the trigger prototype board status

21
The Trigger Prototype Board Status Marco Grassi INFN - Pisa On behalf of trigger group D. Nicolò F. Morsani S. Galeotti M. Grassi

Upload: johnna

Post on 16-Jan-2016

53 views

Category:

Documents


0 download

DESCRIPTION

The Trigger Prototype Board Status. On behalf of trigger group D. NicolòF. Morsani S. Galeotti M. Grassi. Marco Grassi INFN - Pisa. PMT. FADC. FPGA. 16. Clock Sync Trigger Start. 48. 4. 48. 48. 4. VME. Sync. LVDS Trans. LVDS Trans. Hardware: board Type 1. VME 6U - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The Trigger Prototype Board Status

The Trigger Prototype Board Status

Marco Grassi

INFN - Pisa

On behalf of trigger group

D. NicolòF. Morsani S. Galeotti M. Grassi

Page 2: The Trigger Prototype Board Status

Hardware: board Type 1•VME 6U•A-to-D Conversion

– FADC with differential inputs bandwidth limited

•Trigger– LXe calorimeter– timing counters

•No use for the tracking chambers

•I/O– 16 PMT signals– 2 LVDS transmitters– 4 in control signals

FADC FPGA

ControlFPGA

PMT16

16 x 10

4

48

48

VME

SyncClockSyncTriggerStart

4

LVDS Trans 48

LVDS TransType 2

boards

Page 3: The Trigger Prototype Board Status

Hardware: board Type 2

•VME 9U•Matched with the Type 1 boards

•I/O– 10 LVDS receivers– 2 LVDS

transmitters– 4 in control signals– 3 out signals

FPGA

ControlFPGA

Type 110 x 48

4

48

48

SyncClockSyncTriggerStart

4 VME

LVDS Trans

LVDS Trans

48

LVDS Rec

18

18

10 x 18

to next Type 2

TriggerSyncStart 3

Out3

Page 4: The Trigger Prototype Board Status

Type2

Hardware: system structure

LXe inner face(312 PMT)

Type2

. . . 20 boards

20 x 48

Type1Type1

Type116

4 Type2

2 boards

. . . 10 boards

10 x 48

Type1Type1

Type116

4

LXe lateral faces(208 PMT)

(120x2 PMT)(40x2 PMT)

Type2

1 board

. . . 12 or 6 boards

12 x 48

Type1Type1

Type116

4

Timing counters(160 PMT)

or(80 PMT) Type2

Type2

2 or 1

boards

4 x 48

1 board

4 x 48

2 x 48

2 VME 6U

1 VME 9U

Page 5: The Trigger Prototype Board Status

Present status• Prototype board: Type0

– Modified Type1 :• Check of the connectivity with the Type2• Study the FADC coupling• Verify the chosen algorithms

• Selected components (all delivered)• Main FPGA XCV812E-8-FG900 and XCV18V04 config. ROM• Interface and control CPLD XC95288XL-FG256• ADC AD9218 (dual 10 bits 100 MHz)• Clock distribution CY7B993V (DLL multi-phase clock buffer)• LVDS serializer DS90CR483 / 484 (48 bits - 100 MHz - 5.1 Gbits/s)• LVDS connectors 3M Mini-D-Ribbon • Analog input by 3M coaxial connectors• Control and debug signals in LVDS standard

• FPGA design completed– FPGA design and simulation completed (runs at 100 MHz)– VHDL parameterization is ready

Page 6: The Trigger Prototype Board Status

Prototype board : Type 0•VME 6U•A-to-D Conversion•Trigger•I/O

– 16 PMT signals– 2 LVDS transmitters– 4 in/2 out control signals

•Complete system test

LVDS Rec

SyncTriggerStart

FADC FPGA

ControlCPLD

PMT16

16 x 10

4

48

48

VME

SyncClockSyncTriggerStart

4

48

LVDS Trans

3Out

2 boards16

16

4

Type0

Type0

TriggerStart

4

Analog receivers

Spare in/out

Page 7: The Trigger Prototype Board Status

The Analog input stage

• BW limitation

• Unipolar or bipolar inputs

• Variable gain

• Pedestal adjust

AD8138

Page 8: The Trigger Prototype Board Status

•Board Design completed – Implementation by means of

CADENCE– Schematic simulation completed– Components footprints checked

– Board routing ready• 10 layers

4 GND Power

6 signals• DC/DC converters• A32 mode• Block transfer

•Board production– PCB producer contacted: ready

for a production offer

– Delivery: end of July

– Test: September

Page 9: The Trigger Prototype Board Status

DRS Chip

• Prototype received Nov. 02• Tests Dec. 02 – April 03• Digital part works perfectly• Analog parts requires redesign• DLL and VME board built by Siena

• Prototype received Nov. 02• Tests Dec. 02 – April 03• Digital part works perfectly• Analog parts requires redesign• DLL and VME board built by Siena

Page 10: The Trigger Prototype Board Status

Test results

fsamp [GHz]

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

fsamp [GHz]

2.00

2.10

2.20

2.30

2.40

2.50

2.60

2.70

2.80

2.90

1.500 1.700 1.900 2.100 2.300 2.500 2.700 2.900 3.100 3.300 3.500

fsamp [GHz]

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000

fsamp[GHz] vs. Vcontrol[V]

fsamp[GHz] vs. Vdd[V]

fsamp[GHz] vs. T[deg. C]

Page 11: The Trigger Prototype Board Status

Running Domino WaveRunning Domino Wave

Denable

Dtap

Jitter after 32 turns: ~1ns32 Domino cycles @ 320ns

SR_CLKSR_RESET

SRIN

SROUT

#768

Readout Shift RegisterReadout Shift Register

Page 12: The Trigger Prototype Board Status

DLL Design

R. Paoletti, N. Turini, INFN

In

PhaseComparator

Ext. quartzclock

DLLVspeed

• DLL works with jitter of 200 ps RMS

• Siena (N. Turini, R. Paoletti, MAGIC) designs VME board

Page 13: The Trigger Prototype Board Status

DRS Readout

Input pulse Digitized output pulse

5ns risetime 8ns risetime

Page 14: The Trigger Prototype Board Status

Problems in analog part

PHI

PHI

Bus

Csamp

source

draingate Capacitances:

Gate-Bulk: 10.6 fFSource-Bulk: 13.5 fFDrain-Bulk: 2.4 fF

Bus capacitance too high (110pF)

Page 15: The Trigger Prototype Board Status

DRS Redesign

• Reduce bus-bulk capacitance by 6x• Reduce bus-bus capacitance• Use current-mode readout

write

read

C

. . .

RI

Vout

G. Varner, Univ. of Hawaii:STRAW2 chip

Vin

Page 16: The Trigger Prototype Board Status

Plans

• UMC 0.25m technology• Next Submission Oct. 20th • Production time ~9 weeks• VME board design in parallel (Siena)• Rectangle 5 x 5 mm2

• Reduce minimum sampling speed to 500 MHz (for DC)

• Daisy chain mode for N x 1024 bins• Dual-channel for deadtimeless

operation• 4 chn. Q mode + 4 chn. I mode• Production run spring 2004

• UMC 0.25m technology• Next Submission Oct. 20th • Production time ~9 weeks• VME board design in parallel (Siena)• Rectangle 5 x 5 mm2

• Reduce minimum sampling speed to 500 MHz (for DC)

• Daisy chain mode for N x 1024 bins• Dual-channel for deadtimeless

operation• 4 chn. Q mode + 4 chn. I mode• Production run spring 2004

Page 17: The Trigger Prototype Board Status

DRS options

Input

Dom

ino W

ave

Daisy-chain mode

Input

Readout

Dual-channel mode

Page 18: The Trigger Prototype Board Status

DRS (DAQ)

2002 2003 2004 2005

Test MilestoneAssemblyDesign Manufactoring

2nd Prototype

Tests1st Prototype

Boards & Chip Test

Page 19: The Trigger Prototype Board Status

DAQ System

PMT ActiveSplitter

~7m to trigger (~20m)

area

monitor

~2m

DRSBoard

(16chn)

DC Pre-Amp DRSBoard

(16chn)

~7m

SIS3100

10 VME crates

800 + 160

1920

opticalfiber (~20m)

Trigger

GigabitEthernet

Front-End PCs

On-line farm

Rack – PC (Linux)Rack – PC (Linux)Rack – PC (Linux)Rack – PC (Linux)Rack – PC (Linux)

Rack – PC (Linux)Rack – PC (Linux)Rack – PC (Linux)Rack – PC (Linux)Rack – PC (Linux)Rack – PC (Linux)

storage

Fitted data:10 Hz waveform data -> 1.2 MB/sec90 Hz ADC / TDC data -> 0.9 MB/sec

Raw data:2880 channels100 Hz50% / 10% / 10% occupancy2kB / waveform -> 5 x 25 MB/sec.

Page 20: The Trigger Prototype Board Status

Waveform analysis

• Zero suppression in FPGA• Single hit

– ADC/TDC derived in FPGA

• Multiple hit– Waveform compressed in

FPGA (2x12 bit -> 3 Byte)– Waveform fitted /

compressed in PC cluster

• Store ADC/TDC only for “calibration” events

• Store (lossless) compressed waveforms for MEG candidates

• Zero suppression in FPGA• Single hit

– ADC/TDC derived in FPGA

• Multiple hit– Waveform compressed in

FPGA (2x12 bit -> 3 Byte)– Waveform fitted /

compressed in PC cluster

• Store ADC/TDC only for “calibration” events

• Store (lossless) compressed waveforms for MEG candidates

OriginalWaveform

Difference Of Samples

Threshold in DOS

Region for pedestal

evaluationintegration area

ADC1/TDC1

ADC2/TDC2

T

Page 21: The Trigger Prototype Board Status

ROOT for online analysis• ROOT becomes more stable and is now widely

used• “Online extensions” are underway (life display of

histos and N-tuples)• Propose to use ROOT for online monitoring and

single event display, CARROT for Web display• For offline analysis, keep possibility to use ROOT

or PAW

• ROOT becomes more stable and is now widely used

• “Online extensions” are underway (life display of histos and N-tuples)

• Propose to use ROOT for online monitoring and single event display, CARROT for Web display

• For offline analysis, keep possibility to use ROOT or PAW

FE Analyzer

*.mid

ROOTGUI

offlineanalysisROOT

*.root

offlineanalysisHBOOK

*.rz PAW

ROOT

online offline