thermal analysis and design - umd · 2020. 11. 3. · thermal analysis and design enae 483/788d -...

46
Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Analysis and Design Lecture #19 – November 3, 2020 Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures • Conduction Thermal system components 1 © 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: others

Post on 02-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thermal Analysis and Design• Lecture #19 – November 3, 2020 • Fundamentals of heat transfer • Radiative equilibrium • Surface properties • Non-ideal effects

    – Internal power generation – Environmental temperatures

    • Conduction • Thermal system components

    1

    © 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

    http://spacecraft.ssl.umd.edu

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Mid-Term Exam• Thursday 11/5 on Gradescope • Calculator • Open notes • On lectures 1-11 • Remind me ([email protected]) if you have an

    accommodation

    2

    mailto:[email protected]

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Venus Fly-By Mission (TuTh 11:00-12:15)

    3

    Avionics, Flight Software, and SimulationBenz HuynhJoshua MartinMatthew PalmerCrew SystemsThara KonduriUgonna EmukaYash MehtaLoads, Structures, and MechanismsIan DownSam ShresthaStella HurttThanushree Manjunath

    Mission Planning and AnalysisBrent JonesHenry HoverJuan RodriguezLauren MeyersPower, Propulsion, and ThermalNil PatelSean BohonSystems IntegrationAidan WallaceMax DeBelloRachel HarveyWilliam Kleyman

    Lead Instructor: Becnel

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Human Mission to Ceres (TuTh 5-6:15)

    4

    Avionics, Flight Software, and SimulationGalen BascomMatthew RozekSean O'ConnorCrew SystemsAerik MoitraGismarie BermudezKhushbu JainMichael NearyLoads, Structures, and MechanismsAmelia CherianFarouk TijaniJack HamrockMicah Calderwood

    Mission Planning and AnalysisAnusha DixitChristian OlsonJessica BleichRachel CuevaPower, Propulsion, and ThermalChase McConvilleRichard FrancisWilliam BernlohrSystems IntegrationAdam SchneiderJonathan MolterRyan RuschakShailesh Murali

    Lead Instructor: Young

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Mars Ascent Vehicle (MW 12:00-1:15)

    5

    Avionics, Flight Software, and SimulationAndre NadeauGiovanna AmorimGregory YuCrew SystemsAlexandria SpittelMarco NavarroNnamdi ChimarokeLoads, Structures, and MechanismsBrian KatulaCooper TeichElizabeth Barranco

    Mission Planning and AnalysisChristopher KlugHridoy Stanislaus RozarioIan BannonKirtan PatelSaatwik BandyopadhyayPower, Propulsion, and ThermalKenth Santibanez RiveraShiv PatelStefan FasanoSystems IntegrationBenjamin BrotsmanChinmay SevakKyle CallaghanRaghav Srivastava

    Lead Instructors: Akin/Bowden

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Lunar Habitat (MW 3:30-4:45)

    6

    Avionics, Flight Software, and SimulationAndrew DenbyLee Berny GifwandiMuhammad A. KhalidCrew SystemsBailey KonoldMatthew BernsteinRyland LillibridgeThomas SkinnerVandan PatelLoads, Structures, and MechanismsEthan StowellNicholas ParkerNicolas Bolatto

    Mission Planning and AnalysisCollin MillerEthan KramerImran KhawajaJaime Callejon HierroJaylen NathwaniJayson DeNovellisPower, Propulsion, and ThermalAutumn RussellEdward ToccoSystems IntegrationGilad GenslerJessica QueenKatherine Taylor

    Lead Instructors: Akin/Bowden

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Classical Methods of Heat Transfer• Convection

    – Heat transferred to cooler surrounding gas, which creates currents to remove hot gas and supply new cool gas

    – Don’t (in general) have surrounding gas or gravity for convective currents

    • Conduction – Direct heat transfer between touching components – Primary heat flow mechanism internal to vehicle

    • Radiation – Heat transferred by infrared radiation – Only mechanism for dumping heat external to vehicle

    7

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Ideal Radiative Heat TransferPlanck’s equation gives energy emitted in a specific

    frequency by a black body as a function of temperature

    (Don’t worry, we won’t actually use this equation for anything…)

    8

    eλb =2πhC20

    λ5 [exp ( −hC0λkT ) − 1]

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    The Solar Spectrum

    Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

    9

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Ideal Radiative Heat TransferPlanck’s equation gives energy emitted in a specific

    frequency by a black body as a function of temperature

    • Stefan-Boltzmann equation integrates Planck’s equation over entire spectrum

    (“Stefan-Boltzmann Constant”)

    10

    eλb =2πhC20

    λ5 [exp ( −hC0λkT ) − 1]

    σ = 5.67x10−8W

    m2K4Prad = σT4

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thermodynamic Equilibrium• First Law of Thermodynamics

    heat in -heat out = work done internally • Heat in = incident energy absorbed • Heat out = radiated energy • Work done internally = internal power used

    (negative work in this sense - adds to total heat in the system)

    Q −W = dUdt

    11

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Radiative Equilibrium Temperature• Assume a spherical black body of radius r • Heat in due to intercepted solar flux

    • Heat out due to radiation (from total surface area)

    • For equilibrium, set equal

    • 1 AU: Is=1394 W/m2; Teq=280°K

    Qin = Isπ r2

    Qout = 4π r2σT 4

    Isπ r2 = 4π r2σT 4 ⇒ Is = 4σT

    4

    Teq =Is4σ#

    $ %

    &

    ' (

    14

    12

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Effect of Distance on Equilibrium Temp

    Mercury

    PlutoNeptuneUranus

    SaturnJupiter

    Mars

    Earth

    Venus

    Asteroids

    13

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Shape and Radiative Equilibrium• A shape absorbs energy only via illuminated faces • A shape radiates energy via all surface area • Basic assumption made is that black bodies are

    intrinsically isothermal (perfect and instantaneous conduction of heat internally to all faces)

    14

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Effect of Shape on Black Body Temps

    15

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Incident Radiation on Non-Ideal BodiesKirchkoff ’s Law for total incident energy flux on solid bodies:

    where – α =absorptance (or absorptivity) – ρ =reflectance (or reflectivity) – τ =transmittance (or transmissivity)

    QIncident =Qabsorbed+Qreflected +Qtransmitted

    QabsorbedQIncident

    +QreflectedQIncident

    +QtransmittedQIncident

    =1

    α ≡QabsorbedQIncident

    ; ρ ≡QreflectedQIncident

    ; τ ≡ QtransmittedQIncident

    16

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Non-Ideal Radiative Equilibrium Temp• Assume a spherical body of radius r • Heat in due to intercepted solar flux

    • Heat out due to radiation (from total surface area)

    • For equilibrium, set equal

    Qin = Isαπ r2

    Qout = 4π r2εσT 4

    Isαπ r2 = 4π r 2εσT4 ⇒ Is = 4

    εασT 4

    Teq =αεIs4σ

    %

    & '

    (

    ) *

    14

    (ε = “emissivity” - efficiency of surface at radiating heat)

    17

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Effect of Surface Coating on Temperature

    ε = emissivity

    α =

    abs

    orpt

    ivit

    y

    18

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Non-Ideal Radiative Heat Transfer• Full form of the Stefan-Boltzmann equation

    where Tenv=environmental temperature (=4°K for space)

    • Also take into account power used internally

    Prad =εσA T4 −Tenv

    4( )

    Isα As + Pint =εσArad T4 − Tenv

    4( )

    19

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Example: AERCam/SPRINT• 30 cm diameter sphere • α=0.2; ε=0.8 • Pint=200W • Tenv=280°K (cargo bay

    below; Earth above) • Analysis cases:

    – Free space w/o sun – Free space w/sun – Earth orbit w/o sun – Earth orbit w/sun

    20

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    AERCam/SPRINT Analysis (Free Space)• As=0.0707 m2; Arad=0.2827 m2

    • Free space, no sun

    21

    Pint = εσAradT4 ⇒ T =200W

    0.8 (5.67 × 10−8 Wm2K4 ) (0.2827m2)

    1/4

    = 354∘K

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    AERCam/SPRINT Analysis (Free Space)• As=0.0707 m2; Arad=0.2827 m2

    • Free space with sun

    Isα As + Pint = εσAradT4 ⇒ T = Isα As + Pint

    εσArad

    &

    ' (

    )

    * +

    14

    = 362°K

    22

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    AERCam/SPRINT (LEO Cargo Bay)• Tenv=280°K • LEO cargo bay, no sun

    • LEO cargo bay with sun

    Pint =εσArad T4 − Tenv

    4( )⇒ T = 200W0.8 5.67 ×10−8 W

    m 2°K 4'

    ( )

    *

    + , 0.2827m2( )

    + (280°K)4

    '

    (

    ) ) ) ) )

    *

    +

    , , , , ,

    14

    = 384°K

    Isα As + Pint =εσArad T4 − Tenv

    4( )⇒ T = Isα As + PintεσArad

    + Tenv4

    '

    ( ) )

    *

    + , ,

    14

    = 391°K

    23

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Radiative Insulation• Thin sheet (mylar/kapton with

    surface coatings) used to isolate panel from solar flux

    • Panel reaches equilibrium with radiation from sheet and from itself reflected from sheet

    • Sheet reaches equilibrium with radiation from sun and panel, and from itself reflected off panel

    Is

    Tinsulation Twall

    24

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Multi-Layer Insulation (MLI)• Multiple insulation

    layers to cut down on radiative transfer

    • Gets computationally intensive quickly

    • Highly effective means of insulation

    • Biggest problem is existence of conductive leak paths (physical connections to insulated components)

    Is

    25

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Emissivity Variation with MLI Layers

    26

    Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Finer Detail on Effective Emissivity

    27

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Estimating Function for MLI

    28

    ✏eff =

    ✓2n

    ✏mylar� n� 1 + 1

    ✏1+

    1

    ✏2

    ✏mylar = 0.03

    n = number of MLI layers

    ✏1 = emissivity of coating on side 1

    ✏2 = emissivity of coating on side 2

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    MLI Thermal Conductivity

    Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

    29

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Effect of Ambient Pressure on MLI

    30

    Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Silica Aerogel Insulation

    31

    Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    1D Conduction• Basic law of one-dimensional heat conduction

    (Fourier 1822)

    where K=thermal conductivity (W/m°K) A=area dT/dx=thermal gradient

    Q = −KAdTdx

    32

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    3D ConductionGeneral differential equation for heat flow in a solid

    where g(r,t)=internally generated heat ρ=density (kg/m3) c=specific heat (J/kg°K) K/ρc=thermal diffusivity

    33

    ∇2T(r, t) +g(r, t)

    K=

    ρcK

    ∂T(r, t)∂t

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Simple Analytical Conduction Model• Heat flowing from (i-1) into (i)

    • Heat flowing from (i) into (i+1)

    • Heat remaining in cell

    TiTi-1 Ti+1

    Qin = −KATi − Ti−1Δx

    Qout = −KATi+1 −TiΔx

    Qout −Qin =ρcK

    Ti( j +1) − Ti( j)Δt

    … …

    34

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Finite Difference Formulation• Time-marching solution

    where

    • For solution stability,

    α =k

    ρCv= thermal diffusivityd =

    α∆t

    ∆x2

    Tn+1i

    = Tni + d(Tn

    i+1 − 2Tn

    i + Tn

    i−1)

    ∆t <∆x2

    35

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thermal Control Elements• Passive systems

    – Coatings – Heat shunts – Multilayer insulation – Heat pipes

    • Active systems – Heaters – Louvers – Pumped fluid loops

    36

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Heat Pipe Schematic

    37

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thermal Louvers

    38

    Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Pumped Fluid Loops

    39

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Shuttle Thermal Control Components

    40

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Shuttle Thermal Control System Schematic

    41

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    ISS Radiator Assembly

    42

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Case Study: ECLIPSE Thermal Analysis• Developed by

    UMd SSL for NASA ESMD

    • Minimum functional habitat element for lunar outpost

    • Radiator area - upper dome and six upper cylindrical panels

    43

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    ECLIPSE Heat Sources• Solar heat load (modeling habitat as right circular

    cylinder)

    • Electrical power load = 4191 W • Metabolic work load (4 crew) = 464 W

    44

    Qsolar = Ailluminated�Is

    Ailluminated = ⌅d sin� +14⇥d2 cos �

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thermal Modeling for Lunar Surface• Assume upper dome radiates only to deep space • Assume side panels radiate half to deep space and

    half to lunar surface • Assume (conservatively) that lunar surface radiates

    as a black body

    45

    Qinternal + Qsolar = �⇥⇤AdomeT

    4rad + nradApanel

    �T 4rad �

    12T 4moon

    ⇥⌅

    Trad =⇤

    1Adome + nradApanel

    �Qinternal + Qsolar

    �⇥+

    12nradAwallT

    4moon

    ⇥⌅ 14

  • Thermal Analysis and Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    ECLIPSE Thermal Results

    46