thermal design matthieu gasquet cranfield university / rutherford appleton laboratory

21
Thermal Design Matthieu GASQUET Cranfield University / Rutherford Appleton Laboratory Coseners House July 9th 2002 EUS consortium meeting

Upload: pillan

Post on 01-Feb-2016

62 views

Category:

Documents


0 download

DESCRIPTION

Thermal Design Matthieu GASQUET Cranfield University / Rutherford Appleton Laboratory. Coseners House July 9th 2002. EUS consortium meeting. Topics. EUS Thermal environment & requirements Steady State thermal analysis Transient thermal analysis Parameters Results Conclusion. - PowerPoint PPT Presentation

TRANSCRIPT

  • Thermal Design

    Matthieu GASQUET

    Cranfield University / Rutherford Appleton Laboratory

    Coseners HouseJuly 9th 2002EUS consortium meeting

  • TopicsEUS Thermal environment & requirements

    Steady State thermal analysis

    Transient thermal analysisParameters Results

    Conclusion

  • Thermal Environment(1/2)During the nominal phase (0.2 to 0.8 A.U.), heat load varies from 2200W/m2 to 34000W/m2

    Graph1

    33569.59094

    32291.94278

    30392.45598

    28124.9802

    25722.45326

    23358.16422

    21139.52701

    19120.16377

    17316.95835

    15724.94619

    14327.92072

    13105.1012

    12034.9331

    11097.04225

    10273.09432

    9547.04797

    8905.097225

    8335.471605

    7828.186102

    7374.788154

    6968.123634

    6602.130458

    6271.661639

    5972.335766

    5700.412054

    5452.686389

    5226.405191

    5019.194028

    4828.998405

    4654.034693

    4492.749255

    4343.784423

    4205.950065

    4078.199695

    3959.610471

    3849.366265

    3746.743359

    3651.098334

    3561.857713

    3478.509154

    3400.59391

    3327.700325

    3259.458259

    3195.534259

    3135.627406

    3079.465632

    3026.802635

    2977.41509

    2931.100228

    2887.673749

    2846.967979

    2808.830212

    2773.121282

    2739.714314

    2708.493582

    2679.353522

    2652.197863

    2626.938817

    2603.49642

    2581.797904

    2561.777137

    2543.374149

    2526.534712

    2511.20993

    2497.355922

    2484.933532

    2473.908033

    2464.248944

    2455.929788

    2448.927957

    2443.22455

    2438.804266

    2435.65529

    2433.769243

    2433.141116

    2433.769243

    2435.65529

    2438.804266

    2443.22455

    2448.927957

    2455.929788

    2464.248944

    2473.908033

    2484.933532

    2497.355922

    2511.20993

    2526.534712

    2543.374149

    2561.777137

    2581.797904

    2603.49642

    2626.938817

    2652.197863

    2679.353527

    2708.493582

    2739.714314

    2773.121282

    2808.830212

    2846.967979

    2887.673749

    2931.100222

    2977.41509

    3026.802635

    3079.465634

    3135.627404

    3195.534265

    3259.458259

    3327.700328

    3400.59391

    3478.509158

    3561.857713

    3651.09833

    3746.743359

    3849.366261

    3959.610465

    4078.199689

    4205.950065

    4343.784429

    4492.74925

    4654.034693

    4828.998405

    5019.194028

    5226.405191

    5452.686389

    5700.412054

    5972.335777

    6271.661646

    6602.130458

    6968.123634

    7374.788165

    7828.186113

    8335.471605

    8905.097238

    9547.04797

    10273.09431

    11097.04225

    12034.9331

    13105.10121

    14327.92075

    15724.94619

    17316.9583

    19120.16377

    21139.52701

    23358.16422

    25722.45326

    28124.98023

    30392.45598

    32291.94272

    33569.59094

    34021.72998

    Heat Load Vs Days

    Days from Perihelion

    Heat load (W/m2)

    heat_load_time_function

    DAY 133569.59094

    32291.94278

    30392.45598

    28124.9802

    DAY 525722.45326

    23358.16422

    21139.52701

    19120.16377

    17316.95835

    DAY 1015724.94619

    14327.92072

    13105.1012

    12034.9331

    11097.04225

    DAY 1510273.09432

    9547.04797

    8905.097225

    8335.471605

    7828.186102

    DAY 207374.788154

    6968.123634

    6602.130458

    6271.661639

    5972.335766

    DAY 255700.412054

    5452.686389

    5226.405191

    5019.194028

    4828.998405

    DAY 304654.034693

    4492.749255

    4343.784423

    4205.950065

    4078.199695

    DAY 353959.610471

    3849.366265

    3746.743359

    3651.098334

    3561.857713

    DAY 403478.509154

    3400.59391

    3327.700325

    3259.458259

    3195.534259

    DAY 453135.627406

    3079.465632

    3026.802635

    2977.41509

    2931.100228

    DAY 502887.673749

    2846.967979

    2808.830212

    2773.121282

    2739.714314

    DAY 552708.493582

    2679.353522

    2652.197863

    2626.938817

    2603.49642

    DAY 602581.797904

    2561.777137

    2543.374149

    2526.534712

    2511.20993

    DAY 652497.355922

    2484.933532

    2473.908033

    2464.248944

    2455.929788

    DAY 702448.927957

    2443.22455

    2438.804266

    2435.65529

    2433.769243

    DAY 752433.141116

    2433.769243

    2435.65529

    2438.804266

    2443.22455

    DAY 802448.927957

    2455.929788

    2464.248944

    2473.908033

    2484.933532

    DAY 852497.355922

    2511.20993

    2526.534712

    2543.374149

    2561.777137

    DAY 902581.797904

    2603.49642

    2626.938817

    2652.197863

    2679.353527

    DAY 952708.493582

    2739.714314

    2773.121282

    2808.830212

    2846.967979

    DAY 1002887.673749

    2931.100222

    2977.41509

    3026.802635

    3079.465634

    DAY 1053135.627404

    3195.534265

    3259.458259

    3327.700328

    3400.59391

    DAY 1103478.509158

    3561.857713

    3651.09833

    3746.743359

    3849.366261

    DAY 1153959.610465

    4078.199689

    4205.950065

    4343.784429

    4492.74925

    DAY 1204654.034693

    4828.998405

    5019.194028

    5226.405191

    5452.686389

    DAY 1255700.412054

    5972.335777

    6271.661646

    6602.130458

    6968.123634

    DAY 1307374.788165

    7828.186113

    8335.471605

    8905.097238

    9547.04797

    DAY 13510273.09431

    11097.04225

    12034.9331

    13105.10121

    14327.92075

    DAY 14015724.94619

    17316.9583

    19120.16377

    21139.52701

    23358.16422

    DAY 14525722.45326

    28124.98023

    30392.45598

    32291.94272

    33569.59094

    DAY 15034021.72998

    heat_load_time_function

    Heat Load Vs Days

    Days from Perihelion

    Heat load (W/m2)

  • EUS thermal requirements (1/2)The Radiator Area is limited by the footprint of the EUS casing (1.4m x 0.4m = 0.56m2)

    Coatings, and in particular multilayer coatings applied on mirrors have to be maintained in a reasonable range of temperature ( below 100C )

    The EUS should be cooled as much as possible with a passive control system because of the limited mass and power budget ( also more reliable):Radiators, Multi Layer Insulation, Thermal control coatings,

  • EUS thermal requirements (2/2)A small part of energy has to reach the detector ( few Watts)Materials used for mirror and structure have to be thermally stable:

  • Steady State analysis (1/3)Assumptions:

    Based on the worst hot case: 34000 W/m2Radiator temperature fixed to 50 CMirrors and Heat Stop temperature fixed to 61 CNo view factors between the heat shield and the radiators

  • Steady State analysisGrazing incidence telescope

    M1 absorptivity0,10M2 absorptivity0,70rastering mirror absorptivity0,25total heat absorption on M1 (W)10,23total heat absorption on M2 (W)61,24total heat absorption on rastering mirror (W)0,66heat load coming from the rastering mirror to the slit 1,97Minimum Total radiator area (m2)0,125

  • Telescope design(2/2)Off-axis design

    The off-axis design is the most challenging one from a thermal point of view

    M1 absorptivity0,10heat stop absorptivity0,70heat stop transmissivity0,05M2 absorptivity0,83total heat absorption on M1 (W)26,30total heat absorption on heat stop (W)165,69total heat absorption on M2 (W)9,82heat load coming from M2 to the slit 2,01Minimum Total radiator area (m2)0,349

  • Transient simulationBased on the Off-axis telescope designMade with ESARAD/ESATAN and I-DEASThe simulation is based on the nominal phase orbit ( 0.2 to 0.8 A.U)The heat load is applied to the heat shield and the primary mirrorThere is no physical contact between the heat shield and the rest of the spacecraft

  • The geometric model (1/2)Different parts have been modeled:The heat shield The telescope casingThe mirrors and the heat stopThe radiators for the primary mirror and the heat stop

  • The geometric model (2/2)The area of the radiator has been fixed to the results given by the worst hot case steady state calculation:0.39 m2 for the M1 radiator area0.01 m2 for the heat stop radiator area

  • Model descriptionDifferent coatings are applied on each face of the parts to control the temperature

  • Thermal strategies

    Three parameters have been studied in this simulation:

    the emissivity of the telescope casing and heat shield

    The absolute conductance between M1 and its radiator

    The absorptivity of M1

  • Results (1/4)M1 temperature without radiator:

  • Results (2/4)M1 temperature with a conductance of 0.5 W/C between the radiator and M1, a high emissive coating and M1 either lowly or highly absorptive:

  • Results (3/4)M1 temperature with a low emissive coating on the heat shield, M1 lowly absorptive, and a conductance of 50 W/C.

  • Results (4/4)M1 temperature with a high emissive coating (MLI) on the telescope, M1 either lowly or highly absorptive, and a conductance of 50 W/C

  • Comments With a good absolute conductance and a large radiator, it seems that the thermo-optical properties of M1 dont have a big impact on its temperature.With a high emissive coating on the telescope casing and heat shield, the maximum temperature limit is in the requirements, but it is oscillating a lot.

  • Comments necessary to put heat switches or Variable conductance heat pipe to control the temperature with a better accuracy

    Temperature (C)Absolute Conductance (W/K)-2000.01-200.0100.5101.0150100

    Graph2

    0.01

    0.01

    0.5

    1

    100

    Conductance VS Temperature

    Conductance VS Temperature

    Feuil1

    -2000.01

    -200.01

    00.5

    101

    150100

    Feuil1

    Conductance VS Temperature

    Feuil2

    Feuil3

  • Future workHeat shield thermal analysis and designDetailed analysis of the temperature mapping on M1Variable conductance heat pipe implementationParametric study of the model with Radiator area

  • conclusionImportance of heat shield thermal properties and mechanical mounting.The off-axis design seems feasible from a thermal point of view provided that:the heat shieldis conductively isolatedthe required thermo-optical properties (alpha and epsilon) are achieved on the heat shield at the elevated temperaturesthe required radiator area is accommodated the necessary thermal links are provided between the M1 mirror and its radiator