the use of chiral ketones /aldehydes in the asymmetric ... · the use of chiral ketones /aldehydes...

47
The use of Chiral Ketones /Aldehydes in the Asymmetric Epoxidation of Olefins Somnath Bhattacharjee Michigan State University 12th January, 2005

Upload: buiminh

Post on 15-Feb-2019

232 views

Category:

Documents


0 download

TRANSCRIPT

The use of Chiral Ketones /Aldehydes in theAsymmetric Epoxidation of Olefins

Somnath Bhattacharjee Michigan State University

12th January, 2005

Introduction

Sharpless Asymmetric Epoxidation

Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.Rossiter, B. E.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464.

CH2OH

(-)-diethyl tartrate

Ti(O-i-Pr)4, tBuOOHO

(2R, 3R)

O

(2S, 3S)

(+)-diethyl tartrate

Ti(O-i-Pr)4, tBuOOH

H3C

H3C

H3C

58% yield, 95% ee

70% yield, 92% ee

OH

OH

Jacobsen Asymmetric Epoxidation

Chang, S.; Lee, N. H.; Jacobsen, E. N. J. Org. Chem. 1993, 58, 6939.

N N

O OMn

HH

C2H5O2C Catalyst, 3 mol %

NaOCl

C2H5O2C

O81% yield, 87% ee.

PF6-

+

Dioxirane Catalyzed Epoxidation

O

R1 R2

HSO5

R1 R2

HO OOSO3

OH

R1 R2

O OOSO3

R1 R2

OOR2 R4

R3R1

R2 R4

R3R1 O

SO42

1

2

3

4

Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J. O.; Pater, R. H. J. Org. Chem. 1980, 45, 4758.

Schulz, M.; Liebsch, S.; Kluge, R.; Adam, W. J. Org. Chem. 1997, 62, 188.

OKHSO5Bu4NHSO4

+CH2Cl2-H2O

+O

Activities of Various ketones in Catalyzing insitu Epoxidation of trans-Stilbene

Ph

Ph CatalystOxone/NaHCO3

CH3CN/H2Ort, pH 7-7.5

Ph

Ph O

catalystR1 R2

O

1

Yang, D.; Yip, Y. C.; Tang, M. W.; Wong, M.; Zheng, J.; Cheung, K. J. Am. Chem. Soc. 1996, 118, 491-492.

Entry R1 R2reaction time (min)

1. CH3 CH3 300

2. CH3 CF3 < 4

3. CH3 CH2F 20

4. Ph CF3 70

Catalyst

First Example of Ketone-Catalyzed AsymmetricEpoxidation

CatalystOxone/NaHCO3

CH3CN/H2Ort, pH 7-7.5

O

Ph Ph

Curci, R.; D' Accolti, L.; Fiorention, M.; Rosa, A. Tetrahedron Lett. 1995, 36, 5831. Adam, W.; Curci, R.; Edwards, J. Acc. Chem. Res. 1989,22, 205. Curci, R.; Fiorentino, M.; Serio, M. R. J. Chem. Soc., Chem. Commun. 1984, 155.

Catalyst

OO

OO

F3C OCH3

1 2

3 4

MeH

Ph

CF3

OEntry ketone yield ee config. (equiv) (%) (%)

1. 1 (2.0) 60 11 (+)-(1R,2R)

2. 2 (1.0) 85 9.5 (+)-(1R,2R)

3. 3 (1.0) 82 13 (+)-(1R,2R)

4. 4 (1.0) 77 18 (+)-(1R,2R)

Chiral Ketones with C2 Symmetry for Asymmetric Epoxidation

Asymmetric Epoxidation of UnfunctionalizedOlefins Catalyzed by Ketone

Yang, D.; Yip, Y. C.; Tang, M. W.; Wong, M. K.; Zeng, J. H.; Cheung, K. K. J. Am. Chem. Soc.1996, 118, 491-492.

OO O

O

O

1

O

PhPhPh

O

Ph

Ph

O

PhPh

47% ee(-)-(S,S) 87% ee

(-)-(S,S)

50% ee(+)-(S)

The Spiro and Planar Transition States for theDioxirane Epoxidation of Olefins

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

OO R'

ROO R'

R

OO

R'R

* orbitalOlefin

Oxygen non-bonding orbital

Spiro T.S

* orbitalOlefin

Oxygen non-bonding orbital

Planar T.S

OO

R'R

π π

Proposed Spiro Transition State for theepoxidation of trans olefins

Spiro 1Favored

Spiro 2disfavored

Yang, D.; Wong, M.; Yip, Y.; Wang, X. Tang, M.; Zheng, J.; Cheung, K. J. Am. Chem. Soc. 1998, 120, 5943-5952.

A

O HPh

PhH(S, S)

B

O PhH

HPh

(R, R)

Proposed Planar Transition State for theepoxidation of trans olefins

Planar 1favored

Planar 2disfavored

Yang, D.; Wong, M.; Yip, Y.; Wang, X. Tang, M.; Zheng, J.; Cheung, K. J. Am. Chem. Soc. 1998, 120, 5943-5952.

B

O PhH

HPh

(R, R)

A

O HPh

PhH(S, S)

Asymmetric Epoxidation of UnfunctionalizedOlefins Catalyzed by Ketones

Yang, D.; Wang, X.; Wong, M., Yip, Y.; Tang, M. J. Am. Chem. Soc. 1996, 118, 11311-11312.

A

O HPh

PhH(S, S)

CatalystOxone/NaHCO3

CH3CN/H2Ort, pH 7-7.5

PhPh O

O O

O

OX

X

3

3'(R)-1

1. X= H2. X= Cl

3. X= Br

4. X= I5. X= CH2OCH3

Entry Catalyst yield (ee) (%) Config.

1. (R)-1 91 (47) (-)-(S,S)

2. (R)-2 95 (76) (-)-(S,S)

3. (R)-3 92 (75) (-)-(S,S)

4. (R)-4 90 (32) (-)-(S,S)

5. (R)-6 92 (66) (-)-(S,S)

New Approaches for Asymmetric Epoxidation oftrans Olefin

Song, C. E.; Lee, K. C.; Lee, S; Jin, B. W. Tetrahedron: Asymmetry. 1997, 8, 2921-2926.Denmark, S. E.; Wu, Z. Synlett 1999, 847-859.

Catalyst Mol (%) Time (h) Temp (o C) Yield (%) ee (%)

1 100 25 25 95 29

2 10 10 0 55 -

2 30 10 0 80 88

Ph Ph O

10 mole % (S)-6

Oxone, K2CO3 DME-H2O C

OO

O FF

1 Song 2 Denmark

O

Hypothetical Transition Structures for Approachof Alkenes to Dioxirane of (-)-2

Denmark, S. E.; Matsuhashi, H. J. Org. Chem. 2002, 67, 3479-3486.

Me Me

F

O

O F

RR'

R'R b

a

Behar’s Approach to Improve theEnantioselectivity for Asymmetric Epoxidation

Catalyst Mol (%)

Time (h)

Temp (o C)

Yield (%)

ee (%)

3. 30 10 0 80 88

4. 10 4 -15 35 46

5. 10 4 -15 57 80

6. 10 3.5 -15 100 86

7. 10 3.5 -15 100 83

8. 10 3.5 -15 32 40

O

R2R1

R4R3

O FF

3 Denmark

4. R1, R2, R3, R4 = H5. R1, R3, R4 = H, R2 = F 6. R1, R3 = H, R2, R4 = F 7. R1, R2, R3 = F, R4 = H 8. R1, R2, R3, R4 = F

Behar

Stearman, J. C.; Behar, V. Tetrahedron. Lett. 2002, 43, 1943-1946.

Summary

OO

1 Song

O FF

2 Denmark

O

FR1

FR3

Behar

OO O

O

OCl

Cl

3

3'(R)-3

O

Fructose-derived Chiral Ketones for Epoxidation

Fructose-derived Ketone Catalyst for theAsymmetric Epoxidation of trans Stilbene

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

O

O

OO

OO

Oxone, H2O-CH3CN pH 7-7.5

1

dPh

Ph

PhPhO

entry Time (h) Isolated Yield (%) ee (%)

1. 1 31 > 95

2. 2 39 > 95

3. 3 40 89

4. 4 47 85

Possible Reaction Pathway of Ketone 1

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

R1R2

R3O

HSO5O

O

OO

OOR1

R2

R3

O OO

OO

OO

O OO

OO

OOH

O SO3

OH

O

OOO

OO

OSO4

OO

OO

OO

O

O OO

OO

OO

O SO3

1

4

2

2

3

+

5 6Hydrolysis

O

Baeyer-Villiger Reaction

Baeyer-Villiger Reaction

Renz, M.; Meunier, B.; Eur. J. Org. Chem. 1999, 737Crudden, C. M.; Chen, A. C.; Calhoun, L. A.Angew. Chem., Int. Ed. 2000, 39, 2852

R R'

O H2O2

R O

OR'

O H

R O OH

R'

H OH2

OH2

R R'

OH

H O O H

Mechanism

R O

OR'

Example

F

H2O2 O

OF

O

O

F+

71% 29% F

O

E

G

Effect of pH in Ketone Catalyzed Epoxidation

Frohn, M.; Wang, Z.; Shi, Y. J. Org. Chem. 1998, 63, 6425-6426.

O

O

OO

OO

Catalyst 1

R1R2

R3O

HSO5O

O

OO

OOR1

R2

R3

O OO

OO

OO

O OO

OO

OOH

O SO3

OH

O

OOO

OO

OSO4

OO

OO

OO

O

O OO

OO

OO

O SO3

1

4

2

2

3

+

5 6Hydrolysis

O

Baeyer-Villiger Reaction

entry Time (h) Yield (ee) (%) Yield (ee)(%)

1. 4 47 (85) 86 (>95)

pH 7-7.5 pH 10.5-11.5

Oxone, H2O-CH3CN pH 7-7.5

PhPh

PhPhO

Approaches to Circumvent Baeyer-VilligerReaction

O

O

OO

OO

O

O

O

OO

AcOAcO

4 5

O

O

OO

OO

OO

OO

OO

OO

OOO

OO

O+

2

42 mCPBA

1 3major

Wu, X.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124, 8792-8793.

PhCO2Et

PhCO2EtEt

CO2Et

CO2Et

CO2Et

Ph

CO2EtPh

Entry Substrate Yield (%) ee (%) config.

1.

2.

73 96 (+)-(2S,3R)

3.

91 93 (+)

64 82 (+)

4.

77 89 (+)

5.96 94 (+)

6. 84 44 (-)-(2S,3S)

Epoxidation by catalyst 5

Comparison Between Ketones 1 and 5O

O

OO

OO

O

O

OO

AcOAcO

1 5

Tian, H.; She, X.; Shi, Y. Organic Lett. 2001, 3, 715-718

Entry Substrate Yield (ee) (%) Yield (ee) (%) config.

1.

2.

(R, R)

3.

67 (96) (R, R)

73 (94) (R, R)

4. 80 (93) (R, R)

5.

Ph

Ph

Ph

PhMe

Ph

Ketone 1 Ketone 5

94 (95.5)

85 (97.9)

87 (94)

89 (95.5)

94 (98)

81 (83)

93 (92) (R, R)

OTBS

PhPh

Transition State Analysis for the Epoxidation oftrans Olefin by Ketone 1

Tu, Y.; Wang, Z.' Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806-9807.

O

Ph HH Ph

O

O OOO

OO

O

O OOO

OOO

O OOO

OO

O

O

OO

Spiro 1Favored

Planar 1disfavored

Planar 2 Favored

Spiro 2disfavored

OO

Ph

PhPh

(R, R)

PhH

Ph H(S, S)

Ph

Ph

PhPh

1

2

Ph

O

CatalystOxone/NaHCO3

CH3CN/H2O rt

O PhH

HPh

(R, R)Ph

Ph

Asymmetric Epoxidation of Trisubstituted Olefinby Ketone 1

O

O

OO

OO

1 (catalyst)

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

R3 R1

R3 R1

O Oxone, H2O-CH3CN

R2R2pH 11, catalyst

Entry Substrate Yield (%) ee (%) Config.

1.

2.

3.

89 96.8 (R,R)

93 76.4 (+)-(R)

89 95.5 (+)-(R,R)

Ph

PhPh

Ph

Transition State Analysis for the Epoxidation ofTrisubstituted Olefins

R3 R1

R3 R1

O Oxone, H2O-CH3CN

R2R2pH 11, catalyst

O

O

OO

OO

1 (catalyst)

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

O

R3 R2H R1

O

O O OO

OO

O

O OOO

OO O

O O OO

OO R2R1

R3

O

O

OO

Spiro 1Favored

Planar 1disfavored

Planar 2disfavoredSpiro 2

disfavored

Major

OO

R1R2

R3

R2R1

R3R2R1R3

1

Transition State Analysis for the Epoxidation ofTrisubstituted Olefin by Ketone 1

O

O

OO

OO1 (catalyst)

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

R3 R1

R3 R1

O Oxone, H2O-CH3CN

R2R2pH 11, catalyst O

O OOO

OO

O

O O OO

OO

Spiro 4disfavored

O

O O OO

OO R3R2R1

O

O O OO

OO R1R3 R2

O

H R1R3 R2

Spiro 3disfavored Planar 3

disfavored

Planar 4Favored

minor

R1R2

R3

R2R1R3

Effects of the Size of Substituents onEnantioslectivity

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

C10H21

26% ee 79% ee 81% ee

Effect of the size of R1

ee increases as the size of R1 decreases

Effect of the size of R3

86.5% ee 91% ee

ee increases as the size of R3 increase

O

O O OO

OOR3R1 R2 O

R3 R2H R1

Spiro 1

Major

O

O O OO

OO R1R3 R2

O

H R1R3 R2

Planar 4

minor

Epoxidation of cis and Terminal Olefins byKetone 1

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

O

O

OO

OO

1 (catalyst)

O

O

Ph

C8H17

Entry Subtrate Yield (%) ee (%) Config.

1.

2.

3.

4.

92 12 (-)-(1S,2R)

43 61.4 (+)-(R,R)

90 24.3 (+)-(R)

92 17 (+)-(R)

Ph5. 95 19.6 (-)-(S)

Transition State Analysis for cis and TerminalOlefins

Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

OOO

O OOO

R2R3

OOO

O OOO

R3R2

spiro 1

spiro 2

cis Olefin

O

O O OO

OO

Spiro 3

O

O O OO

OO

Spiro 4

R1

O

O

OO

Planar 3

OO

O

O O OO

OO

Planar 4

R1

R1

R1O

R1

H

O

H

R1

1

2

Terminal Olefins

Summary

O

O

OO

OO

O

O

OO

AcOAcO

1

5

Advantages: Enantioselctivity is high for trans and tri substitued olefins.

Disadvantages: Enantioselectivity is very low for cis and terminal olefins.

Effective catalyst for elctron deficient olefins.

Transition State Analysis to Design newCatalyst for cis Olefins

Tian, H.; She, X.; Shu, L.; Yu, H.; Shi, Y. J. Am. Chem. Soc. 2000, 122, 11551-11552.

O

OO

XO MePh

Y

O

OO

XO PhMe

Y

Spiro 3 Spiro 4

O

OO

OO MePhO

OO

OO PhMe

Spiro 1 Spiro 2

Fructose-derive new Catalyst for theEpoxidation of cis Olefins

O

O

OO

NO

O

Boc

6

Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435-2446

Ph

O

O

Entry Substrate Yield (%) ee (%) Config.

1. 87 91 (-)-(1R,2S)

2. 91 92 (-)-(1R,2S)

3. 77 91 (-)-(5R,6S)

4. 82 91 (-)-(2S,3R)

5. 61 97 (+)

6, Oxone

Up to 97% ee

R1 R1

O

Transition State Analysis for the Epoxidation ofcis Olefins

Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435-2446

O

O OOO

NBocO

O

O OOO

NBocO RArO

O OOO

NBocO ArR

Spiro 1 Spiro 2

Planar 1

O

O OOO

NBocO

Planar 2

R Ar Ar R

Catalyst 6 for the Epoxidation of TerminalOlefins

R 6, OxoneUp to 85 % ee

R O

O

O

OO

NO

O

Boc

6

Tian, H.; She, X.; Shi, Y. Org. lett. 2001, 5, 1929-1931.

Entry Substrate Yield (%) ee (%) Config.

1.100 81 (-)-(R)

2. 86 84 (-)-(R)

3. 93 71 (-)

O

O OOO

NBocOO

O OOO

NBocO

O

O OOO

NBocO

Spiro 1 Spiro 2 Planar 1

H PhPh

H PhH

Comparison Between Ketone Catalysts 1 and 6

O

O

OO

NO

O

Boc6

O

O

OO

OO 1

O

O

Ph

6

6

Ph

6

PhPh

6

Substrate ketoneEntry

1. 1 32 [85]

Yield (ee) (%)

6

2.

81 [81]

1 43 [61]

6 97 [61]

3. 1 24 [24]

81 [92]

4. 1 95 [98]

42 [68]

5. 1 95 [98]

80 [55]

6. 1 98 [85]

6 96 [67]7. 1 94 [95.5]

100 [88]Ph

N-aryl Substituted Oxazolidinone for theEpoxidation of Olefins

O

OO

NO

O

OX

7

7a, X = p-OMe7b, X = p-Me7c, X = p-MeSO27d, X= p-NO27e, X = o-NO2

Shu, L.; Wang, P.; Gan, Y.; Shi, Y. Org. lett. 2003, 3, 293-296.

Ph PhEntry Ketone yield (ee) (%) yield (ee) (%)

1. 7a 71 (83) (2R,3S) 56 (80) (R)

2. 7b 60 (84) (2R,3S) 60 (80) (R)

3. 7c 72 (90) (2R,3S) 61 (80) (R)

4. 7d 55 (90) (2R,3S) 30 (79) (R)

5. 7e 59 (78) (2R,3S) 55 (62) (R)

OO O

NO

OO

O

OO O

NO

OO

O

OO O

NO

OO

O

H

Spiro 1Favored Spiro 2 Planar 1

XPh

HH

Ph

X XPh

N-aryl Eubstituted Oxazolidinone for theEpoxidation of cis Olefins

O NO

OOO

X

Catalyst

Entry Substrate Conv. (ee) (%) Conv. (ee) (%) Ketone 3a Ketone 3b

1. 99 (84) 100 (90)

Me

Me

X

2.

3.

4.

86 (88) 80 (92)

94 (91) 100 (93)

X= Me 100 (88) 96 (92)

X=F 99 (87) 100 (91)X=NO2 86 (98) 91 (97)

5.Me

Me 72 (92) 100 (97)

Me

MeMe

Me97 (91) 100 (94)

75 (91) 97 (96)6.

7.

3a, X= Me3b, X= SO2Me

Shu, L.; Shi, Y. Tetrahedron Lett. 2004, 45, 8115-8117.

Possible Transition State

Shu, L.; Wang, P.; Gan, Y.; Shi, Y. Tetrahedron. lett. 2004, 3, 8115-8117.

H H

HH

Edge-tilted-T

O

O O

NO

OO

O

Spiro 1Favored Spiro 2

Y

MeX

O

O O

NO

OO

OX

Me Y

Summary

O

O

OO

NO

O

R

6

R= Boc, X

Effective catalyst for cis and Terminal olefins

Hydrogen Peroxide as Primary Oxidant Insteadof Potassium Peroxomonosulfate (KHSO5)

R1

R2

R3

H2O2CH3CN-K2CO3 R1

R2

R3O

O

O

OO

OO1, catalyst

H2O2CH3CN H3C OOH

NH+

5

Shu, L.; Shi, Y. Tetrahedron, 2001, 57, 5213-5218.

R1R2

R3O

O

O

OO

OOR1

R2

R3

O OO

OO

OO

O OO

OO

OO

O

H

CH3

N H

H3C

O

NH2

H3C OOH

NH

O OO

OO

OOH

OCH3

NH

1

4 2

3

Comparison Between H2O2 and KHSO5 asOxidant

R1

R2

R3

O

O

OO

OO

H2O2CH3CN-K2CO3

R1

R2

R3O1 H2O2

Ph

PhPh

PhPh

Ph

Ph

KHSO5

Entry Substrate Yield (ee) (%) Yield (ee) (%)

1. 93 (92) 94 (96)

90 (98) 85 (98)

94 (95) 89 (96)

94 (98) 94 (98)

98 (95)88 (89)

2.

3.

4.

5.

Shu, L.; Shi, Y. Tetrahedron, 2001, 57, 5213-5218

First Reported Chiral Aldehydes for theEpoxidation of Olefins

PhPh

CHOOBn , KHSO5

PhPhO

CH3CN, 0 oC, 2h pH 10.5

1

O OO

OO

CHOOBn

O OO

OO

CHOOH

O

OO

O O

O

OH

3 42

Bez, G.; Zhao, C. Tetrahedron Letter, 2003, 44, 7403-7406.

PhPh

PhPhPh

Ph

Ph

(R)

(R)

(R)

(S)

(S)

Entry Substrate Catalyst yield (ee) (%) Config.

1. 2 16 (63.5) (R,R)

3 54 (93.5) (R,R)

4 31 (39) (R,R)

2.

3.

4. 2 8 (81)

3 8 (92)

4 4 (36)

5.

6.

7. 2 14 (70) (R,R)

8. 2 28 (48) (R,R)

3 12 (67) (R,R)9.

10 2 50 (18)

11. 3 36 (18)

OH

Ph

Transition State Analysis

O OO

OO

CHOOBn

O OO

OO

CHOOH

O

OO

O O

O

OH

3 42

O O

OO

OOO

H

HPh

Ph

O O

OO

OOO

H

H

PhPh

PhH

HPh

O

HPh

PhH

O

(R,R)Favored

(S,S)

Disfavored

Bez, G.; Zhao, C. Tetrahedron Letter, 2003, 44, 7403-7406.

Conclusion

Advantages1. High catalytic activity of ketone catalyst was achieved.2. High level of enantioselectivity was achieved.

Disadvantages1. Broad generality of substrates couldn’t be achieved.

Acknowledgement

• Prof. Babak Borhan• Prof. W. H. Reusch• Prof. J. E. Jackson• Prof. W. D. Wulff• Chrysoula, Courtney, Dan, Jennifer, Jun, Marina,

Montserrat, Stewart, Tao, Shang• Vijay, Keith