the!effects!of!transcranial!directcurrents*mulaon!and ... · !introduc*on!!! •...

1
Introduc*on There are two inherent interlimb coordina*on pa5erns: inphase and an*phase. Individuals must overcome the intrinsic tendency towards inphase and an*phase, as a result 90° con*nuous rela*ve phase requires prac*ce to learn. The amount of feedback provided during prac*ce influences reten*on. o Reduced frequency of Lissajous feedback improves bimanual performance (3). The supplementary motor area (SMA) plays a vital role in interlimb coordina*on. SMA neurons respond more than movements with either hand individually. Through the use transcranial direct current s*mula*on (tDCS), the excitability of cor*cal areas can be altered by passing small electrical currents between the electrodes on the scalp (2). This s*mula*on will influence motor behaviour and learning. o Ac*va*on in SMA is associated with the planning of selfini*ated and externally generated movements (1). Research Ques*on Will changes be made in performance and/or the learning of a novel bimanual coordina*on pa5ern with modula*on of SMA excitability and feedback? The effects of transcranial direct current s*mula*on and feedback on learning a novel bimanual coordina*on pa5ern Michelle Nguyen 1 , Michael J. Carter 1 , Dana Maslovat 2 , and Anthony N. Carlsen 1 1. School of Human Kine2cs, University of O;awa 2. School of Kinesiology, University of Bri2sh Columbia Discussion and Conclusion During prac*ce trials (Figure 3), tDCS appears to have a strong effect on learning, especially when paired with full feedback. When performing a 24hour reten*on test, Lissajous feedback presented in a faded schedule facilitated the reten*on of the bimanual coordina*on pa5ern with a 90° rela*ve phase, demonstra*ng a stronger effect on learning. In conclusion, the effects of tDCS appear to be temporary as the effects are predominant on the same day as the tDCS protocol. However, the influence of the feedback schedule presented became more evident on the second day (24hour reten*on). Further research Extend prac*ce *me from 5 minutes to 20 minutes, or extending prac*ce over mul*ple days. Unilateral s*mula*on of le‘ or right SMA o Determine differences in performance when one hemisphere is s*mulated Acknowledgements The University of O5awa’s Undergraduate Research Opportunity Program (UROP) for suppor*ng this research. The Natural Sciences and Engineering Research Council (ANC). UROP supervisor Dr. Anthony Carlsen. Results 0 10 20 30 40 50 60 70 80 1 2 3 4 5 6 7 8 9 10 RMSE of rela,ve phase Prac,ce Trial Anodal Full Sham Full Anodal Faded Sham Faded Figure 3. Root mean square error (RMSE) for the ten prac*ce trials performed by four different groups (anodal full, sham full, anodal faded, and sham faded). Performance improves in all four groups from ini*al trials. 0 20 40 60 80 100 120 140 160 RMSE of rela,ve phase Reten,on Test Anodal Full Sham Full Anodal Faded Sham Faded Figure 4. Root mean square error (RMSE) for the four reten*on tests (immediate with no feedback, immediate with feedback, 24 hour with no feedback, and 24hour with feedback) performed by the four groups (anodal full, sham full, anodal faded, and sham faded). Performance improves as feedback becomes available. References 1. Cunnington, R., Windischberger, C., Deecke, L., & Moser, E. (2002). The prepara*on and execu*on of selfini*ated and externallytriggered movement: a study of eventrelated fMRI. Neuroimage, 15(2), 373385. 2. Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., ... & Tergau, F. (2005). Modula*ng parameters of excitability during and a‘er transcranial direct current s*mula*on of the human motor cortex. The Journal of physiology, 568(1), 291303. 3. Kovacs, A. J., & Shea, C. H. (2011). The learning of 90 con*nuous rela*ve phase with and without Lissajous feedback: external and internally generated bimanual coordina*on. Acta psychologica, 136(3), 311320. Figure 2. Lissajous feedback projected on the computer screen. The white circle is the pacing circle while the green circle is the par*cipants cursor. Figure 1. Par*cipants sat facing a computer screen with both arms fixed to perform the 90° rela*ve phasing task. Par*cipants could not view their limbs. Methodology 20 righthanded par*cipants were randomly assigned to one of four groups: o Anodal full feedback (100%) o Sham full feedback (100%) o Anodal faded feedback (50%) o Sham faded feedback (50%) Par*cipants were instructed to a5empt to con*nuously flex and extend their arms in a pa5ern that produces a rela*ve phasing of 90° between the limbs with a cycle frequency of 1 Hz. o The 90° rela*ve phasing is achieved by leading with the right limb and having the le‘ limb lagging by a quarter of a cycle. The apparatus (Figure 1) consisted of two horizontal levers, a computer display and a cover that prevented par*cipants from viewing their limbs. Tes,ng Pretest Two 15 second trials: one with no feedback and the other with Lissajous feedback (Figure 2). tDCS protocol Two scalp electrodes were placed on the SMA and the forehead of participants. Direct current of 1 mA was applied for 10 minutes, with an 8 minute wait afterwards. Practice 10 trials, 30 seconds each. Either full feedback or faded feedback o Faded feedback schedule: 252520201515101055 seconds, then disappears for each consecutive trial. Posttest Two 15 second trials identical to pretest. Retention test Two 15 second trials identical to pretest performed 24hours later.

Upload: others

Post on 24-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The!effects!of!transcranial!directcurrents*mulaon!and ... · !Introduc*on!!! • There!are!two!inherent interlimb! coordinaon!paerns:! inphase!and! an*phase.!Individuals!mustovercome!the!

 Introduc*on      •  There  are  two  inherent  interlimb  

coordina*on  pa5erns:  inphase  and  an*phase.  Individuals  must  overcome  the  intrinsic  tendency  towards  inphase  and  an*phase,  as  a  result  90°  con*nuous  rela*ve  phase  requires  prac*ce  to  learn.    

•  The  amount  of  feedback  provided  during  prac*ce  influences  reten*on.    o  Reduced  frequency  of  Lissajous  

feedback  improves  bimanual  performance  (3).  

•  The  supplementary  motor  area  (SMA)  plays  a  vital  role  in  inter-­‐limb  coordina*on.  SMA  neurons  respond  more  than  movements  with  either  hand  individually.      

•  Through  the  use  transcranial  direct  current  s*mula*on  (tDCS),  the  excitability  of  cor*cal  areas  can  be  altered  by  passing  small  electrical  currents  between  the  electrodes  on  the  scalp  (2).  This  s*mula*on  will  influence  motor  behaviour  and  learning.    o  Ac*va*on  in  SMA  is  associated  with  the  

planning  of  self-­‐ini*ated  and  externally  generated  movements  (1).  

     

Research  Ques*on      Will  changes  be  made  in  performance  and/or  the  learning  of  a  novel  bimanual  coordina*on  pa5ern  with  modula*on  of  SMA  excitability  and  feedback?    

 

The  effects  of  transcranial  direct  current  s*mula*on  and    feedback  on  learning  a  novel  bimanual  coordina*on  pa5ern  

Michelle  Nguyen1,  Michael  J.  Carter1,  Dana  Maslovat2,  and  Anthony  N.  Carlsen1  1.  School  of  Human  Kine2cs,  University  of  O;awa  

             2.  School  of  Kinesiology,  University  of  Bri2sh  Columbia  

Discussion  and  Conclusion  

   •  During  prac*ce  trials  (Figure  3),  tDCS  

appears  to  have  a  strong  effect  on  learning,  especially  when  paired  with  full  feedback.  

   •  When  performing  a  24-­‐hour  reten*on  test,  

Lissajous  feedback  presented  in  a  faded  schedule  facilitated  the  reten*on  of  the  bimanual  coordina*on  pa5ern  with  a  90°  rela*ve  phase,  demonstra*ng  a  stronger  effect  on  learning.    

 •  In  conclusion,  the  effects  of  tDCS  appear  to  

be  temporary  as  the  effects  are  predominant  on  the  same  day  as  the  tDCS  protocol.  However,  the  influence  of  the  feedback  schedule  presented  became  more  evident  on  the  second  day  (24-­‐hour  reten*on).    

       

Further  research      •  Extend  prac*ce  *me  from  5  minutes  to  20  

minutes,  or  extending  prac*ce  over  mul*ple  days.  

•  Unilateral  s*mula*on  of  le`  or  right  SMA  o  Determine  differences  in  performance  

when  one  hemisphere  is  s*mulated  

Acknowledgements    •  The  University  of  O5awa’s  Undergraduate  

Research  Opportunity  Program  (UROP)  for  suppor*ng  this  research.  

•  The  Natural  Sciences  and  Engineering  Research  Council  (ANC).  

•  UROP  supervisor  Dr.  Anthony  Carlsen.  

Results  

0  

10  

20  

30  

40  

50  

60  

70  

80  

1   2   3   4   5   6   7   8   9   10  

RMSE  of  rela,

ve  pha

se  

Prac,ce  Trial  

Anodal  Full  Sham  Full  Anodal  Faded  Sham  Faded  

Figure  3.  Root  mean  square  error  (RMSE)  for  the  ten  prac*ce  trials  performed  by  four  different  groups  (anodal  full,  sham  full,  anodal  faded,  and  sham  faded).  Performance  improves  in  all  four  groups  from  ini*al  trials.    

0  

20  

40  

60  

80  

100  

120  

140  

160  

RMSE  of  rela,

ve  pha

se  

Reten,on  Test  

Anodal  Full  Sham  Full  Anodal  Faded  Sham  Faded  

Figure  4.  Root  mean  square  error  (RMSE)  for  the  four  reten*on  tests  (immediate  with  no  feedback,  immediate  with  feedback,  24-­‐hour  with  no  feedback,  and  24-­‐hour  with  feedback)  performed  by  the  four  groups  (anodal  full,  sham  full,  anodal  faded,  and  sham  faded).  Performance  improves  as  feedback  becomes  available.  

 

References  1.    Cunnington,  R.,  Windischberger,  C.,  Deecke,  L.,  &  Moser,  E.  (2002).  The  prepara*on  and  execu*on  of  self-­‐ini*ated  and  externally-­‐triggered  movement:  a  study  of  event-­‐related  fMRI.  Neuroimage,  15(2),  

373-­‐385.  2.  Nitsche,  M.  A.,  Seeber,  A.,  Frommann,  K.,  Klein,  C.  C.,  Rochford,  C.,  Nitsche,  M.  S.,  ...  &  Tergau,  F.  (2005).  Modula*ng  parameters  of  excitability  during  and  a`er  transcranial  direct  current  s*mula*on  of  

the  human  motor  cortex.  The  Journal  of  physiology,  568(1),  291-­‐303.  3.  Kovacs,  A.  J.,  &  Shea,  C.  H.  (2011).  The  learning  of  90  con*nuous  rela*ve  phase  with  and  without  Lissajous  feedback:  external  and  internally  generated  bimanual  coordina*on.  Acta  psychologica,  136(3),  

311-­‐320.        

Figure  2.  Lissajous  feedback  projected  on  the  computer  screen.  The  white  circle  is  the  pacing  circle  while  the  green  circle  is  the  par*cipants  cursor.  

Figure  1.  Par*cipants  sat  facing  a  computer  screen  with  both  arms  fixed  to  perform  the  90°  rela*ve  phasing  task.  Par*cipants  could  not  view  their  limbs.    

Methodology      •  20  right-­‐handed  par*cipants  were  randomly  

assigned  to  one  of  four  groups:  o  Anodal  full  feedback  (100%)  o  Sham  full  feedback  (100%)  o  Anodal  faded  feedback  (50%)  o  Sham  faded  feedback  (50%)  

•  Par*cipants  were  instructed  to  a5empt  to  con*nuously  flex  and  extend  their  arms  in  a  pa5ern  that  produces  a  rela*ve  phasing  of  90°  between  the  limbs  with  a  cycle  frequency  of  1  Hz.  o  The  90°  rela*ve  phasing  is  achieved  by  

leading  with  the  right  limb  and  having  the  le`  limb  lagging  by  a  quarter  of  a  cycle.    

•  The  apparatus  (Figure  1)  consisted  of  two  horizontal  levers,  a  computer  display  and  a  cover  that  prevented  par*cipants  from  viewing  their  limbs.    

 Tes,ng    Pre-­‐test    

•  Two  15  second  trials:  one  with  no  feedback  and  the  other  with  Lissajous  feedback  (Figure  2).    

   tDCS  protocol   •  Two  scalp  electrodes  were  

placed  on  the  SMA  and  the  forehead  of  participants.  

•  Direct  current  of  1  mA  was  applied  for  10  minutes,  with  an  8  minute  wait  afterwards.    

   Practice  

•  10  trials,  30  seconds  each.  •  Either  full  feedback  or  faded  feedback    o Faded  feedback  schedule:  25-­‐25-­‐20-­‐20-­‐15-­‐15-­‐10-­‐10-­‐5-­‐5  seconds,  then  disappears  for  each  consecutive  trial.  

   Post-­‐test  

•  Two  15  second  trials  identical  to  pre-­‐test.        

Retention  test   •  Two  15  second  trials  identical  to  

pre-­‐test  performed  24-­‐hours  later.