/Co-channel_interferencehttp://en.wikipedia.org/wiki/Co-channel_interferencehttp://en.wikipedia.org/wiki/Radio_jamminghttp://en.wikipedia.org/wiki/Radio_jamminghttp://en.wikipedia.org/wiki/Radio_jamminghttp://en.wikipedia.org/wiki/Military_radiohttp://en.wikipedia.org/wiki/Military_radiohttp://en.wikipedia.org/wiki/Military_radiohttp://en.wikipedia.org/wiki/Mobile_phonehttp://en.wikipedia.org/wiki/Mobile_phonehttp://en.wikipedia.org/wiki/Mobile_phonehttp://en.wikipedia.org/wiki/Bandwidth_(signal_processing)http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)http://en.wikipedia.org/wiki/Channel_spectral_efficiencyhttp://en.wikipedia.org/wiki/Channel_spectral_efficiencyhttp://en.wikipedia.org/wiki/Channel_spectral_efficiencyhttp://en.wikipedia.org/wiki/System_spectral_efficiencyhttp://en.wikipedia.org/wiki/System_spectral_efficiencyhttp://en.wikipedia.org/wiki/System_spectral_efficiencyhttp://en.wikipedia.org/wiki/Chip_ratehttp://en.wikipedia.org/wiki/Chip_ratehttp://en.wikipedia.org/wiki/Chip_ratehttp://en.wikipedia.org/wiki/Base_bandhttp://en.wikipedia.org/wiki/Base_bandhttp://en.wikipedia.org/wiki/Base_bandhttp://en.wikipedia.org/w/index.php?title=OFDM_system_comparison_table&redirect=nohttp://en.wikipedia.org/w/index.php?title=OFDM_system_comparison_table&redirect=nohttp://en.wikipedia.org/w/index.php?title=OFDM_system_comparison_table&redirect=nohttp://en.wikipedia.org/w/index.php?title=OFDM_system_comparison_table&redirect=nohttp://en.wikipedia.org/wiki/Base_bandhttp://en.wikipedia.org/wiki/Chip_ratehttp://en.wikipedia.org/wiki/System_spectral_efficiencyhttp://en.wikipedia.org/wiki/Channel_spectral_efficiencyhttp://en.wikipedia.org/wiki/Channel_spectral_efficiencyhttp://en.wikipedia.org/wiki/Bandwidth_(signal_processing)http://en.wikipedia.org/wiki/Mobile_phonehttp://en.wikipedia.org/wiki/Military_radiohttp://en.wikipedia.org/wiki/Radio_jamminghttp://en.wikipedia.org/wiki/Co-channel_interferencehttp://en.wikipedia.org/wiki/Chip_(CDMA)http://en.wikipedia.org/wiki/Spread_spectrumhttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/GPShttp://en.wikipedia.org/w/index.php?title=Symbol_rate&action=edit&section=6http://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDMhttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/DVB-T
  • 7/22/2019 The Symbol Rate is Measured in Baud

    3/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page3, Total33

    Passbandmodulation

    Analog modulation

    AM

    FM

    PM

    QAM

    SM

    SSB

    Digital modulation

    ASK

    CPM

    FSK

    MFSK

    MSK

    OOK

    PPM

    PSK

    QAM

    SC-FDE

    TCM

    http://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Modulation#Analog_modulation_methodshttp://en.wikipedia.org/wiki/Modulation#Analog_modulation_methodshttp://en.wikipedia.org/wiki/Amplitude_modulationhttp://en.wikipedia.org/wiki/Amplitude_modulationhttp://en.wikipedia.org/wiki/Frequency_modulationhttp://en.wikipedia.org/wiki/Frequency_modulationhttp://en.wikipedia.org/wiki/Phase_modulationhttp://en.wikipedia.org/wiki/Phase_modulationhttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Space_modulationhttp://en.wikipedia.org/wiki/Space_modulationhttp://en.wikipedia.org/wiki/Single-sideband_modulationhttp://en.wikipedia.org/wiki/Single-sideband_modulationhttp://en.wikipedia.org/wiki/Digital_modulationhttp://en.wikipedia.org/wiki/Digital_modulationhttp://en.wikipedia.org/wiki/Amplitude-shift_keyinghttp://en.wikipedia.org/wiki/Amplitude-shift_keyinghttp://en.wikipedia.org/wiki/Continuous_phase_modulationhttp://en.wikipedia.org/wiki/Continuous_phase_modulationhttp://en.wikipedia.org/wiki/Frequency-shift_keyinghttp://en.wikipedia.org/wiki/Frequency-shift_keyinghttp://en.wikipedia.org/wiki/Multiple_frequency-shift_keyinghttp://en.wikipedia.org/wiki/Multiple_frequency-shift_keyinghttp://en.wikipedia.org/wiki/Minimum-shift_keyinghttp://en.wikipedia.org/wiki/Minimum-shift_keyinghttp://en.wikipedia.org/wiki/On-off_keyinghttp://en.wikipedia.org/wiki/On-off_keyinghttp://en.wikipedia.org/wiki/Pulse-position_modulationhttp://en.wikipedia.org/wiki/Pulse-position_modulationhttp://en.wikipedia.org/wiki/Phase-shift_keyinghttp://en.wikipedia.org/wiki/Phase-shift_keyinghttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Single-carrier_FDMAhttp://en.wikipedia.org/wiki/Single-carrier_FDMAhttp://en.wikipedia.org/wiki/Trellis_modulationhttp://en.wikipedia.org/wiki/Trellis_modulationhttp://en.wikipedia.org/wiki/Trellis_modulationhttp://en.wikipedia.org/wiki/Single-carrier_FDMAhttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Phase-shift_keyinghttp://en.wikipedia.org/wiki/Pulse-position_modulationhttp://en.wikipedia.org/wiki/On-off_keyinghttp://en.wikipedia.org/wiki/Minimum-shift_keyinghttp://en.wikipedia.org/wiki/Multiple_frequency-shift_keyinghttp://en.wikipedia.org/wiki/Frequency-shift_keyinghttp://en.wikipedia.org/wiki/Continuous_phase_modulationhttp://en.wikipedia.org/wiki/Amplitude-shift_keyinghttp://en.wikipedia.org/wiki/Digital_modulationhttp://en.wikipedia.org/wiki/Single-sideband_modulationhttp://en.wikipedia.org/wiki/Space_modulationhttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Phase_modulationhttp://en.wikipedia.org/wiki/Frequency_modulationhttp://en.wikipedia.org/wiki/Amplitude_modulationhttp://en.wikipedia.org/wiki/Modulation#Analog_modulation_methodshttp://en.wikipedia.org/wiki/Modulation
  • 7/22/2019 The Symbol Rate is Measured in Baud

    4/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page4, Total33

    Spread spectrum

    CSS

    DSSS

    FHSS

    THSS

    See also

    Capacity-approaching codes Demodulation

    Line coding

    Modem

    PAM

    PCM

    PWM

    V

    T

    E

    Orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on

    multiple carrier frequencies. OFDM has developed into a popular scheme forwidebanddigital

    communication, whetherwirelessor overcopperwires, used in applications such as digital

    television and audio broadcasting,DSLbroadband internet access, wireless networks,

    and4Gmobile communications.

    OFDM is essentially identical to coded OFDM (COFDM) and discrete multi-tone

    modulation (DMT), and is afrequency-division multiplexing(FDM) scheme used as a digital multi-

    carriermodulationmethod. The word "coded" comes from the use offorward error

    http://en.wikipedia.org/wiki/Spread_spectrumhttp://en.wikipedia.org/wiki/Chirp_spread_spectrumhttp://en.wikipedia.org/wiki/Chirp_spread_spectrumhttp://en.wikipedia.org/wiki/Direct-sequence_spread_spectrumhttp://en.wikipedia.org/wiki/Direct-sequence_spread_spectrumhttp://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrumhttp://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrumhttp://en.wikipedia.org/wiki/Time-hoppinghttp://en.wikipedia.org/wiki/Time-hoppinghttp://en.wikipedia.org/wiki/Category:Capacity-approaching_codeshttp://en.wikipedia.org/wiki/Category:Capacity-approaching_codeshttp://en.wikipedia.org/wiki/Demodulationhttp://en.wikipedia.org/wiki/Demodulationhttp://en.wikipedia.org/wiki/Line_codehttp://en.wikipedia.org/wiki/Line_codehttp://en.wikipedia.org/wiki/Modemhttp://en.wikipedia.org/wiki/Modemhttp://en.wikipedia.org/wiki/Pulse-amplitude_modulationhttp://en.wikipedia.org/wiki/Pulse-amplitude_modulationhttp://en.wikipedia.org/wiki/Pulse-code_modulationhttp://en.wikipedia.org/wiki/Pulse-code_modulationhttp://en.wikipedia.org/wiki/Pulse-width_modulationhttp://en.wikipedia.org/wiki/Pulse-width_modulationhttp://en.wikipedia.org/wiki/Template:Modulation_techniqueshttp://en.wikipedia.org/wiki/Template:Modulation_techniqueshttp://en.wikipedia.org/wiki/Template_talk:Modulation_techniqueshttp://en.wikipedia.org/wiki/Template_talk:Modulation_techniqueshttp://en.wikipedia.org/w/index.php?title=Template:Modulation_techniques&action=edithttp://en.wikipedia.org/w/index.php?title=Template:Modulation_techniques&action=edithttp://en.wikipedia.org/wiki/Widebandhttp://en.wikipedia.org/wiki/Widebandhttp://en.wikipedia.org/wiki/Digital_communicationhttp://en.wikipedia.org/wiki/Digital_communicationhttp://en.wikipedia.org/wiki/Digital_communicationhttp://en.wikipedia.org/wiki/Digital_communicationhttp://en.wikipedia.org/wiki/Wirelesshttp://en.wikipedia.org/wiki/Wirelesshttp://en.wikipedia.org/wiki/Wirelesshttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Digital_subscriber_linehttp://en.wikipedia.org/wiki/Digital_subscriber_linehttp://en.wikipedia.org/wiki/Broadband_internet_accesshttp://en.wikipedia.org/wiki/Broadband_internet_accesshttp://en.wikipedia.org/wiki/Broadband_internet_accesshttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/Broadband_internet_accesshttp://en.wikipedia.org/wiki/Digital_subscriber_linehttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Wirelesshttp://en.wikipedia.org/wiki/Digital_communicationhttp://en.wikipedia.org/wiki/Digital_communicationhttp://en.wikipedia.org/wiki/Widebandhttp://en.wikipedia.org/w/index.php?title=Template:Modulation_techniques&action=edithttp://en.wikipedia.org/wiki/Template_talk:Modulation_techniqueshttp://en.wikipedia.org/wiki/Template:Modulation_techniqueshttp://en.wikipedia.org/wiki/Pulse-width_modulationhttp://en.wikipedia.org/wiki/Pulse-code_modulationhttp://en.wikipedia.org/wiki/Pulse-amplitude_modulationhttp://en.wikipedia.org/wiki/Modemhttp://en.wikipedia.org/wiki/Line_codehttp://en.wikipedia.org/wiki/Demodulationhttp://en.wikipedia.org/wiki/Category:Capacity-approaching_codeshttp://en.wikipedia.org/wiki/Time-hoppinghttp://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrumhttp://en.wikipedia.org/wiki/Direct-sequence_spread_spectrumhttp://en.wikipedia.org/wiki/Chirp_spread_spectrumhttp://en.wikipedia.org/wiki/Spread_spectrum
  • 7/22/2019 The Symbol Rate is Measured in Baud

    5/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page5, Total33

    correction(FEC).[1]

    A large number of closely spacedorthogonalsub-carrier signalsare used to

    carrydata[1]

    on severalparalleldata streams or channels. Each sub-carrier is modulated with a

    conventional modulation scheme (such asquadrature amplitude modulationorphase-shift keying)

    at a lowsymbol rate, maintaining total data rates similar to conventional single-carriermodulation

    schemes in the same bandwidth.

    The primary advantage of OFDM over single-carrier schemes is its ability to cope with

    severechannelconditions (for example,attenuationof high frequencies in a long copper wire,

    narrowbandinterferenceand frequency-selectivefadingdue tomultipath) without complex

    equalization filters. Channelequalizationis simplified because OFDM may be viewed as using

    many slowly modulatednarrowbandsignals rather than one rapidly modulatedwidebandsignal.

    The low symbol rate makes the use of aguard intervalbetween symbols affordable, making it

    possible to eliminateintersymbol interference(ISI) and utilize echoes and time-spreading (that

    shows up asghostingon analogue TV) to achieve adiversity gain, i.e. asignal-to-noise

    ratioimprovement. This mechanism also facilitates the design ofsingle frequency

    networks(SFNs), where several adjacent transmitters send the same signal simultaneously at the

    same frequency, as the signals from multiple distant transmitters may be combined constructively,

    rather than interfering as would typically occur in a traditional single-carrier system.

    5 Contents

    [hide]

    1 Example of applications

    o 1.1 Cable

    o 1.2 Wireless

    2 Key features

    o 2.1 Summary of advantages

    o 2.2 Summary of disadvantages

    3 Characteristics and principles of operation

    o 3.1 Orthogonality

    o 3.2 Implementation using the FFT algorithm

    o 3.3 Guard interval for elimination of intersymbol interference

    o 3.4 Simplified equalization

    o 3.5 Channel coding and interleaving

    o 3.6 Adaptive transmission

    o 3.7 OFDM extended with multiple access

    o 3.8 Space diversity

    http://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-cobas-0http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-cobas-0http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-cobas-0http://en.wikipedia.org/wiki/Orthogonality#Communicationshttp://en.wikipedia.org/wiki/Orthogonality#Communicationshttp://en.wikipedia.org/wiki/Subcarrierhttp://en.wikipedia.org/wiki/Subcarrierhttp://en.wikipedia.org/wiki/Subcarrierhttp://en.wikipedia.org/wiki/Datahttp://en.wikipedia.org/wiki/Datahttp://en.wikipedia.org/wiki/Datahttp://en.wikipedia.org/wiki/Datahttp://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Phase-shift_keyinghttp://en.wikipedia.org/wiki/Phase-shift_keyinghttp://en.wikipedia.org/wiki/Phase-shift_keyinghttp://en.wikipedia.org/wiki/Symbol_ratehttp://en.wikipedia.org/wiki/Symbol_ratehttp://en.wikipedia.org/wiki/Symbol_ratehttp://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Attenuation_distortionhttp://en.wikipedia.org/wiki/Attenuation_distortionhttp://en.wikipedia.org/wiki/Interference_(communication)http://en.wikipedia.org/wiki/Interference_(communication)http://en.wikipedia.org/wiki/Interference_(communication)http://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/wiki/Narrowbandhttp://en.wikipedia.org/wiki/Narrowbandhttp://en.wikipedia.org/wiki/Narrowbandhttp://en.wikipedia.org/wiki/Widebandhttp://en.wikipedia.org/wiki/Widebandhttp://en.wikipedia.org/wiki/Widebandhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Ghosting_(television)http://en.wikipedia.org/wiki/Ghosting_(television)http://en.wikipedia.org/wiki/Ghosting_(television)http://en.wikipedia.org/wiki/Diversity_gainhttp://en.wikipedia.org/wiki/Diversity_gainhttp://en.wikipedia.org/wiki/Diversity_gainhttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Example_of_applicationshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Example_of_applicationshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Cablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Cablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wirelesshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wirelesshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Key_featureshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Key_featureshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Summary_of_advantageshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Summary_of_advantageshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Summary_of_disadvantageshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Summary_of_disadvantageshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Orthogonalityhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Orthogonalityhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Implementation_using_the_FFT_algorithmhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Implementation_using_the_FFT_algorithmhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Guard_interval_for_elimination_of_intersymbol_interferencehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Guard_interval_for_elimination_of_intersymbol_interferencehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Simplified_equalizationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Simplified_equalizationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Channel_coding_and_interleavinghttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Channel_coding_and_interleavinghttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Adaptive_transmissionhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Adaptive_transmissionhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#OFDM_extended_with_multiple_accesshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#OFDM_extended_with_multiple_accesshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Space_diversityhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Space_diversityhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Space_diversityhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#OFDM_extended_with_multiple_accesshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Adaptive_transmissionhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Channel_coding_and_interleavinghttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Simplified_equalizationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Guard_interval_for_elimination_of_intersymbol_interferencehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Implementation_using_the_FFT_algorithmhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Orthogonalityhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Summary_of_disadvantageshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Summary_of_advantageshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Key_featureshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wirelesshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Cablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Example_of_applicationshttp://en.wikipedia.org/wiki/OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Diversity_gainhttp://en.wikipedia.org/wiki/Ghosting_(television)http://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Widebandhttp://en.wikipedia.org/wiki/Narrowbandhttp://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Interference_(communication)http://en.wikipedia.org/wiki/Attenuation_distortionhttp://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Symbol_ratehttp://en.wikipedia.org/wiki/Phase-shift_keyinghttp://en.wikipedia.org/wiki/Quadrature_amplitude_modulationhttp://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Datahttp://en.wikipedia.org/wiki/Datahttp://en.wikipedia.org/wiki/Subcarrierhttp://en.wikipedia.org/wiki/Orthogonality#Communicationshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-cobas-0http://en.wikipedia.org/wiki/Forward_error_correction
  • 7/22/2019 The Symbol Rate is Measured in Baud

    6/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page6, Total33

    o 3.9 Linear transmitter power amplifier

    4 Idealized system model

    o 4.1 Transmitter

    o 4.2 Receiver

    5 Mathematical description

    6 Usage

    o 6.1 OFDM system comparison table

    o 6.2 ADSL

    o 6.3 Powerline Technology

    o 6.4 Wireless local area networks (LAN) and metropolitan area networks (MAN)

    o 6.5 Wireless personal area networks (PAN)

    o 6.6 Terrestrial digital radio and television broadcasting

    6.6.1 DVB-T

    6.6.2 SDARS

    6.6.3 COFDM vs VSB

    6.6.4 DIGITAL RADIO

    6.6.5 BST-OFDM used in ISDB

    o 6.7 Ultra-wideband

    o 6.8 FLASH-OFDM

    7 History

    8 See also

    9 References

    10 External links

    6 [edit]Example of applications

    The following list is a summary of existing OFDM based standards and products. For further

    details, see theUsagesection at the end of the article.

    7 [edit]Cable

    ADSLandVDSLbroadband access viaPOTScopperwiring.

    DVB-C2, an enhanced version of theDVB-Cdigital cable TV standard.

    Power line communication(PLC).

    ITU-TG.hn, a standard which provides high-speed local area networking of existing home

    wiring (power lines, phone lines and coaxial cables).

    http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Linear_transmitter_power_amplifierhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Linear_transmitter_power_amplifierhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Idealized_system_modelhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Idealized_system_modelhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Transmitterhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Transmitterhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Receiverhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Receiverhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Mathematical_descriptionhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Mathematical_descriptionhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Usagehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Usagehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#ADSLhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#ADSLhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Powerline_Technologyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Powerline_Technologyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wireless_local_area_networks_.28LAN.29_and_metropolitan_area_networks_.28MAN.29http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wireless_local_area_networks_.28LAN.29_and_metropolitan_area_networks_.28MAN.29http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wireless_personal_area_networks_.28PAN.29http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wireless_personal_area_networks_.28PAN.29http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Terrestrial_digital_radio_and_television_broadcastinghttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Terrestrial_digital_radio_and_television_broadcastinghttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#DVB-Thttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#DVB-Thttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#SDARShttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#SDARShttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#COFDM_vs_VSBhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#COFDM_vs_VSBhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#DIGITAL_RADIOhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#DIGITAL_RADIOhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#BST-OFDM_used_in_ISDBhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#BST-OFDM_used_in_ISDBhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Ultra-widebandhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Ultra-widebandhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#FLASH-OFDMhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#FLASH-OFDMhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Historyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Historyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#See_alsohttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#See_alsohttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Referenceshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Referenceshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#External_linkshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#External_linkshttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=1http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=1http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=1http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Usagehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Usagehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Usagehttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=2http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=2http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=2http://en.wikipedia.org/wiki/ADSLhttp://en.wikipedia.org/wiki/ADSLhttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/Plain_old_telephone_servicehttp://en.wikipedia.org/wiki/Plain_old_telephone_servicehttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/DVB-Chttp://en.wikipedia.org/wiki/DVB-Chttp://en.wikipedia.org/wiki/DVB-Chttp://en.wikipedia.org/wiki/DVB-Chttp://en.wikipedia.org/wiki/DVB-Chttp://en.wikipedia.org/wiki/Power_line_communicationhttp://en.wikipedia.org/wiki/Power_line_communicationhttp://en.wikipedia.org/wiki/ITU-Thttp://en.wikipedia.org/wiki/G.hnhttp://en.wikipedia.org/wiki/G.hnhttp://en.wikipedia.org/wiki/G.hnhttp://en.wikipedia.org/wiki/G.hnhttp://en.wikipedia.org/wiki/ITU-Thttp://en.wikipedia.org/wiki/Power_line_communicationhttp://en.wikipedia.org/wiki/DVB-Chttp://en.wikipedia.org/wiki/DVB-Chttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Plain_old_telephone_servicehttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/ADSLhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=2http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Usagehttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=1http://en.wikipedia.org/wiki/OFDM_system_comparison_table#External_linkshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Referenceshttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#See_alsohttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Historyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#FLASH-OFDMhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Ultra-widebandhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#BST-OFDM_used_in_ISDBhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#DIGITAL_RADIOhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#COFDM_vs_VSBhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#SDARShttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#DVB-Thttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Terrestrial_digital_radio_and_television_broadcastinghttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wireless_personal_area_networks_.28PAN.29http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Wireless_local_area_networks_.28LAN.29_and_metropolitan_area_networks_.28MAN.29http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Powerline_Technologyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#ADSLhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#OFDM_system_comparison_tablehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Usagehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Mathematical_descriptionhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Receiverhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Transmitterhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Idealized_system_modelhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Linear_transmitter_power_amplifier
  • 7/22/2019 The Symbol Rate is Measured in Baud

    7/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page7, Total33

    TrailBlazertelephone linemodems.

    Multimedia over Coax Alliance(MoCA) home networking.

    8[edit]

    Wireless

    Thewireless LAN(WLAN) radio interfacesIEEE 802.11a,g,nandHIPERLAN/2.

    Thedigital radiosystemsDAB/EUREKA 147,DAB+,Digital Radio Mondiale,HD Radio,T-

    DMBandISDB-TSB.

    The terrestrialdigital TVsystemsDVB-TandISDB-T.

    The terrestrialmobile TVsystemsDVB-H,T-DMB,ISDB-TandMediaFLOforward link.

    The wirelesspersonal area network(PAN)ultra-wideband(UWB)IEEE

    802.15.3aimplementation suggested byWiMedia Alliance.

    The OFDM basedmultiple accesstechnologyOFDMAis also used in several4Gand pre-

    4Gcellular networksandmobile broadbandstandards:

    The mobility mode of thewireless MAN/broadband wireless access(BWA) standardIEEE

    802.16e(or Mobile-WiMAX).

    Themobile broadband wireless access(MBWA) standardIEEE 802.20.

    the downlink of the3GPPLong Term Evolution(LTE) fourth generation mobile broadband

    standard. The radio interface was formerly named High Speed OFDM Packet

    Access(HSOPA), now namedEvolved UMTS Terrestrial Radio Access(E-UTRA).

    9 [edit]Key features

    The advantages and disadvantages listed below are further discussed in the Characteristics and

    principles of operationsection below.

    10 [edit]Summary of advantages

    Can easily adapt to severe channel conditions without complex time-domain equalization.

    Robust against narrow-band co-channel interference.

    Robust againstintersymbol interference(ISI) and fading caused by multipath propagation.

    Highspectral efficiencyas compared to conventional modulation schemes, spread spectrum,

    etc.

    Efficient implementation usingFast Fourier Transform(FFT).

    Low sensitivity to time synchronization errors.

    Tuned sub-channel receiver filters are not required (unlike conventional FDM).

    Facilitatessingle frequency networks(SFNs); i.e., transmittermacrodiversity.

    11 [edit]Summary of disadvantages

    http://en.wikipedia.org/wiki/TrailBlazerhttp://en.wikipedia.org/wiki/Plain_old_telephone_servicehttp://en.wikipedia.org/wiki/Plain_old_telephone_servicehttp://en.wikipedia.org/wiki/Plain_old_telephone_servicehttp://en.wikipedia.org/wiki/Multimedia_over_Coax_Alliancehttp://en.wikipedia.org/wiki/Multimedia_over_Coax_Alliancehttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=3http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=3http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=3http://en.wikipedia.org/wiki/Wireless_LANhttp://en.wikipedia.org/wiki/Wireless_LANhttp://en.wikipedia.org/wiki/Wireless_LANhttp://en.wikipedia.org/wiki/IEEE_802.11ahttp://en.wikipedia.org/wiki/IEEE_802.11ahttp://en.wikipedia.org/wiki/IEEE_802.11ahttp://en.wikipedia.org/wiki/IEEE_802.11g-2003http://en.wikipedia.org/wiki/IEEE_802.11g-2003http://en.wikipedia.org/wiki/IEEE_802.11g-2003http://en.wikipedia.org/wiki/IEEE_802.11n-2009http://en.wikipedia.org/wiki/IEEE_802.11n-2009http://en.wikipedia.org/wiki/IEEE_802.11n-2009http://en.wikipedia.org/wiki/HIPERLAN/2http://en.wikipedia.org/wiki/HIPERLAN/2http://en.wikipedia.org/wiki/HIPERLAN/2http://en.wikipedia.org/wiki/Digital_radiohttp://en.wikipedia.org/wiki/Digital_radiohttp://en.wikipedia.org/wiki/Digital_radiohttp://en.wikipedia.org/wiki/Eureka_147http://en.wikipedia.org/wiki/Eureka_147http://en.wikipedia.org/wiki/Eureka_147http://en.wikipedia.org/wiki/DAB%2Bhttp://en.wikipedia.org/wiki/DAB%2Bhttp://en.wikipedia.org/wiki/DAB%2Bhttp://en.wikipedia.org/wiki/Digital_Radio_Mondialehttp://en.wikipedia.org/wiki/Digital_Radio_Mondialehttp://en.wikipedia.org/wiki/Digital_Radio_Mondialehttp://en.wikipedia.org/wiki/HD_Radiohttp://en.wikipedia.org/wiki/HD_Radiohttp://en.wikipedia.org/wiki/HD_Radiohttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/ISDB-TSBhttp://en.wikipedia.org/wiki/ISDB-TSBhttp://en.wikipedia.org/wiki/ISDB-TSBhttp://en.wikipedia.org/wiki/Digital_TVhttp://en.wikipedia.org/wiki/Digital_TVhttp://en.wikipedia.org/wiki/Digital_TVhttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/Mobile_TVhttp://en.wikipedia.org/wiki/Mobile_TVhttp://en.wikipedia.org/wiki/Mobile_TVhttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/Personal_area_networkhttp://en.wikipedia.org/wiki/Personal_area_networkhttp://en.wikipedia.org/wiki/Personal_area_networkhttp://en.wikipedia.org/wiki/Ultra-widebandhttp://en.wikipedia.org/wiki/Ultra-widebandhttp://en.wikipedia.org/wiki/Ultra-widebandhttp://en.wikipedia.org/wiki/IEEE_802.15.3ahttp://en.wikipedia.org/wiki/IEEE_802.15.3ahttp://en.wikipedia.org/wiki/IEEE_802.15.3ahttp://en.wikipedia.org/wiki/IEEE_802.15.3ahttp://en.wikipedia.org/wiki/WiMedia_Alliancehttp://en.wikipedia.org/wiki/WiMedia_Alliancehttp://en.wikipedia.org/wiki/WiMedia_Alliancehttp://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/OFDMAhttp://en.wikipedia.org/wiki/OFDMAhttp://en.wikipedia.org/wiki/OFDMAhttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/Cellular_networkhttp://en.wikipedia.org/wiki/Cellular_networkhttp://en.wikipedia.org/wiki/Cellular_networkhttp://en.wikipedia.org/wiki/Mobile_broadbandhttp://en.wikipedia.org/wiki/Mobile_broadbandhttp://en.wikipedia.org/wiki/Mobile_broadbandhttp://en.wikipedia.org/wiki/Wireless_MANhttp://en.wikipedia.org/wiki/Wireless_MANhttp://en.wikipedia.org/wiki/Broadband_wireless_accesshttp://en.wikipedia.org/wiki/Broadband_wireless_accesshttp://en.wikipedia.org/wiki/Broadband_wireless_accesshttp://en.wikipedia.org/wiki/IEEE_802.16ehttp://en.wikipedia.org/wiki/IEEE_802.16ehttp://en.wikipedia.org/wiki/IEEE_802.16ehttp://en.wikipedia.org/wiki/IEEE_802.16ehttp://en.wikipedia.org/wiki/WiMAXhttp://en.wikipedia.org/wiki/WiMAXhttp://en.wikipedia.org/wiki/WiMAXhttp://en.wikipedia.org/wiki/Mobile_Broadband_Wireless_Accesshttp://en.wikipedia.org/wiki/Mobile_Broadband_Wireless_Accesshttp://en.wikipedia.org/wiki/Mobile_Broadband_Wireless_Accesshttp://en.wikipedia.org/wiki/IEEE_802.20http://en.wikipedia.org/wiki/IEEE_802.20http://en.wikipedia.org/wiki/IEEE_802.20http://en.wikipedia.org/wiki/3GPPhttp://en.wikipedia.org/wiki/3GPPhttp://en.wikipedia.org/wiki/Long_Term_Evolutionhttp://en.wikipedia.org/wiki/Long_Term_Evolutionhttp://en.wikipedia.org/wiki/Long_Term_Evolutionhttp://en.wikipedia.org/wiki/Evolved_UMTS_Terrestrial_Radio_Accesshttp://en.wikipedia.org/wiki/Evolved_UMTS_Terrestrial_Radio_Accesshttp://en.wikipedia.org/wiki/Evolved_UMTS_Terrestrial_Radio_Accesshttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=4http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=4http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=4http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=5http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=5http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=5http://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Fast_Fourier_Transformhttp://en.wikipedia.org/wiki/Fast_Fourier_Transformhttp://en.wikipedia.org/wiki/Fast_Fourier_Transformhttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Macrodiversityhttp://en.wikipedia.org/wiki/Macrodiversityhttp://en.wikipedia.org/wiki/Macrodiversityhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=6http://en.wikipedia.org/wiki/Macrodiversityhttp://en.wikipedia.org/wiki/Single_frequency_networkhttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Fast_Fourier_Transformhttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=5http://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#Characteristics_and_principles_of_operationhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=4http://en.wikipedia.org/wiki/Evolved_UMTS_Terrestrial_Radio_Accesshttp://en.wikipedia.org/wiki/Long_Term_Evolutionhttp://en.wikipedia.org/wiki/3GPPhttp://en.wikipedia.org/wiki/IEEE_802.20http://en.wikipedia.org/wiki/Mobile_Broadband_Wireless_Accesshttp://en.wikipedia.org/wiki/WiMAXhttp://en.wikipedia.org/wiki/IEEE_802.16ehttp://en.wikipedia.org/wiki/IEEE_802.16ehttp://en.wikipedia.org/wiki/Broadband_wireless_accesshttp://en.wikipedia.org/wiki/Wireless_MANhttp://en.wikipedia.org/wiki/Mobile_broadbandhttp://en.wikipedia.org/wiki/Cellular_networkhttp://en.wikipedia.org/wiki/4Ghttp://en.wikipedia.org/wiki/OFDMAhttp://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/WiMedia_Alliancehttp://en.wikipedia.org/wiki/IEEE_802.15.3ahttp://en.wikipedia.org/wiki/IEEE_802.15.3ahttp://en.wikipedia.org/wiki/Ultra-widebandhttp://en.wikipedia.org/wiki/Personal_area_networkhttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/DVB-Hhttp://en.wikipedia.org/wiki/Mobile_TVhttp://en.wikipedia.org/wiki/ISDB-Thttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/Digital_TVhttp://en.wikipedia.org/wiki/ISDB-TSBhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/T-DMBhttp://en.wikipedia.org/wiki/HD_Radiohttp://en.wikipedia.org/wiki/Digital_Radio_Mondialehttp://en.wikipedia.org/wiki/DAB%2Bhttp://en.wikipedia.org/wiki/Eureka_147http://en.wikipedia.org/wiki/Digital_radiohttp://en.wikipedia.org/wiki/HIPERLAN/2http://en.wikipedia.org/wiki/IEEE_802.11n-2009http://en.wikipedia.org/wiki/IEEE_802.11g-2003http://en.wikipedia.org/wiki/IEEE_802.11ahttp://en.wikipedia.org/wiki/Wireless_LANhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=3http://en.wikipedia.org/wiki/Multimedia_over_Coax_Alliancehttp://en.wikipedia.org/wiki/Plain_old_telephone_servicehttp://en.wikipedia.org/wiki/TrailBlazer
  • 7/22/2019 The Symbol Rate is Measured in Baud

    8/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page8, Total33

    Sensitive toDoppler shift.

    Sensitive to frequency synchronization problems.

    Highpeak-to-average-power ratio(PAPR), requiring linear transmitter circuitry, which suffersfrom poor power efficiency.

    Loss of efficiency caused bycyclic prefix/guard interval.

    12 [edit]Characteristics and principles of operation

    13 [edit]Orthogonality

    Conceptually, OFDM is a specialized FDM, the additional constraint being: all the carrier signals

    are orthogonal to each other.

    In OFDM, the sub-carrier frequencies are chosen so that the sub-carriers are orthogonalto each

    other, meaning thatcross-talkbetween the sub-channels is eliminated and inter-carrier guard

    bands are not required. This greatly simplifies the design of both thetransmitterand thereceiver;

    unlike conventionalFDM, a separate filter for each sub-channel is not required.

    The orthogonality requires that the sub-carrier spacing is Hertz, where TUsecondsis

    the useful symbol duration (the receiver side window size), and kis a positive integer, typically

    equal to 1. Therefore, with Nsub-carriers, the total passband bandwidth will be BNf(Hz).

    The orthogonality also allows highspectral efficiency, with a total symbol rate near theNyquist

    ratefor the equivalent baseband signal (i.e. near half the Nyquist rate for the double-side band

    physical passband signal). Almost the whole available frequency band can be utilized. OFDM

    generally has a nearly 'white' spectrum, giving it benign electromagnetic interference properties

    with respect to other co-channel users.

    A simple example: A useful symbol duration TU = 1 ms would require a sub-carrier

    spacing of (or an integer multiple of that) for orthogonality. N= 1,000

    sub-carriers would result in a total passband bandwidth ofNf = 1 MHz. For this symbol

    time, the required bandwidth in theory according to Nyquist is N/2TU = 0.5 MHz (i.e., half

    of the achieved bandwidth required by our scheme). If a guard interval is applied (see

    below), Nyquist bandwidth requirement would be even lower. The FFT would result in N=

    1,000 samples per symbol. If no guard interval was applied, this would result in a base

    band complex valued signal with a sample rate of 1 MHz, which would require a baseband

    bandwidth of 0.5 MHz according to Nyquist. However, the passband RF signal is

    produced by multiplying the baseband signal with a carrier waveform (i.e., double-

    sideband quadrature amplitude-modulation) resulting in a passband bandwidth of 1 MHz.

    A single-side band (SSB) or vestigial sideband (VSB) modulation scheme would achieve

    http://en.wikipedia.org/wiki/Doppler_effecthttp://en.wikipedia.org/wiki/Doppler_effecthttp://en.wikipedia.org/wiki/Doppler_effecthttp://en.wikipedia.org/wiki/Crest_factorhttp://en.wikipedia.org/wiki/Crest_factorhttp://en.wikipedia.org/wiki/Crest_factorhttp://en.wikipedia.org/wiki/Cyclic_prefixhttp://en.wikipedia.org/wiki/Cyclic_prefixhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=8http://en.wikipedia.org/wiki/Orthogonality#Communicationshttp://en.wikipedia.org/wiki/Orthogonality#Communicationshttp://en.wikipedia.org/wiki/Orthogonality#Communicationshttp://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Transmitterhttp://en.wikipedia.org/wiki/Transmitterhttp://en.wikipedia.org/wiki/Transmitterhttp://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Hertzhttp://en.wikipedia.org/wiki/Hertzhttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Nyquist_ratehttp://en.wikipedia.org/wiki/Nyquist_ratehttp://en.wikipedia.org/wiki/Nyquist_ratehttp://en.wikipedia.org/wiki/Nyquist_ratehttp://en.wikipedia.org/wiki/Nyquist_ratehttp://en.wikipedia.org/wiki/Nyquist_ratehttp://en.wikipedia.org/wiki/Spectral_efficiencyhttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Hertzhttp://en.wikipedia.org/wiki/Frequency-division_multiplexinghttp://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Transmitterhttp://en.wikipedia.org/wiki/Crosstalk_(electronics)http://en.wikipedia.org/wiki/Orthogonality#Communicationshttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=7http://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Cyclic_prefixhttp://en.wikipedia.org/wiki/Crest_factorhttp://en.wikipedia.org/wiki/Doppler_effect
  • 7/22/2019 The Symbol Rate is Measured in Baud

    9/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page9, Total33

    almost half that bandwidth for the same symbol rate (i.e., twice as high spectral efficiency

    for the same symbol alphabet length). It is however more sensitive to multipath

    interference.

    OFDM requires very accurate frequency synchronization between the receiver and the

    transmitter; with frequency deviation the sub-carriers will no longer be orthogonal,

    causinginter-carrier interference (ICI) (i.e., cross-talk between the sub-carriers). Frequency

    offsets are typically caused by mismatched transmitter and receiver oscillators, or byDoppler

    shiftdue to movement. While Doppler shift alone may be compensated for by the receiver, the

    situation is worsened when combined withmultipath, as reflections will appear at various

    frequency offsets, which is much harder to correct. This effect typically worsens as speed

    increases,[2]

    and is an important factor limiting the use of OFDM in high-speed vehicles.

    Several techniques for ICI suppression are suggested, but they may increase the receiver

    complexity.

    14 [edit]Implementation using the FFT algorithm

    The orthogonality allows for efficient modulator and demodulator implementation using

    theFFTalgorithm on the receiver side, and inverse FFT on the sender side. Although the

    principles and some of the benefits have been known since the 1960s, OFDM is popular for

    wideband communications today by way of low-costdigital signal processingcomponents that

    can efficiently calculate the FFT.

    The time to compute the inverse-FFT or FFT transform has to take less than the time for each

    symbol.[3]

    Which for example forDVB-T(FFT 8k) means the computation has to be done

    in 896 s or less.

    For an 8 192 pointFFTthis may be approximated to:[3][clarification needed]

    [3]

    MIPS =Million instructions per second

    The computational demand approximately scales linear with FFT size so a double size

    FFT needs the double amount of time and vice versa.[3]

    As a comparison aIntel Pentium

    IIICPU at 1.266 GHz is able to calculate a 8 192 point FFT in 576 s usingFFTW.[4]

    Intel

    Pentium Mat 1.6 GHz does it in 387 s.[5]

    Intel Core Duoat 3.0 GHz does it in 96.8 s.[6]

    http://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Multipath_interferencehttp://en.wikipedia.org/wiki/Multipath_interferencehttp://en.wikipedia.org/wiki/Multipath_interferencehttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-1http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-1http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-1http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=9http://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/wiki/Digital_signal_processinghttp://en.wikipedia.org/wiki/Digital_signal_processinghttp://en.wikipedia.org/wiki/Digital_signal_processinghttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/Instructions_per_second#Million_instructions_per_secondhttp://en.wikipedia.org/wiki/Instructions_per_second#Million_instructions_per_secondhttp://en.wikipedia.org/wiki/Instructions_per_second#Million_instructions_per_secondhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/Pentium_IIIhttp://en.wikipedia.org/wiki/Pentium_IIIhttp://en.wikipedia.org/wiki/Pentium_IIIhttp://en.wikipedia.org/wiki/FFTWhttp://en.wikipedia.org/wiki/FFTWhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-3http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-3http://en.wikipedia.org/wiki/Pentium_Mhttp://en.wikipedia.org/wiki/Pentium_Mhttp://en.wikipedia.org/wiki/Pentium_Mhttp://en.wikipedia.org/wiki/Pentium_Mhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-4http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-4http://en.wikipedia.org/wiki/Intel_Core#Core_Duohttp://en.wikipedia.org/wiki/Intel_Core#Core_Duohttp://en.wikipedia.org/wiki/Intel_Core#Core_Duohttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-5http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-5http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-5http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-5http://en.wikipedia.org/wiki/Intel_Core#Core_Duohttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-4http://en.wikipedia.org/wiki/Pentium_Mhttp://en.wikipedia.org/wiki/Pentium_Mhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-3http://en.wikipedia.org/wiki/FFTWhttp://en.wikipedia.org/wiki/Pentium_IIIhttp://en.wikipedia.org/wiki/Pentium_IIIhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/Instructions_per_second#Million_instructions_per_secondhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/wiki/DVB-Thttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-ce883-2http://en.wikipedia.org/wiki/Digital_signal_processinghttp://en.wikipedia.org/wiki/Fast_Fourier_transformhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=9http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-1http://en.wikipedia.org/wiki/Multipath_interferencehttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shift
  • 7/22/2019 The Symbol Rate is Measured in Baud

    10/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page10, Total33

    15 [edit]Guard interval for elimination of intersymbol

    interference

    One key principle of OFDM is that since low symbol rate modulation schemes (i.e., where

    the symbols are relatively long compared to thechanneltime characteristics) suffer less

    fromintersymbol interferencecaused bymultipath propagation, it is advantageous to

    transmit a number of low-rate streams in parallel instead of a single high-rate stream.

    Since the duration of each symbol is long, it is feasible to insert aguard intervalbetween

    the OFDM symbols, thus eliminating the intersymbol interference.

    The guard interval also eliminates the need for apulse-shaping filter, and it reduces the

    sensitivity to time synchronization problems.

    A simple example: If one sends a million symbols per second using conventional single-

    carrier modulation over a wireless channel, then the duration of each symbol would be

    one microsecond or less. This imposes severe constraints on synchronization and

    necessitates the removal of multipath interference. If the same million symbols per second

    are spread among one thousand sub-channels, the duration of each symbol can be longer

    by a factor of a thousand (i.e., one millisecond) for orthogonality with approximately the

    same bandwidth. Assume that a guard interval of 1/8 of the symbol length is inserted

    between each symbol. Intersymbol interference can be avoided if the multipath time-

    spreading (the time between the reception of the first and the last echo) is shorter than the

    guard interval (i.e., 125 microseconds). This corresponds to a maximum difference of 37.5

    kilometers between the lengths of the paths.

    Thecyclic prefix, which is transmitted during the guard interval, consists of the end of

    the OFDM symbol copied into the guard interval, and the guard interval is transmitted

    followed by the OFDM symbol. The reason that the guard interval consists of a copy

    of the end of the OFDM symbol is so that the receiver will integrate over an integer

    number of sinusoid cycles for each of the multipaths when it performs OFDM

    demodulation with the FFT.

    16 [edit]Simplified equalization

    The effects of frequency-selective channel conditions, for example fading caused by

    multipath propagation, can be considered as constant (flat) over an OFDM sub-

    channel if the sub-channel is sufficiently narrow-banded (i.e., if the number of sub-

    channels is sufficiently large). This makes frequency domainequalizationpossible at

    thereceiver, which is far simpler than the time-domain equalization used in

    conventional single-carrier modulation. In OFDM, the equalizer only has to multiply

    http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=10http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=10http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=10http://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Pulse-shaping_filterhttp://en.wikipedia.org/wiki/Pulse-shaping_filterhttp://en.wikipedia.org/wiki/Pulse-shaping_filterhttp://en.wikipedia.org/wiki/Cyclic_prefixhttp://en.wikipedia.org/wiki/Cyclic_prefixhttp://en.wikipedia.org/wiki/Cyclic_prefixhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=11http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=11http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=11http://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Receiver_(radio)http://en.wikipedia.org/wiki/Equalizationhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=11http://en.wikipedia.org/wiki/Cyclic_prefixhttp://en.wikipedia.org/wiki/Pulse-shaping_filterhttp://en.wikipedia.org/wiki/Guard_intervalhttp://en.wikipedia.org/wiki/Multipath_propagationhttp://en.wikipedia.org/wiki/Intersymbol_interferencehttp://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=10
  • 7/22/2019 The Symbol Rate is Measured in Baud

    11/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page11, Total33

    each detected sub-carrier (each Fourier coefficient) in each OFDM symbol by a

    constant complex number, or a rarely changed value.

    Our example: The OFDM equalization in the above numerical example would require one

    complex valued multiplication per subcarrier and symbol (i.e., complex

    multiplications per OFDM symbol; i.e., one million multiplications per second, at the

    receiver). The FFT algorithm requires [this is imprecise: over half of

    these complex multiplications are trivial, i.e. = to 1 and are not implemented in software or

    HW]. complex-valued multiplications per OFDM symbol (i.e., 10 million multiplications per

    second), at both the receiver and transmitter side. This should be compared with the

    corresponding one million symbols/second single-carrier modulation case mentioned in

    the example, where the equalization of 125 microseconds time-spreading using aFIR

    filterwould require, in a naive implementation, 125 multiplications per symbol (i.e., 125

    million multiplications per second). FFT techniques can be used to reduce the number of

    multiplications for anFIR filterbased time-domain equalizer to a number comparable with

    OFDM, at the cost of delay between reception and decoding which also becomes

    comparable with OFDM.

    If differential modulation such asDPSKorDQPSKis applied to each sub-

    carrier, equalization can be completely omitted, since these non-coherent

    schemes are insensitive to slowly changing amplitude andphase distortion.

    In a sense, improvements in FIR equalization using FFTs or partial FFTs leads

    mathematically closer to OFDM,[citation needed]

    but the OFDM technique is easier to

    understand and implement, and the sub-channels can be independently

    adapted in other ways than varying equalization coefficients, such as switching

    between differentQAMconstellation patterns and error-correction schemes to

    match individual sub-channel noise and interference characteristics.[clarification

    needed]

    Some of the sub-carriers in some of the OFDM symbols may carrypilot

    signalsfor measurement of the channel conditions[7][8]

    (i.e., the equalizer gain

    and phase shift for each sub-carrier). Pilot signals and training symbols

    (preambles) may also be used for time synchronization (to avoid intersymbol

    interference, ISI) and frequency synchronization (to avoid inter-carrier

    interference, ICI, caused by Doppler shift).

    OFDM was initially used for wired and stationary wireless communications.

    However, with an increasing number of applications operating in highly mobile

    environments, the effect of dispersive fading caused by a combination of multi-

    path propagation anddoppler shiftis more significant. Over the last decade,

    http://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/DPSKhttp://en.wikipedia.org/wiki/DPSKhttp://en.wikipedia.org/wiki/DPSKhttp://en.wikipedia.org/wiki/DQPSKhttp://en.wikipedia.org/wiki/DQPSKhttp://en.wikipedia.org/wiki/DQPSKhttp://en.wikipedia.org/wiki/Phase_distortionhttp://en.wikipedia.org/wiki/Phase_distortionhttp://en.wikipedia.org/wiki/Phase_distortionhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/QAMhttp://en.wikipedia.org/wiki/QAMhttp://en.wikipedia.org/wiki/QAMhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Pilot_signalhttp://en.wikipedia.org/wiki/Pilot_signalhttp://en.wikipedia.org/wiki/Pilot_signalhttp://en.wikipedia.org/wiki/Pilot_signalhttp://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-6http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-6http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-6http://en.wikipedia.org/wiki/Preamble_(communication)http://en.wikipedia.org/wiki/Preamble_(communication)http://en.wikipedia.org/wiki/Preamble_(communication)http://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Preamble_(communication)http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-6http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-6http://en.wikipedia.org/wiki/Pilot_signalhttp://en.wikipedia.org/wiki/Pilot_signalhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/Wikipedia:Please_clarifyhttp://en.wikipedia.org/wiki/QAMhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Phase_distortionhttp://en.wikipedia.org/wiki/DQPSKhttp://en.wikipedia.org/wiki/DPSKhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filterhttp://en.wikipedia.org/wiki/FIR_filter
  • 7/22/2019 The Symbol Rate is Measured in Baud

    12/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page12, Total33

    research has been done on how to equalize OFDM transmission over doubly

    selective channels.[9][10][11]

    17 [edit]Channel coding and interleavingOFDM is invariably used in conjunction withchannel coding(forward error

    correction), and almost always uses frequency and/or timeinterleaving.

    Frequency (subcarrier)interleavingincreases resistance to frequency-selective

    channel conditions such asfading. For example, when a part of the channel

    bandwidth fades, frequency interleaving ensures that the bit errors that would

    result from those subcarriers in the faded part of the bandwidth are spread out in

    the bit-stream rather than being concentrated. Similarly, time interleaving

    ensures that bits that are originally close together in the bit-stream are

    transmitted far apart in time, thus mitigating against severe fading as would

    happen when travelling at high speed.

    However, time interleaving is of little benefit in slowly fading channels, such as

    for stationary reception, and frequency interleaving offers little to no benefit for

    narrowband channels that suffer from flat-fading (where the whole channel

    bandwidth fades at the same time).

    The reason why interleaving is used on OFDM is to attempt to spread the errors

    out in the bit-stream that is presented to the error correction decoder, because

    when such decoders are presented with a high concentration of errors the

    decoder is unable to correct all the bit errors, and a burst of uncorrected errors

    occurs. A similar design of audio data encoding makes compact disc (CD)

    playback robust.

    A classical type of error correction coding used with OFDM-based systems

    isconvolutional coding, oftenconcatenatedwithReed-Solomoncoding. Usually,

    additional interleaving (on top of the time and frequency interleaving mentionedabove) in between the two layers of coding is implemented. The choice for

    Reed-Solomon coding as the outer error correction code is based on the

    observation that the Viterbi decoder used for inner convolutional decoding

    produces short errors bursts when there is a high concentration of errors, and

    Reed-Solomon codes are inherently well-suited to correcting bursts of errors.

    Newer systems, however, usually now adopt near-optimal types of error

    correction codes that use the turbo decoding principle, where the decoder

    iterates towards the desired solution. Examples of such error correction coding

    types includeturbo codesandLDPCcodes, which perform close to

    http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-8http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-8http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-10http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-10http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=12http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=12http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=12http://en.wikipedia.org/wiki/Channel_codinghttp://en.wikipedia.org/wiki/Channel_codinghttp://en.wikipedia.org/wiki/Channel_codinghttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Convolutional_codehttp://en.wikipedia.org/wiki/Convolutional_codehttp://en.wikipedia.org/wiki/Convolutional_codehttp://en.wikipedia.org/wiki/Concatenated_error_correction_codeshttp://en.wikipedia.org/wiki/Concatenated_error_correction_codeshttp://en.wikipedia.org/wiki/Concatenated_error_correction_codeshttp://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correctionhttp://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correctionhttp://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correctionhttp://en.wikipedia.org/wiki/Turbo_codehttp://en.wikipedia.org/wiki/Turbo_codehttp://en.wikipedia.org/wiki/Turbo_codehttp://en.wikipedia.org/wiki/LDPChttp://en.wikipedia.org/wiki/LDPChttp://en.wikipedia.org/wiki/LDPChttp://en.wikipedia.org/wiki/LDPChttp://en.wikipedia.org/wiki/Turbo_codehttp://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correctionhttp://en.wikipedia.org/wiki/Concatenated_error_correction_codeshttp://en.wikipedia.org/wiki/Convolutional_codehttp://en.wikipedia.org/wiki/Fadinghttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Interleavinghttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Forward_error_correctionhttp://en.wikipedia.org/wiki/Channel_codinghttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=12http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-10http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-8http://en.wikipedia.org/wiki/OFDM_system_comparison_table#cite_note-8
  • 7/22/2019 The Symbol Rate is Measured in Baud

    13/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page13, Total33

    theShannon limitfor the Additive White Gaussian Noise (AWGN) channel.

    Some systems that have implemented these codes have concatenated them

    with either Reed-Solomon (for example on theMediaFLOsystem) orBCH

    codes(on theDVB-S2system) to improve upon anerror floorinherent to these

    codes at highsignal-to-noise ratios.

    18 [edit]Adaptive transmission

    The resilience to severe channel conditions can be further enhanced if

    information about the channel is sent over a return-channel. Based on this

    feedback information, adaptivemodulation, channel coding and power allocation

    may be applied across all sub-carriers, or individually to each sub-carrier. In the

    latter case, if a particular range of frequencies suffers from interference or

    attenuation, the carriers within that range can be disabled or made to run slower

    by applying more robust modulation orerror codingto those sub-carriers.

    The term discrete multitone modulation (DMT) denotes OFDM based

    communication systems that adapt the transmission to the channel conditions

    individually for each sub-carrier, by means of so called bit-loading. Examples

    areADSLandVDSL.

    The upstream and downstream speeds can be varied by allocating either more

    or fewer carriers for each purpose. Some forms ofrate-adaptive DSLuse this

    feature in real time, so that the bitrate is adapted to the co-channel interference

    and bandwidth is allocated to whichever subscriber needs it most.

    19 [edit]OFDM extended with multiple access

    OFDM in its primary form is considered as a digital modulation technique, and

    not a multi-userchannel access method, since it is utilized for transferring one

    bit stream over one communicationchannelusing one sequence of OFDM

    symbols. However, OFDM can be combined withmultiple accessusing time,

    frequency or coding separation of the users.

    InOrthogonal Frequency Division Multiple Access(OFDMA),frequency-division

    multiple accessis achieved by assigning different OFDM sub-channels to

    different users. OFDMA supports differentiatedquality of serviceby assigning

    different number of sub-carriers to different users in a similar fashion as

    inCDMA, and thus complex packet scheduling orMedia Access

    Controlschemes can be avoided. OFDMA is used in:

    http://en.wikipedia.org/wiki/Shannon_limithttp://en.wikipedia.org/wiki/Shannon_limithttp://en.wikipedia.org/wiki/Shannon_limithttp://en.wikipedia.org/wiki/Additive_white_Gaussian_noisehttp://en.wikipedia.org/wiki/Additive_white_Gaussian_noisehttp://en.wikipedia.org/wiki/Additive_white_Gaussian_noisehttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/BCH_codehttp://en.wikipedia.org/wiki/BCH_codehttp://en.wikipedia.org/wiki/BCH_codehttp://en.wikipedia.org/wiki/BCH_codehttp://en.wikipedia.org/wiki/DVB-S2http://en.wikipedia.org/wiki/DVB-S2http://en.wikipedia.org/wiki/DVB-S2http://en.wikipedia.org/wiki/Error_floorhttp://en.wikipedia.org/wiki/Error_floorhttp://en.wikipedia.org/wiki/Error_floorhttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=13http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=13http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=13http://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/wiki/Error_codinghttp://en.wikipedia.org/wiki/Error_codinghttp://en.wikipedia.org/wiki/Error_codinghttp://en.wikipedia.org/wiki/ADSLhttp://en.wikipedia.org/wiki/ADSLhttp://en.wikipedia.org/wiki/ADSLhttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/Rate-adaptive_DSLhttp://en.wikipedia.org/wiki/Rate-adaptive_DSLhttp://en.wikipedia.org/wiki/Rate-adaptive_DSLhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=14http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=14http://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=14http://en.wikipedia.org/wiki/Channel_access_methodhttp://en.wikipedia.org/wiki/Channel_access_methodhttp://en.wikipedia.org/wiki/Channel_access_methodhttp://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/Orthogonal_Frequency_Division_Multiple_Accesshttp://en.wikipedia.org/wiki/Orthogonal_Frequency_Division_Multiple_Accesshttp://en.wikipedia.org/wiki/Orthogonal_Frequency_Division_Multiple_Accesshttp://en.wikipedia.org/wiki/Frequency-division_multiple_accesshttp://en.wikipedia.org/wiki/Frequency-division_multiple_accesshttp://en.wikipedia.org/wiki/Frequency-division_multiple_accesshttp://en.wikipedia.org/wiki/Frequency-division_multiple_accesshttp://en.wikipedia.org/wiki/Quality_of_servicehttp://en.wikipedia.org/wiki/Quality_of_servicehttp://en.wikipedia.org/wiki/Quality_of_servicehttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/Media_Access_Controlhttp://en.wikipedia.org/wiki/Media_Access_Controlhttp://en.wikipedia.org/wiki/Media_Access_Controlhttp://en.wikipedia.org/wiki/Media_Access_Controlhttp://en.wikipedia.org/wiki/Media_Access_Controlhttp://en.wikipedia.org/wiki/Media_Access_Controlhttp://en.wikipedia.org/wiki/CDMAhttp://en.wikipedia.org/wiki/Quality_of_servicehttp://en.wikipedia.org/wiki/Frequency-division_multiple_accesshttp://en.wikipedia.org/wiki/Frequency-division_multiple_accesshttp://en.wikipedia.org/wiki/Orthogonal_Frequency_Division_Multiple_Accesshttp://en.wikipedia.org/wiki/Multiple_accesshttp://en.wikipedia.org/wiki/Channel_(communications)http://en.wikipedia.org/wiki/Channel_access_methodhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=14http://en.wikipedia.org/wiki/Rate-adaptive_DSLhttp://en.wikipedia.org/wiki/VDSLhttp://en.wikipedia.org/wiki/ADSLhttp://en.wikipedia.org/wiki/Error_codinghttp://en.wikipedia.org/wiki/Modulationhttp://en.wikipedia.org/w/index.php?title=Orthogonal_frequency-division_multiplexing&action=edit&section=13http://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Error_floorhttp://en.wikipedia.org/wiki/DVB-S2http://en.wikipedia.org/wiki/BCH_codehttp://en.wikipedia.org/wiki/BCH_codehttp://en.wikipedia.org/wiki/MediaFLOhttp://en.wikipedia.org/wiki/Additive_white_Gaussian_noisehttp://en.wikipedia.org/wiki/Shannon_limit
  • 7/22/2019 The Symbol Rate is Measured in Baud

    14/33

    Document Title Security Level

    2013-08-17 Huawei Proprietary - Restricted Distribution Page14, Total33

    the mobility mode of theIEEE 802.16Wireless MAN standard, commonly

    referred to as WiMAX,

    theIEEE 802.20mobile Wireless MAN standard, commonly referred to as

    MBWA,

    the3GPP Long Term Evolution(LTE) fourth generation mobile broadband

    standard downlink. The radio interface was formerly named High Speed

    OFDM Packet Access (HSOPA), now named Evolved UMTS Terrestrial

    Radio Access (E-UTRA).

    the now defunctQualcomm/3GPP2Ultra Mobile Broadband(UMB) project,

    intended as a successor ofCDMA2000, but replaced by LTE.

    OFDMA is also a candidate access method for theIEEE 802.22WirelessRegional Area Networks (WRAN). The project aims at designing the

    firstcognitive radiobased standard operating in the VHF-low UHF spectrum (TV

    spectrum).

    InMulti-carrier code division multiple access(MC-CDMA), also known as

    OFDM-CDMA, OFDM is combined with CDMA spread spectrum communication

    for coding separation of the users. Co-channel interference can be mitigated,

    meaning that manualfixe