the unifac consortium the nifacunifac.ddbst.de/files/unifac/pdf/bros2019.pdf · the unifac...

22
The UNIFAC Consortium Established in 1996 Company Consortium for the Revision, Extension and Further Development of the Group Contribution Methods UNIFAC, modified UNIFAC (Dortmund) and the Predictive Equations of State PSRK and VTPR DDBST - Dortmund Data Bank Software & Separation Technology GmbH - The UNIFAC Consortium - Marie-Curie-Straße 10 D-26129 Oldenburg Tel.: +49 441 361819 0 [email protected] www.unifac.org T U C he NIFAC onsortium

Upload: others

Post on 09-May-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

The UNIFAC Consortium Established in 1996

Company Consortium for the Revision, Extension and Further Development of the

Group Contribution Methods UNIFAC, modified UNIFAC (Dortmund)

and the Predictive Equations of State PSRK and VTPR

DDBST - Dortmund Data Bank Software & Separation Technology GmbH

- The UNIFAC Consortium -

Marie-Curie-Straße 10

D-26129 Oldenburg

Tel.: +49 441 361819 0

[email protected]

www.unifac.org

TUC

heNIFAConsortium

Page 2: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

The group contribution methods UNIFAC, modified UNIFAC (Dortmund) and the group contribution equations of state PSRK and

VTPR are used world-wide for the synthesis and design of separation processes and a large number of further applications of

industrial interest. They belong to the most important thermodynamic tools for the daily work of a chemical engineer and are

therefore available in most of the commercial process simulators (e.g. Aspen Plus®, CHEMCAD™, Pro/II®, HYSIM, ProSim,

Dynsim, ROMeo…).*

Because there were no governmental funds availabl for a thorough revision, extension and further development of these methods, a

company consortium was founded in 1996 at the University of Oldenburg to support the further development of these models. Since

the retirement of Prof. Dr. Jürgen Gmehling in April 2011, the UNIFAC consortium is maintained by DDBST.

The revised and extended group interaction parameters will be given only to the sponsors of the UNIFAC project and will not be

available via the different process simulators. The sponsoring by the companies even includes the possibility to influence the

direction of further developments, so that the models will definitely become more and more attractive for the chemical industry.

Fig. 1: Available group interaction parameters for modified UNIFAC (Dortmund)

Fig. 1 shows the available group interaction parameters for the Consortium members compared to the published parameters of

modified UNIFAC (Dortmund). The following table gives the number of published group interaction parameters and main groups

compared to the total number of group interaction parameters and main groups only available for members of the consortium.

* The current state of publication of both group contribution methods is given by the following references: For original UNIFAC: (1)Hansen, H.K., Schiller, M.,

Fredenslund, Aa., Gmehling, J., Rasmussen, P. Ind. Eng. Chem. Res. 1991, 30, 2352-2355 and for modified UNIFAC, respectively: (1)Weidlich U., Gmehling J.

Ind.Eng.Chem.Res. 1987, 26, 1372-1381 (2)Gmehling, J., Li, Jiding, Schiller, M. Ind. Eng. Chem. Res. 1993, 32, 178-193; (3)Gmehling, J., Lohmann, J., Jakob, A.,

Li, J., Joh, R. Ind. Eng. Chem. Res. 1998, 37, 4876-4882; (4)Lohmann, J., Joh, R., Gmehling, J. Ind. Eng. Chem. Res. 2001, 40, 957-964; (5)Lohmann, J., Gmehling,

J. J. Chem. Eng. Jpn. 2001, 34, 43-54; (6)Wittig, R., Lohmann, J., Joh, R., Horstmann, S., Gmehling, J. Ind. Eng. Chem. Res. 2001, 40, 5831-5838; (7)Gmehling, J.,

Wittig, R., Lohmann, J., Joh, R., Ind. Eng. Chem. Res. 2002, 41, 1678-1688; (8)Wittig R., Lohmann J., Gmehling J. AIChE Journal 2003, 49, 2 530-537; (9) Jakob

A., Grensemann H., Lohmann J., Gmehling J. Ind. Eng. Chem. Res. 2006, 45, 7924-7933, Hector T., Gmehling J., Fluid Phase Equilib. 2014, 371, 82-92, Further

Development of Modified UNIFAC (Dortmund): Revision and Extension 6

Constantinescu D. and Gmehling J. J. Chem. Eng. Data, 2016, 61 (8), 2738–2748. Addendum to “Further Development of Modified UNIFAC (Dortmund): Revision

and Extension 6” J. Chem. Eng. Data, 2017, 62 (7), pp 2230–2230.

Page 3: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Published Consortium

Parameters 755* 1896

Main Groups 61 109

* 301 of the already published group interaction parameters have been revised within the consortium.

Figure 2 shows the development of modified UNIFAC (Dortmund) during the last two decades.

Fig. 2: Stage of development of the group interaction parameter matrix of modified UNIFAC (Dortmund)

Fig. 3: Sub-matrix of modified UNIFAC (Dortmund) for refrigerants

Page 4: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

The main objectives of the research work are:

o Extensive examination of the current parameters using the Dortmund Data Bank (DDB) in connection with graphical

representations

o Revision of the existing parameters using the currently available data banks

o Extension of the parameter tables (UNIFAC, modified UNIFAC (Dortmund), PSRK, VTPR) with respect to existing

groups.

o Introduction of new groups to extend the range of applicabilitiy.

o Introduction of more flexible groups.

o Consideration of proximity and isomeric effects.

For this research work, besides a large data base also a large number of systematic experimental investigations are necessary, e.g.

to determine the required supporting experimental data for fitting reliable temperature dependent group interaction parameters.

Besides data for VLE these are activity coefficients at infinite dilution, azeotropic data, solid liquid equilibrium of simple eutectic

systems covering a large temperature range, and in particular heats of mixing data at high temperatures (90 and 140 oC).

DDBST supports the planned research work by supplying the current version of the Dortmund Data Bank. This means all the phase

equilibrium information published in literature. During the first sponsor meeting the representatives agreed to provide internal

company data exclusively for the planned model development work.

Reliable experimental facilities (in many cases computer driven) which have been developped at the University of Oldenburg can

be used for various experimental investigations. Furthermore, a sophisticated software package simplifies the fitting of a large

number of group interaction parameters. Although a great part of the required preliminary work for a successful completion of the

comprehensive research project has already been performed, a constant preoccupation of the consortium is to obtain more reliable

parameters. The particular features of this program (Fig. 4) allow enhancing of the flexibility of the models by considering multiple

group-group interaction sets in optimization and by taking into consideration a larger spectrum of data. Multiple standard and

deviation diagrams allow simple quality judgment and weighting or removal of data sets.The same data base management is enabled

for both UNIFAC models, PSRK and VTPR.

Fig. 4: New software developed by DDBST. Advantageous features for the fitting procedure.

Page 5: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Typical Results

A recent development for the modified UNIFAC (Dortmund) model was the introduction of several new flexible main groups. The

introduction of the major part of the new groups was scheduled in cooperation with our consortium members, so that the great

number of components, which can only be treated with the help of the new group interaction parameters, are of major industrial

interest. In Appendix A, typical results for the following new modified UNIFAC (Dortmund) main groups are given:

o Anhydrides o Triamines

o ACS (Thiophenes) o Chlorofluorohydrocarbons (Refrigerants)

o CONR (monoalkyl amides) o Isocyanates

o CONR2 (dialkyl amides) o Lactames (cyclic Amides)

o Epoxides o Lactones (cyclic Esters)

o Acrolein o Cycloalkylamines

o Pyrazine o N-Formylmorpholine

o Diketones o Thiazole

o Sulfones o Glycerol

o Thionyl and Sulfuryl Chloride o Imidazole

A great proportion of the group interaction parameters were fitted between 1985 and 1993. No SLE data and only few hE data were

available. Thus the enlargement of the database during the last 18 years offers the possibility to revise group interaction parameters

to cover a larger pressure, temperature and concentration range. Fig. 5 shows an example of different phase equilibria data for

systems containing thiophene. The dotted line represents the published parameters. The solid lines show the result of the revision.

Fig. 5: Comparison of prediction results using published (dotted line) and revised parameters (solid line).

Original UNIFAC

Besides the work on modified UNIFAC (Dortmund) also the original UNIFAC method was further developed. On the basis of the

increasing number of VLE and γ∞ data not only gaps in the original UNIFAC matrix were filled but also new groups (epoxides,

anhydrides, carbonates, sulfones, acrolein, pyrrole, glycerol, n-formylmorpholine, diketones) were introduced. It is planned to

further develop also the original UNIFAC matrix and to introduce the groups which already have been included into the modified

UNIFAC (Dortmund) matrix, as original UNIFAC is very important.

In Appendix B (Fig. B 1), typical results for the new original UNIFAC epoxy group are given. The current matrix of the original

UNIFAC method is shown in Fig. 6.

A comparison of the results obtained from original UNIFAC and modified UNIFAC (Dortmund) demonstrates the improvements

already obtained for modified UNIFAC (Dortmund). This is illustrated in Fig. 7, where the calculated deviations in vapor phase

mole fraction y, temperature T and pressure P are given for 1,362 thermodynamically consistent isothermal / isobaric VLE data sets

together with the deviations obtained by other gE-models, group contribution models and quantum chemical method. It can be seen

from the deviations between the direct fit and the prediction that the error is dramatically reduced for all three criteria when modified

0.00 0.20 0.40 0.60 0.80 1.0010.60

11.00

11.40

11.80

12.20

12.60

x ,y1 1

P[k

Pa

]

0.00 0.20 0.40 0.60 0.80 1.0090.0

110.0

130.0

150.0

170.0

190.0

210.0

230.0

x1

T[K

]

0.00 0.20 0.40 0.60 0.80 1.00-60

40

140

240

340

440

x1

hE

[J/m

ol]

(1) Benzene (2) Thiophene

Vapor-Liquid Equilibrium

(1) Ethylbenzene (2) Thiophene

Solid-Liquid Equilibrium(1)Acetone (2) Thiophene

Enthalpie of Mixing

298.15 K363.15 K

413.15 K

Page 6: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

UNIFAC (Dortmund) is used instead of UNIFAC. Assuming ideal behavior (Raoult’s law) enlarges the errors by a factor of 5

compared to modified UNIFAC (Dortmund).

Fig. 6: Stage of development of the group interaction parameter matrix of original UNIFAC

Fig. 7: Relative deviations between experimental and predicted data for 1,362 consistent VLE data sets taken from DDB.

Similar improvements of the predictive capability are also achieved for enthalpies of mixing, activity coefficients at infinite dilution

(see Fig.8), liquid-liquid equilibrium, azeotropic data and solid-liquid equilibrium of eutectic systems.

0.59

1.45

0.94

1.231.46

1.89

5.90

0.46

1.66

1.05

1.42

1.81

2.51

7.96

0.29

0.92

0.610.74

0.89

1.40

4.28

UNIQUAC

UNIFAC

Mod. UNIFAC(Do)

Mod. UNIFAC(Ly)

ASOG

COSMO-RS(Ol)

Ideal

yabs [%] P [kPa] T [K]

Page 7: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Fig. 8: Relative deviations between experimental and predicted activity coefficients at infinite dilution (data base: 12,600 data points)*

The PSRK model

For the description of systems containing supercritical compounds, cubic equations of state (EoS) have to be applied. Beside phase

equilibria, at the same time equations of state also provide other thermodynamic properties like enthalpies and densities. The group

contribution equation of state PSRK combines the Soave-Redlich-Kwong (SRK) equation with the original UNIFAC model and

allows an accurate prediction of phase equilibria in a wide temperature and pressure range. The range of applicability was extended

by introducing 30 gases as new main groups.

Fig. 9: Stage of development of the group interaction parameter matrix of PSRK.

25.981.97

1.28

1.88 1.98

3.92

UNIFACModified UNIFAC (Dortmund)Modified UNIFAC (Lyngby)ASOGideal

absolute: ( - γi , calc∞ γi ,exp

∞ ) relative: ( - γi , calc∞ γ γi ,exp i ,exp

∞ ∞) ·100 /

* Only exp. Data < 100; No Systems containing H O2

[%]

Page 8: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

The Volume-translated Peng-Robinson (VTPR) Model

The group contribution equation of state VTPR has been added as the fourth supported model in the UNIFAC Consortium in 2017.

It can be considered as the successor of PSRK. The combination of an improved model and the creation of new interaction

parameters plus an optimized group assignment scheme based on the current Dortmund Data Bank promises very precise, widely

applicable, and reliable predictions.

A significant work evaluates the performance of VTPR model for hundreds of systems. A selection was made, based on comparative

studies (VTPR, PSRK and modified UNIFAC (Dortmund) and on cases where modified UNIFAC (Dortmund) shows its limitations.

The development strategy of VTPR was scheduled in accordance with the consortium members. In the meantime, the number of

available parameters has doubled within the UNIFAC consortium

All changes from 2017 to 2019 (new and revised parameter) for VTPR are shown in the following diagrams:

Fig. 10: Stage of development of the group interaction parameter matrix of VTPR.

Page 9: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Benefits for membership

Access to the results of more than 49 membership fees p.a. (increasing tendency) for only one membership fee p.a., including:

o Already existing but not yet published modified UNIFAC (Dortmund) parameter sets (including all previous

deliveries), as shown in the current parameter matrices, Fig. 1 and Fig. 2 (USB flash drive).

o Another parameter matrix which contains all modified UNIFAC (Dortmund) parameters and additionally parameters

fitted based on artificial data obtained using COSMO-RS (OL), particularly for reactive systems.

o Already existing but not yet published original UNIFAC parameter sets (including all previous deliveries), as shown

in the current parameter matrix, Fig. 6 (USB flash drive).

o Already existing but not yet published PSRK parameter sets, as shown in the current parameter matrix, Fig. 9 (USB

flash drive).

o Already existing but not yet published VTPR parameter sets, as shown in the current parameter matrix, Fig. 10 (USB

flash drive).

o The modified Aspen Plus TBS customization files to include the latest modified UNIFAC (Dortmund), original

UNIFAC, PSRK and VTPR versions into the Aspen Plus simulation engine as well as Aspen Plus user interface (USB

flash drive).

o An implementation guide to the Aspen Plus simulator (USB flash drive).

o An Aspen Plus User Databank that contains the structural information of all components from the Aspen Plus System

Databanks which could not be described with the latest group assignment of original UNIFAC and modified UNIFAC

(Dortmund).

o An installer for the Aspen Plus customization files.

o The modified CHEMCAD customization files in order to include the latest modified UNIFAC (Dortmund), original

UNIFAC, PSRK and VTPR interaction parameters.

o An implementation guide for the CHEMCAD simulator (USB flash drive).

o Original UNIFAC and modified UNIFAC (Dortmund) parameter updates as system libraries for Dynsim 4.5, ROMeo

and PRO/II 9.x, 10.x users (USB flash drive).

o An UNIFAC model editor to view and edit the structures and interaction parameters used by Simulis Thermodynamics

for original UNIFAC, modified UNIFAC (Dortmund), PRSK and VTPR (USB flash drive).

o Experimental data measured within this project (USB flash drive).

Sponsor meetings are held every year in September in Oldenburg to discuss the work of the UNIFAC consortium. The results of the

annual work are distributed at the sponsor meetings or sent to our members each year in September / October. The results of the

consortium can be published at least 2.5 years after delivery in a scientific journal. Notice that even after the 2.5 year period only a

few of the new and revised parameters will be published and the parameters will not be available from DDBST GmbH as part of

the program package DDBSP for non-sponsors of this consortium.

Page 10: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Membership Conditions

The participation in the project is available on easy terms. The membership is organized in periods of five years (extension possible)

which implies annual payment of the consortium fee. The graduation can be taken from the following table:

Company classification Annual contribution

Large chemical and petrochemical companies (amongst the top 50*) 9,000 €

Middle-ranged chemical and engineering companies 6,000 €

Small chemical and engineering companies 3,000 €

Universities 1,500 €

* following the chart in C&EN 2017 + 2.5% yearly increase

Please note that the revised and extended parameter tables obtained within the consortium are not available via the different process

simulators (Aspen Plus®, CHEMCAD™, PRO/II®, HYSIM, ProSim, Dynsim, Romeo, …) or via the software package from DDBST

GmbH. They will be exclusively supplied to the contributing companies together with an implementation guide for current process

simulators.

The UNIFAC consortium parameters and experimental data measured within the project can only be used in the member company

including affiliate companies. It is not allowed to pass on the information to third parties.

Page 11: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Appendix A

Modified UNIFAC (Dortmund)

Current Results for new Structural Groups

Anhydrides:

Fig. A 1: Modified UNIFAC (Dortmund) results for systems containing anhydrides.

Vapor-Liquid Equilibrium

Cyclohexane + Acetic anhydride

x,y(Cyclohexane) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

412

408

404

400

396

392

388

384

380

376

372

368

364

360

356

Boiling Point (DDB)

P = 101.325 kPa

Mod. UNIFAC (Do)

Excess Enthalpy

Cyclohexane + Acetic anhydride

x(Cyclohexane) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J/m

ol]

2,400

2,200

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

T = 300.05 K

Mod. UNIFAC (Do)

T = 363.15 K

Solid-Liquid Equilibrium

Acetic anhydride + Cyclohexane

xl(Acetic anhydride) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

276

272

268

264

260

256

252

248

244

240

236

232

228

224

220

216

212

208

204

200

Melting Point (DDB)

SLE 35151 0 0

mod. UNIFAC (Dortmund)

Vapor-Liquid Equilibrium

1-Octene + Acetic anhydride

x,y(1-Octene) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

22

21

20

19

18

17

16

15

14

13

12

11

10

9

Boiling Point (DDB)

T = 343.15 K

Mod. UNIFAC (Do)

Page 12: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

ACS (thiophenes):

Fig. A 2: Modified UNIFAC (Dortmund) results for systems containing thiophene.

CONR (monoalkyl-amides):

Fig. A 3: Modified UNIFAC (Dortmund) results for systems containing monoalkyl amides.

Vapor-Liquid Equilibrium

Benzene + Thiophene

x,y(Benzene) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

12.6

12.4

12.2

12

11.8

11.6

11.4

11.2

11

10.8

Boiling Point (DDB)

T = 298.15 K

Mod. UNIFAC (Do)

Excess Enthalpy

Acetone + Thiophene

x(Acetone) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J

/mo

l]

40

30

20

10

0

-10

-20

-30

-40

-50

T = 363.15 K

Mod. UNIFAC (Do)

T = 413.15 K

Solid-Liquid Equilibrium

Cyclohexane + Thiophene

xl(Cyclohexane) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

276

272

268

264

260

256

252

248

244

240

236

232

228

224

220

216

212

208

Melting Point (DDB)

SLE 7368 0 0

mod. UNIFAC (Dortmund)

Azeotropic Data

Ethanol + Thiophene

y(Ethanol) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

100

96

92

88

84

80

76

72

68

64

60

56

52

48

44

40

36

32

28

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

Octane + N-Methylacetamide

x,y(Octane) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

100

90

80

70

60

50

40

30

20

10

Boiling Point (DDB)

T = 398.05 K

Mod. UNIFAC (Do)

Excess Enthalpy

Water + N-Methylacetamide

x(Water) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J/m

ol]

0

-100

-200

-300

-400

-500

-600

-700

-800

-900

-1,000

-1,100

-1,200

-1,300

-1,400

-1,500

-1,600

-1,700

-1,800

T = 308.15 K

Mod. UNIFAC (Do)

T = 323.15 K

T = 363.15 K

T = 398.15 K

Page 13: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

CONR2 (dialkyl-amides):

Fig. A 4: Modified UNIFAC (Dortmund) results for systems containing dialkyl amides.

Epoxides:

Fig. A 5: Modified UNIFAC (Dortmund) results for systems containing epoxides.

Sulfones:

Fig. A 6: Modified UNIFAC (Dortmund) results for systems containing Sulfolane.

Vapor-Liquid Equilibrium

1-Propanol + N,N-Dimethylacetamide

x,y(1-Propanol) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

76

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

Boiling Point (DDB)

T = 363.15 K

Mod. UNIFAC (Do)

Excess Enthalpy

Ethanol + N,N-Dimethylacetamide

x(Ethanol) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss

En

tha

lpy [J

/mo

l]

0

-40

-80

-120

-160

-200

-240

-280

-320

-360

-400

-440

-480

-520

-560

T = 298.15 K

Mod. UNIFAC (Do)

T = 313.15 K

T = 363.15 K

T = 413.15 K

Vapor-Liquid Equilibrium

2-Methylbutane + N,N-Dimethylacetamide

x,y(2-Methylbutane) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

430

420

410

400

390

380

370

360

350

340

330

320

310

Boiling Point (DDB)

P = 101.325 kPa

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

Water + N,N-Dimethylacetamide

x,y(Water) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

430

420

410

400

390

380

370

360

350

340

Boiling Point (DDB)

P = 19.998 kPa

Mod. UNIFAC (Do)

P = 26.664 kPa

P = 53.329 kPa

P = 101.325 kPa

Vapor-Liquid Equilibrium

1,2-Epoxybutane + Methanol

x,y(1,2-Epoxybutane) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

28

27

26

25

24

23

22

21

20

19

18

17

Boiling Point (DDB)

T = 298.15 K

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

Chloroform + 1,2-Epoxybutane

x,y(Chloroform) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

Boiling Point (DDB)

T = 288.15 K

Mod. UNIFAC (Do)

T = 298.15 K

T = 313.15 K

Vapor-Liquid Equilibrium

2-Propanol + Sulfolane

x,y(2-Propanol) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

13

12

11

10

9

8

7

6

5

4

3

2

1

Boiling Point (DDB)

T = 313.15 K

Mod. UNIFAC (Do)

Solid-Liquid Equilibrium

Methanol + Sulfolane

xl(Methanol) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

300

290

280

270

260

250

240

230

220

210

200

190

180

Melting Point (DDB)

SLE 8134 0 0

mod. UNIFAC (Dortmund)

Page 14: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Chlorofluorohydrocarbons (Refrigerants):

Fig. A 7: Modified UNIFAC (Dortmund) results for systems containing Chlorofluorohydrocarbons.

Isocyanates:

Fig. A 8: Modified UNIFAC (Dortmund) results for systems containing isocyanates.

Azeotropic Data

1,2-Dichlorotetrafluoroethane [R114] + Dichlorofluoromethane [R21]

y(1,2-Dichlorotetrafluoroethane [R114]) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

640

600

560

520

480

440

400

360

320

280

240

200

160

120

80

40

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

Hexafluoroethane [R116] + Chloroperfluoroethane [R115]

x,y(Hexafluoroethane [R116]) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

264

260

256

252

248

244

240

236

232

228

224

Boiling Point (DDB)

P = 355.037 kPa

Mod. UNIFAC (Do)

Liquid-Liquid Equilibrium

Hexamethylene diisocyanate + Hexane

xl1,xl2(Hexamethylene diisocyanate) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

282

280

278

276

274

272

270

268

266

264

xl1

xl2

Mod. UNIFAC (Do)

Excess Enthalpy

Benzene + Hexamethylene diisocyanate

x(Benzene) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J/m

ol]

0

-40

-80

-120

-160

-200

-240

-280

-320

-360

T = 298.15 K

Mod. UNIFAC (Do)

T = 323.15 K

T = 348.15 K

T = 363.15 K

T = 373.15 K

Vapor-Liquid Equilibrium

Isocyanic acid butyl ester + o-Dichlorobenzene

x,y(Isocyanic acid butyl ester) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

450

440

430

420

410

400

390

380

370

360

350

340

330

320

Boiling Point (DDB)

P = 6.666 kPa

Mod. UNIFAC (Do)

P = 101.325 kPa

Vapor-Liquid Equilibrium

Isocyanic acid butyl ester + Nonane

x,y(Isocyanic acid butyl ester) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

398

396

394

392

390

388

386

384

382

380

378

376

374

372

370

368

366

Boiling Point (DDB)

P = 50 kPa

Mod. UNIFAC (Do)

Page 15: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Lactames (cyclic Amides) :

Fig. A 9: Modified UNIFAC (Dortmund) results for systems containing lactames.

Lactones (cyclic Esters):

Fig. A 10: Modified UNIFAC (Dortmund) results for systems containing lactones.

Acrolein:

Fig. A 11: Modified UNIFAC (Dortmund) results for systems containing unsaturated aldehydes.

Solid-Liquid Equilibrium

.epsilon.-Caprolactam + Water

xl(.epsilon.-Caprolactam) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

336

328

320

312

304

296

288

280

272

264

256

Melting Point (DDB)

SLE 16683 0 0

P = 2.149 kPa

SLE 7568 0 0

mod. UNIFAC (Dortmund)

Vapor-Liquid Equilibrium

Water + .epsilon.-Caprolactam

x,y(Water) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [k

Pa

]

280

260

240

220

200

180

160

140

120

100

80

60

40

20

Boiling Point (DDB)

T = 404.4 K

Mod. UNIFAC (Do)

Excess Enthalpy

2-Butanone + gamma-Butyrolactone

x(2-Butanone) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exc

ess E

nth

alp

y [J

/mo

l]

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

T = 363.15 K

Mod. UNIFAC (Do)

T = 413.15 K

Vapor-Liquid Equilibrium

2-Butanone + gamma-Butyrolactone

x,y(2-Butanone) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [k

Pa

]

140

130

120

110

100

90

80

70

60

50

40

30

20

10

Boiling Point (DDB)

T = 363.15 K

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

2-Methylbutane + Acrolein

x,y(2-Methylbutane) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

326

324

322

320

318

316

314

312

310

308

306

304

302

300

298

Boiling Point (DDB)

P = 101.325 kPa

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

Vinyl acetate + Crotonaldehyde

x,y(Vinyl acetate) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [k

Pa

]

88

80

72

64

56

48

40

32

24

16

Boiling Point (DDB)

T = 313.15 K

Mod. UNIFAC (Do)

T = 328.15 K

T = 343.15 K

Page 16: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Cycloalkylamine:

Fig. A 12: Modified UNIFAC (Dortmund) results for systems containing cycloalkylamines.

N-Formylmorpholine:

Fig. A 13: Modified UNIFAC (Dortmund) results for systems containing N-Formylmorpholine.

Vapor-Liquid Equilibrium

Cyclohexylamine + N,N-Dimethylformamide (DMF)

x,y(Cyclohexylamine) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [k

Pa

]

68

64

60

56

52

48

44

40

36

32

28

24

20

Boiling Point (DDB)

T = 373.15 K

Mod. UNIFAC (Do)

T = 393.15 K

Vapor-Liquid Equilibrium

Octane + Cyclohexylamine

x,y(Octane) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [k

Pa

]

11

10.8

10.6

10.4

10.2

10

9.8

9.6

9.4

9.2

9

8.8

8.6

8.4

8.2

8

7.8

7.6

Boiling Point (DDB)

T = 333.15 K

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

m-Xylene + N-Formylmorpholine

x,y(m-Xylene) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

510

500

490

480

470

460

450

440

430

420

410

400

390

380

370

360

Boiling Point (DDB)

P = 14.999 kPa

Mod. UNIFAC (Do)

P = 101.33 kPa

Liquid-Liquid Equilibrium

Heptane + N-Formylmorpholine

xl1,xl2(Heptane) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

410

400

390

380

370

360

350

340

330

320

310

300

xl1

xl2

Mod. UNIFAC (Do)

Excess Enthalpy

Heptane + N-Formylmorpholine

x(Heptane) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss

En

tha

lpy [J

/mo

l]

200

180

160

140

120

100

80

60

40

20

0

T = 298.15 K

Mod. UNIFAC (Do)

Excess Enthalpy

Phenylacetylene + N-Formylmorpholine

x(Phenylacetylene) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J/m

ol]

0

-100

-200

-300

-400

-500

-600

-700

-800

-900

-1,000

-1,100

-1,200

-1,300

-1,400

-1,500

T = 298.15 K

Mod. UNIFAC (Do)

T = 323.15 K

Page 17: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Glycerol:

Fig. A 14: Modified UNIFAC (Dortmund) results for systems containing glycerol.

Imidazole:

Fig. A 15: Modified UNIFAC (Dortmund) results for systems containing imidazole.

Activity Coefficients at Infinite Dilution

Glycerol + Dodecanoic acid methyl ester

1000/T [K]2.62.562.522.482.442.42.362.32

log

(Act

ivity C

oe

ffic

ien

t at In

finite

Dilu

tion

)

4.08

4.04

4

3.96

3.92

3.88

3.84

3.8

3.76

3.72

Dodecanoic acid methyl ester in Glycerol

Glycerol in Dodecanoic acid methyl ester; mod. UNIFAC (Dortmund)

Liquid-Liquid Equilibrium

Glycerol + 2-Butanone

xl1,xl2(Glycerol) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K]

302

300

298

296

294

292

290

288

286

284

xl1

xl2

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

1,2-Propanediol + Glycerol

x,y(1,2-Propanediol) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

470

460

450

440

430

420

410

400

390

380

370

360

Boiling Point (DDB)

P = 1.333 kPa

Mod. UNIFAC (Do)

P = 3.333 kPa

P = 6.666 kPa

Excess Enthalpy

Water + Glycerol

x(Water) [mol/mol]10.90.80.70.60.50.40.30.20.10

Excess E

nth

alp

y [J/m

ol]

0

-40

-80

-120

-160

-200

-240

-280

-320

-360

-400

T = 413.15 K

Mod. UNIFAC (Do)

Solid-Liquid Equilibrium

1H-Imidazole + tert-Butanol

xl(1H-Imidazole) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

360

350

340

330

320

310

300

290

280

270

Melting Point (DDB)

SLE 11693 0 0

mod. UNIFAC (Dortmund)

Vapor-Liquid Equilibrium

1-Methylnaphthalene + 1H-Imidazole

x,y(1-Methylnaphthalene) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

540

538

536

534

532

530

528

526

524

522

520

518

516

514

512

510

508

Boiling Point (DDB)

P = 98.665 kPa

Mod. UNIFAC (Do)

Page 18: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Pyrazine:

Fig. A 16: Modified UNIFAC (Dortmund) results for systems containing pyrazine.

Thionyl and sulfuryl chloride:

Fig. A 17: Modified UNIFAC (Dortmund) results for systems containing thionyl and sulfuryl chloride.

Vapor-Liquid Equilibrium

2-Methyl pyrazine + Cyclohexane

x,y(2-Methyl pyrazine) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

24

22

20

18

16

14

12

10

8

6

4

2

Boiling Point (DDB)

T = 283.15 K

Mod. UNIFAC (Do)

T = 293.15 K

T = 303.15 K

T = 313.15 K

Vapor-Liquid Equilibrium

2-Methyl pyrazine + Heptane

x,y(2-Methyl pyrazine) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

7.6

7.2

6.8

6.4

6

5.6

5.2

4.8

4.4

4

3.6

3.2

2.8

2.4

2

1.6

1.2

0.8

0.4

Boiling Point (DDB)

T = 263.15 K

Mod. UNIFAC (Do)

T = 273.15 K

T = 283.15 K

T = 293.15 K

T = 303.15 K

Vapor-Liquid Equilibrium

Thionyl chloride + Octane

x,y(Thionyl chloride) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

396

392

388

384

380

376

372

368

364

360

356

352

Boiling Point (DDB)

P = 101.325 kPa

Mod. UNIFAC (Do)

Excess Enthalpy

Thionyl chloride + Benzene

x(Thionyl chloride) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J/m

ol]

360

320

280

240

200

160

120

80

40

0

T = 298.15 K

Mod. UNIFAC (Do)

Vapor-Liquid Equilibrium

Sulfuryl chloride + 1,1,2,2-Tetrachloroethane

x,y(Sulfuryl chloride) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

Boiling Point (DDB)

T = 283.15 K

Mod. UNIFAC (Do)

T = 293.15 K

T = 303.15 K

T = 313.15 K

Vapor-Liquid Equilibrium

Thionyl chloride + Heptane

x,y(Thionyl chloride) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

370

368

366

364

362

360

358

356

354

352

350

Boiling Point (DDB)

P = 101.325 kPa

Mod. UNIFAC (Do)

Page 19: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Diketones:

Fig. A 18: Modified UNIFAC (Dortmund) results for systems containing diketones.

Triamines:

Fig. A 19: Modified UNIFAC (Dortmund) results for systems containing triamines.

Thiazole:

Fig. A 20: Modified UNIFAC (Dortmund) results for systems containing thiazole.

Vapor-Liquid Equilibrium

2,3-Butanedione + Toluene

x,y(2,3-Butanedione) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

Boiling Point (DDB)

T = 318.15 K

Mod. UNIFAC (Do)

T = 328.15 K

T = 338.15 K

Excess Enthalpy

2,4-Pentanedione + Ethanol

x(2,4-Pentanedione) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J/m

ol]

1,600

1,500

1,400

1,300

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

0

T = 298.15 K

Mod. UNIFAC (Do)

T = 313.15 K

T = 328.15 K

Vapor-Liquid Equilibrium

Water + Diethylenetriamine

x,y(Water) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

68

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

4

Boiling Point (DDB)

T = 323.15 K

Mod. UNIFAC (Do)

T = 343.15 K

T = 363.15 K

Vapor-Liquid Equilibrium

Diethylenetriamine + N-(2-Aminoethyl)piperazine

x,y(Diethylenetriamine) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

110

100

90

80

70

60

50

40

30

20

10

Boiling Point (DDB)

T = 398.15 K

Mod. UNIFAC (Do)

T = 483.15 K

Vapor-Liquid Equilibrium

Water + Thiazole

x,y(Water) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

92

88

84

80

76

72

68

64

60

56

52

48

44

Boiling Point (DDB)

T = 363.15 K

Mod. UNIFAC (Do)

Excess Enthalpy

Benzene + Thiazole

x(Benzene) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J/m

ol]

240

220

200

180

160

140

120

100

80

60

40

20

0

T = 298.15 K

Mod. UNIFAC (Do)

Page 20: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Appendix B

Original UNIFAC

Results for various structural groups

Epoxides:

Fig. B 1: Original UNIFAC results for systems containing epoxides.

Vapor-Liquid Equilibrium

1,2-Epoxybutane + Heptane

x,y(1,2-Epoxybutane) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

88

84

80

76

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

Boiling Point (DDB)

T = 313.15 K

UNIFAC

T = 333.15 K

Vapor-Liquid Equilibrium

1,2-Epoxybutane + Methanol

x,y(1,2-Epoxybutane) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

28

27

26

25

24

23

22

21

20

19

18

17

Boiling Point (DDB)

T = 298.15 K

UNIFAC

Vapor-Liquid Equilibrium

1,2-Propylene oxide + Water

x,y(1,2-Propylene oxide) [mol/mol]10.90.80.70.60.50.40.30.20.10

T [K

]

372

368

364

360

356

352

348

344

340

336

332

328

324

320

316

312

308

Boiling Point (DDB)

P = 99.992 kPa

UNIFAC

Vapor-Liquid Equilibrium

1,2-Propylene oxide + 1,2-Propanediol

x,y(1,2-Propylene oxide) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

120

110

100

90

80

70

60

50

40

30

20

10

Boiling Point (DDB)

T = 312.89 K

UNIFAC

Page 21: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Appendix C

PSRK

Results for various structural groups

Fig. C 1: PSRK calculation examples.

Vapor-Liquid Equilibrium

Carbon dioxide + (E)-1,3,3,3-Tetrafluoroprop-1-ene

x,y(Carbon dioxide) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

7,200

6,800

6,400

6,000

5,600

5,200

4,800

4,400

4,000

3,600

3,200

2,800

2,400

2,000

1,600

1,200

800

400

Boiling Point (DDB)

T = 283.32 K

PSRK

T = 308.13 K

T = 333.01 K

T = 353.02 K

Vapor-Liquid Equilibrium

Ethane + (E)-1,3,3,3-Tetrafluoroprop-1-ene

x,y(Ethane) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

4,800

4,400

4,000

3,600

3,200

2,800

2,400

2,000

1,600

1,200

800

400

Boiling Point (DDB)

T = 272.27 K

PSRK

T = 298.04 K

T = 323.18 K

T = 347.52 K

Page 22: The UNIFAC Consortium The NIFACunifac.ddbst.de/files/unifac/pdf/Bros2019.pdf · The UNIFAC Consortium Established in 1996 ... Fig. 5 shows an example of different phase equilibria

Appendix D

VTPR

Results for various structural groups

Fig. D 1: VTPR calculation examples.

Excess Enthalpy

Tetrachloromethane + Pyridine

x(Tetrachloromethane) [mol/mol]10.90.80.70.60.50.40.30.20.10

Exce

ss E

nth

alp

y [J

/mo

l]

40

20

0

-20

-40

-60

-80

-100

-120

-140

-160

T = 298.15 K

VTPR

Vapor-Liquid Equilibrium

1,1,1,2-Tetrafluoroethane [R134a] + Hexafluoroethane [R116]

x,y(1,1,1,2-Tetrafluoroethane [R134a]) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

4,000

3,600

3,200

2,800

2,400

2,000

1,600

1,200

800

400

Boiling Point (DDB)

T = 251 K

VTPR

T = 293.29 K

T = 313.31 K

T = 353.2 K

Vapor-Liquid Equilibrium

Methanol + Hexafluorobenzene

x,y(Methanol) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

92

88

84

80

76

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

Boiling Point (DDB)

T = 288.15 K

VTPR

T = 308.15 K

T = 328.15 K

Azeotropic Data

Methanol + Hexafluorobenzene

y(Methanol) [mol/mol]10.90.80.70.60.50.40.30.20.10

P [kP

a]

100

96

92

88

84

80

76

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

VTPR