thermodynamic properties of fluids

Upload: vinoth-malaikani

Post on 03-Jun-2018

254 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Thermodynamic Properties of Fluids

    1/70

    1

    ThermodynamicProperties of FluidsDr.Sininart Chongkhong A Dao

    ChE. PSU.

  • 8/12/2019 Thermodynamic Properties of Fluids

    2/70

    2

    Purpose of this Chapter To develop from the first and second laws the fundamental

    property relations which underlie the mathematical structure

    of thermodynamics.

    Derive equations which allow calculation of enthalpy and

    entropy values from PVT and heat capacity data.

    Discuss diagrams and tables by which property values

    are presented for convenient use.

    Develop generalized correlations which provideestimated of property values in he absence of completeexperimental information.

  • 8/12/2019 Thermodynamic Properties of Fluids

    3/70

    3

    Property Relations for Homogeneous Phases

    Fundamental Properties

    Although this equation is derived from the special case of areversible process, it not restricted in application toreversible process.

    It applies to any process in a system of constant mass thatresults in a differential change form one equilibrium state to

    another. The system many consist of a single phase or several

    phases; may be chemically inert or may undergo chemicalreaction.

    nVPdnSTdnUd

    dWdQnUd revrev

    )(

    (6.1)

  • 8/12/2019 Thermodynamic Properties of Fluids

    4/70

    4

    Define

    H = Enthalpy

    A = Helmholtz energy

    G = Gibbs energy

    PVUH

    TSUA

    TSHG

    (2.11)

    (6.2)

    (6.3)

  • 8/12/2019 Thermodynamic Properties of Fluids

    5/70

    5

    Based on one mole (or to a unit mass) of a

    homogeneous fluid of constant composition,

    they simplified to

    SdTVdPdG

    SdTPdVdA

    VdPTdSdH

    PdVTdSdU

  • 8/12/2019 Thermodynamic Properties of Fluids

    6/70

    6

    Maxwells equaitons

    TP

    TV

    PS

    VS

    PS

    TV

    V

    S

    T

    PS

    V

    P

    T

    SP

    VT

  • 8/12/2019 Thermodynamic Properties of Fluids

    7/70

    7

    Enthalpy and Entropy as Functions of T and P Temperature derivatives:

    T

    C

    T

    S

    CTH

    P

    P

    P

    P

    Pressure derivatives:

    PT

    PT

    T

    VTV

    P

    H

    T

    V

    P

    S

  • 8/12/2019 Thermodynamic Properties of Fluids

    8/70

    8

    The most useful property relations for the enthalpy

    and entropy of a homogeneous phase result when

    these properties are expressed as functions of Tand P (how H and S vary with T and P).

    dPT

    V

    T

    dTCdS

    dPTVTVdTCdH

    PP

    P

    p

    (6.21)(6.20)

  • 8/12/2019 Thermodynamic Properties of Fluids

    9/70

    9

    Property Relations for Homogeneous PhasesInternal Energy as Function of P

    The pressure dependence of the internal energy

    is shown as

    PdVTdsdU

    TPT P

    VP

    T

    VT

    P

    U

  • 8/12/2019 Thermodynamic Properties of Fluids

    10/70

    10

    Property Relations for Homogeneous PhasesThe Ideal Gas State

    For ideal gas, expressions of dH and dS

    (eq.6.20-6.21) as functions of T and P can besimplified to as follows:

    (6.24)

    (6.23)

    P

    dPR

    T

    dTCdS

    dTCdH

    P

    R

    T

    VRTPV

    ig

    P

    ig

    ig

    P

    ig

    P

    ig

    ig

  • 8/12/2019 Thermodynamic Properties of Fluids

    11/70

    11

    Property Relations for Homogeneous PhasesAlternative Forms for Liquids

    Relations of liquids can be expressed in terms

    of and as follows:

    VTPP

    U

    VT

    P

    H

    VPS

    T

    T

    T

    1

  • 8/12/2019 Thermodynamic Properties of Fluids

    12/70

    12

    Property Relations for Homogeneous PhasesAlternative Forms for Liquids

    Enthalpy and entropy as functions of T and P

    as follows:

    and are weak functions of pressure forliquids, they are usually assumed constant at

    appropriate average values for integration.

    )....(VdP

    T

    dTCdS

    )....(VdPTdTCdH

    P

    P

    296

    2861

  • 8/12/2019 Thermodynamic Properties of Fluids

    13/70

    13

    Example 6.1Determine the enthalpy and entropy changes of liquid water for

    a change of stagefrom 1 bar 25C to 1,000 bar 50C.

    T(C) P(bar) Cp(Jmol-1K-1 V(cm3mol-1) (K-1)25

    25

    50

    50

    1

    1,000

    1

    1,000

    75.305

    75.314

    18.071

    18.012

    18.234

    18.174

    256x10-6

    366x10-6

    458x10-6

    568x10-6

  • 8/12/2019 Thermodynamic Properties of Fluids

    14/70

    14

  • 8/12/2019 Thermodynamic Properties of Fluids

    15/70

    15

    166

    13

    11

    10513102

    568458

    204.182

    174.18234.18

    ,50

    310.752

    314.75305.75

    ,1

    K

    molcmV

    CTforand

    KJmolC

    barPFor

    p

    121

    2

    12212

    ln

    1

    PPV

    T

    TCS

    PPVTTTCH

    p

    p

  • 8/12/2019 Thermodynamic Properties of Fluids

    16/70

    16

    11

    6

    1

    6

    13.593.006.6

    10

    1000,1204.1810513

    15.298

    15.323ln310.75

    400,3517,1883,1

    10

    1000,1204.1815.32310513115.29815.323310.75

    KJmol

    S

    Jmol

    H

    121

    2

    12212

    ln

    1

    PPV

    T

    TCS

    PPVTTTCH

    p

    p

    Note that the effect of P of almost 1,000 bar on H and S of liquid water

    is less than that of T of only 25C.

  • 8/12/2019 Thermodynamic Properties of Fluids

    17/70

    17

    Property Relations for Homogeneous Phases

    Internal Energy and Entropy as Function of T and V Useful property relations for T and V as independent

    variables are

    V

    VT

    V

    V

    T

    P

    P

    T

    PT

    V

    U

    TC

    TS

  • 8/12/2019 Thermodynamic Properties of Fluids

    18/70

    18

    The Partial derivatives dU and dS of homogeneous fluids

    of constant composition to temperature and volume are

    Alternative forms of the above equations are

    dVT

    P

    T

    dTCdS

    dVPTPTdTCdU

    V

    V

    V

    V

    dVT

    dTCdS

    dVPTdTCdU

    V

    V

  • 8/12/2019 Thermodynamic Properties of Fluids

    19/70

    19

    Property Relations for Homogeneous PhasesThe Gibbs Energy as a Generating Function

    An alternative form of a fundamental property relation asdefined in dimensionless terms:

    The Gibbs energy when given as a function of T and Ptherefore serves as a generating function for the otherthermodynamic properties, and implicitly representscomplete information.

    P

    T

    P

    RTGT

    RT

    H

    P

    RTG

    RT

    V

    dTRT

    HdP

    RT

    V

    RT

    Gd

    2

  • 8/12/2019 Thermodynamic Properties of Fluids

    20/70

    20

    Residual Properties The definition for the generic residual property is:

    M is the molar value of any extensive thermodynamics

    property: V, U, H, S, G.

    M, Mig= the actual and ideal gas properties which are atthe same temperature and pressure.

    igR

    MMM

  • 8/12/2019 Thermodynamic Properties of Fluids

    21/70

    21

    Residual gibbs energy:

    G, Gig= the actual and ideal gas values of the Gibbs

    energy at the same temperature and pressure.

    Residual volume:

    igR

    GGG

    1

    ZP

    RTV

    P

    RTVVVV

    R

    igR

  • 8/12/2019 Thermodynamic Properties of Fluids

    22/70

    22

    Fundamental property relation for residual properties The fundamental property relation for residual

    preperties applies to fluids of constant composition.

    ).(

    T

    RT/GT

    RT

    H

    ).(P

    RT/G

    RT

    V

    ).(dTRT

    HdP

    RT

    V

    RT

    Gd

    P

    RR

    T

    RR

    RRR

    446

    436

    4262

  • 8/12/2019 Thermodynamic Properties of Fluids

    23/70

    23

    )48.6()()1(,

    )46.6();44.645.6.(

    0)45.6()1(

    )(),43.6.(

    00

    0

    000

    0

    TconstP

    dPZ

    P

    dP

    T

    ZT

    R

    SSo

    RT

    G

    RT

    H

    RT

    SFrom

    PdP

    TZT

    RTHEq

    RT

    Ggasidealfor

    P

    dPZdP

    RT

    V

    RT

    G

    RT

    G

    TconstdPRT

    V

    RT

    GdEqFrom

    P

    P

    PR

    RRR

    P

    PR

    P

    RP

    RP

    P

    RR

    RR

  • 8/12/2019 Thermodynamic Properties of Fluids

    24/70

    24

    Enthalpy and Entropy from Residual Properties

    ).(SPPlnRdTCSS

    ).(HdTCHH;onSubstituti

    P

    P

    lnRdTCSSdTCHH

    );.(and)..(EqofnIntegratio

    SSSHHH;SandHtoApplied

    RT

    T

    ig

    P

    ig

    RT

    T

    ig

    P

    ig

    T

    T

    ig

    P

    igigT

    T

    ig

    P

    igig

    RigRig

    516

    506

    246236

    0

    0

    0

    0

    00

    0

    0

    00

  • 8/12/2019 Thermodynamic Properties of Fluids

    25/70

    25

    2

    2112

    21

    21

    2

    12

    00

    0

    00

    2

    1

    2

    1

    43

    536

    526

    TT

    DCTTBTA

    R

    C

    )T/Tln(

    T

    dTC

    C

    TT

    D)TTT(

    CBTA

    R

    C

    TT

    dTC

    C

    ).(SP

    P

    lnRT

    T

    lnCSS

    ).(H)TT(CHH

    lmamlm

    SP

    T

    T

    ig

    P

    SP

    amam

    HP

    T

    T

    ig

    P

    HP

    R

    SP

    igig

    R

    HP

    igig

    The true worth of the Eq. for ideal gases is now evident.

    They are important because they provide a convenient basefor the calculation of real-gas properties.

  • 8/12/2019 Thermodynamic Properties of Fluids

    26/70

    26

    Example 6.3

    Calculate H and S of saturated isobutane vapor at 630 Kfrom the following information:

    1. Table 6.1 gives compressibility-factor data

    2. The vapor pressure of isobutane at 630 K 15.46 bar

    3. Set H0ig= 18,115 Jmol-1and S0

    ig= 295.976 Jmol-1K-1

    for the ideal-gas reference state at 300 K 1 bar4. Cp

    ig/R = 1.7765+33.037x10-3T (T/K)

  • 8/12/2019 Thermodynamic Properties of Fluids

    27/70

    27

  • 8/12/2019 Thermodynamic Properties of Fluids

    28/70

    28

    Solution 6.3

    Eqs. (6.46) and (6.48) are used to calculate HRand SR.

    Plot (Z/T)P/P and (Z-1)/P vs. P

    From the compressibility-factor data at 360 K (Z-1)/P

    The slope of a plot of Z vs. T (Z/T)P/P

    Data for the required plots are shown in Table 6.2.

    P

    dPZ

    P

    dP

    T

    Z P

    P

    P

    )1(00

  • 8/12/2019 Thermodynamic Properties of Fluids

    29/70

    29

  • 8/12/2019 Thermodynamic Properties of Fluids

    30/70

    30

    11

    1

    11

    4

    0

    14

    0

    7345314868970

    38412360314894930

    3148

    689702596094930486

    94930103726360466

    259601103726

    KJmol...S

    Jmol.,..H

    KJmol.RFor

    ...R

    S

    ),.(.EqBy

    .).)((RT

    H),.(.EqBy

    .P

    dP)Z(K.

    P

    dP

    T

    Z

    R

    R

    R

    R

    P

    P

    P

  • 8/12/2019 Thermodynamic Properties of Fluids

    31/70

    31

    11

    1

    11

    11

    01

    01

    10

    3

    3

    676286734541153148300

    36016105576295

    559821284123003604110511518

    516506

    16105314864912

    41105314867912

    09329300360

    300360

    3302

    360300

    2

    100373377651

    100373377651

    KJmol...ln.)ln(..S

    Jmol.,.,)(.,H

    ).(and)..(EqointSubstitute

    KJmol.).(.C

    KJmol.).(.C

    K.)/ln()T/Tln(

    TTT

    KTT

    T

    T..BTA

    R

    C

    T..BTAR

    C

    S

    ig

    P

    H

    ig

    P

    lm

    am

    lmlm

    S

    ig

    P

    amam

    H

    ig

    P

  • 8/12/2019 Thermodynamic Properties of Fluids

    32/70

    32

    Residual Properties by Equations of StateResidual Properties from the Virial Equation of State The two-term virial eq.gives Z-1 = BP/RT.

    )56.6(),47.6.(int

    )55.6(/

    ),44.6.(

    )54.6(,

    dTdB

    RP

    RSEqoonSubstituti

    dT

    dB

    T

    B

    R

    P

    T

    RTGT

    RT

    HEqBy

    RT

    BP

    RT

    GSo

    R

    P

    RR

    R

  • 8/12/2019 Thermodynamic Properties of Fluids

    33/70

    33

    In application is a more convenient variable than V,

    PV = ZRT is written in the alternative form.

    ).(d

    )Z(d

    T

    ZTZln

    R

    S),..(EqFrom

    ).(Zd

    T

    ZT

    RT

    H);.(and)..(EqoftionDifferenti

    T

    )RT/G(

    T

    P

    P

    Z

    RT

    H),.(and)..(EqFrom

    ).(ZlnZd

    )Z(RT

    G);..(EqointSubstitue

    Z

    dZd

    P

    dP)dZZd(RTdP),.(RTZP

    R

    R

    RR

    R

    6061476

    5961586576

    1426406

    58611496

    576

    00

    0

    2

    0

  • 8/12/2019 Thermodynamic Properties of Fluids

    34/70

    34

    The three-term virial equation.

    )63.6(2

    1ln

    )62.6(

    2

    1

    )61.6(ln2

    32

    ).60.6()58.6.(int1

    2

    2

    2

    2

    dT

    dC

    T

    C

    dT

    dB

    T

    BTZ

    R

    S

    dT

    dC

    T

    C

    dT

    dB

    T

    BT

    RT

    H

    ZCBRT

    G

    throughEqosubstituedisCBZ

    R

    R

    R

    Application of these equations, useful for gases up tomoderate pressure, requiresdata for both the second andthird virial coefficients.

    R id l P ti b C bi E ti f St t

  • 8/12/2019 Thermodynamic Properties of Fluids

    35/70

    35

    Residual Properties by Cubic Equations of State

    I

    dT

    dq

    T

    Z,qI)bln(;simplifyTo

    )b)(b(

    )b(d

    dT

    dq

    T

    Z)b)(b(

    )b(dq

    b

    )b(d

    b

    b

    );.(),.(

    )b)(b(b

    dTdq

    TZ

    ).()b)(b(

    bq

    b

    bZ

    )b)(b(

    bqbZ

    )...(Eq,/VeRTy)..(Eq

    dd1)-(Z

    d

    d1)-(Z

    Eqs.ofintegralsThe

    bygivenqassubstitutandbdevides

    0

    0

    0

    00

    0 0

    1

    11

    111

    606586

    11

    646111

    1

    111

    1

    5131423

  • 8/12/2019 Thermodynamic Properties of Fluids

    36/70

    36

    The generic equation of state presents two cases.

    Zb

    bI:

    )b.(

    Z

    ZlnI

    bZwhenceRT

    PZ

    )a.(b

    b

    lnI:

    1

    6561

    656

    1

    11

    IICase

    RT

    bP

    Z.offavorineliminatedisWhen

    ICase

  • 8/12/2019 Thermodynamic Properties of Fluids

    37/70

    37

    )68.6(ln

    )(ln)ln(

    )67.6(1ln

    )(ln1

    )66.6()ln(1

    )66.6()1ln(1

    qITd

    TdZ

    R

    S

    qITdTdZ

    RTH

    bqIZZZRT

    G

    aqIZbZ

    RT

    G

    r

    r

    R

    r

    r

    R

    R

    R

  • 8/12/2019 Thermodynamic Properties of Fluids

    38/70

    38

    Find values for the HRand SRfor n-butane gas at 500 K

    50 bar as given by the Redlich/Kwong Eequation.

    Solution

    Tr= 500/425.1 = 1.176, Pr= 50/37.96 = 1.317

    From Table 3.1:

    8689.3176.108664.0

    42748.0);54.3.(

    09703.0176.1

    317.108664.0);53.3.(

    2/3

    r

    r

    r

    r

    T

    TqEq

    T

    PEq

    Ex. 6.4

  • 8/12/2019 Thermodynamic Properties of Fluids

    39/70

    39

    Z

  • 8/12/2019 Thermodynamic Properties of Fluids

    40/70

    40

    11

    1

    546.6)78735.0(314.8

    505,40838.1500314.8,

    78735.013247.0)8689.3(5.0)09703.06850.0ln(:)68.6.(

    0838.1)13247.0)(8689.3)(15.0(16850.0:)67.6.(

    :.21ln/)(ln,ln

    21)(ln

    13247.0ln

    68500

    )09703.0(

    09703.009703.08689.309703.01

    1:)52.3.(

    KJmolS

    JmolHThus

    R

    SEq

    RT

    HEq

    ThenTdTdTTWith

    Z

    ZI

    Then:..ZyieldsEq.thisofSolution

    ZZ

    Z

    ZZ

    ZqZEq

    R

    R

    R

    R

    rrrr

  • 8/12/2019 Thermodynamic Properties of Fluids

    41/70

    41

    These results are compared with those of othercalculation in Table 6.3.

  • 8/12/2019 Thermodynamic Properties of Fluids

    42/70

    42

    TWO-PHASE SYSTEMS

    ).(ZR

    H

    )T/(d

    Plndor

    ).(ZRT

    HdTPlndZ

    PRTVBut

    ).(VT

    H

    dT

    dP;vaportoliquidfromtransitionPhase

    equationClapeyronThe:).(VTH

    dTdPT/HS,Thus

    )transitionphaseofheatlatentThe(STH);..(EqofnIntegratio

    V

    S

    VV

    SS

    dT

    dP,tarrangemenRe

    dTSdPVdTSdPVdGdG,GG

    l

    lsat

    l

    lsat

    l

    sat

    l

    l

    lsat

    sat

    sat

    satsat

    7461

    736

    726

    716

    86

    2

    The Clapeyron eq.

    for pure-speciesvaporization

  • 8/12/2019 Thermodynamic Properties of Fluids

    43/70

    43

    Temperature Dependence of the VaporPressure of Liquids

    r

    .

    r

    sat

    rr

    sat

    sat

    Twhere

    ).(

    DCBA

    )T(Pln;ToffunctionA

    B.App,.BTableingivenaretstanconsAntoine

    ).(CT

    BAPln:.eqAntoineThe

    T

    BAPln

    1

    7761

    2

    766

    6351

    C di St t C l ti

  • 8/12/2019 Thermodynamic Properties of Fluids

    44/70

    44

    Corresponding-States Correlationsfor Vapor Pressure

    :

    :

    )81.6()(ln

    )(lnln

    )80.6(43577.0ln4721.136875.15

    2518.15)(ln

    )79.6(169347.0ln28862.109648.6

    92714.5)(ln

    )78.6()(ln)(ln)(ln

    :/

    1

    0

    61

    60

    10

    sat

    r

    r

    rr

    rr

    sat

    r

    rr

    r

    rr

    rr

    r

    rr

    rrrrr

    sat

    r

    n

    n

    n

    nn

    P

    T

    where

    TP

    TPP

    TTT

    TP

    TTT

    TPwhere

    TPTPTP

    ncorrelatioKeslerLee

    The reduced normal boiling pointThe reduced vapor pressure corresponding to 1 atm

    Ex. 6.6

  • 8/12/2019 Thermodynamic Properties of Fluids

    45/70

    45

    Ex. 6.6Determine the vapor pressure for liquid n-hexane at 0, 30,

    60 and 90C: (a) With constants from App. B.2.

    (b) From the Lee/Kesler correlation for Pr

    sat

    Solution

    (a)

    (b) Eq.(6.78);

    From Table B.1,

    From Eq.(6.81) =0.298

    The average difference from the Antoine values is about 1.5%.

    317.224

    04.26968193.13ln

    tPsat

    03350.025.30

    01325.1,6736.06.507

    9.341

    satrr nn PT

    t/C Psat/kPa(Antoine)

    Psat/kPa(Lee/Kesler)

    t/C Psat/kPa(Antoine)

    Psat/kPa(Lee/Kesler)

    0

    606.052

    76.465.835

    76.1230

    9024.98

    189.024.49

    190.0

  • 8/12/2019 Thermodynamic Properties of Fluids

    46/70

    46

  • 8/12/2019 Thermodynamic Properties of Fluids

    47/70

    47

  • 8/12/2019 Thermodynamic Properties of Fluids

    48/70

    48

    Two-Phase Liquid/Vapor System

    )82.6(

    :.,,,,

    )82.6()1(

    :

    1)1(

    :

    )(

    bMxMM

    formealternativAnetcSHUVMwhere

    aMxMxM

    equationgenericThe

    xxVxVxV

    fractionmassxVxVxV

    molesnnnVnVnnV

    ll

    lv

    vllv

    ll

    vlll

    THERMODYNAMIC DIAGRAMS

  • 8/12/2019 Thermodynamic Properties of Fluids

    49/70

    49

    THERMODYNAMIC DIAGRAMS

  • 8/12/2019 Thermodynamic Properties of Fluids

    50/70

    50

    GENERALIZED PROPERTYCORRELATION FOR GASES

    )84.6()1(

    )83.6(

    :)48.6()46.6.(int

    ,

    00

    0

    2

    r

    r

    P

    r

    r

    P

    P

    r

    r

    R

    r

    r

    P

    P

    r

    r

    c

    R

    rcrcrcrc

    PdPZ

    PdP

    TZT

    RS

    P

    dP

    T

    ZT

    RT

    H

    andEqsosubstitue

    dTTdTTTTdPPdPPPP

    r

    r

    r

    r

    r

    10 ZZZ

  • 8/12/2019 Thermodynamic Properties of Fluids

    51/70

    51

    )86.6(

    1:)84.6.(

    )85.6(

    :)83.6.(

    10

    11

    0

    01

    0

    10

    0

    12

    0

    02

    10

    R

    S

    R

    S

    R

    S

    P

    dPZ

    T

    ZT

    P

    dPZ

    T

    ZT

    R

    SEq

    RT

    H

    RT

    H

    RT

    H

    P

    dP

    T

    ZT

    P

    dP

    T

    ZT

    RT

    HEq

    T

    Z

    T

    Z

    T

    ZZZZ

    RRR

    r

    r

    Pr

    r

    P

    r

    r

    Pr

    r

    PR

    c

    R

    c

    R

    c

    R

    r

    rP

    Pr

    r

    r

    rP

    Pr

    r

    c

    R

    PrPrPr

    r

    r

    r

    r

    r

    r

    r

    r

    rrr

    Table E.5 - E.12

  • 8/12/2019 Thermodynamic Properties of Fluids

    52/70

    52

    Analytical correlation of the residual properties at low pressure

  • 8/12/2019 Thermodynamic Properties of Fluids

    53/70

    53

    Analytical correlation of the residual properties at low pressure

    )88.6(

    )87.6(

    ,);56.6()55.6.(

    ,

    sec

    10

    11

    00

    1010

    rr

    r

    R

    r

    r

    r

    rr

    c

    R

    r

    r

    R

    r

    rr

    c

    R

    rrrc

    c

    dT

    Bd

    dT

    BdP

    R

    S

    dT

    BdTB

    dT

    BdTBP

    RT

    H

    dT

    BdP

    R

    S

    dT

    BdTBP

    RT

    HandEqs

    dT

    dB

    dT

    dB

    dT

    BdBB

    RT

    BPB

    formsncorrelatiotcoefficienvirialonddgeneralizeThe

  • 8/12/2019 Thermodynamic Properties of Fluids

    54/70

    54

    )90.6(

    722.0

    )89.6(675.0

    )66.3(172.0

    139.0

    )65.3(422.0

    083.0

    2.5

    1

    6.2

    0

    2.4

    1

    6.1

    0

    rr

    rr

    r

    r

    TdT

    dB

    TdT

    dB

    TB

    TB

  • 8/12/2019 Thermodynamic Properties of Fluids

    55/70

    55

    HRand SRwith ideal-gas heat capacities

    RT

    ig

    P

    igRT

    ig

    P

    ig HdTCHHHdTCHH 10

    012

    0

    02

    12

    )92.6(ln,

    )91.6(

    12

    1

    2

    12

    2

    1

    2

    1

    RR

    T

    T

    ig

    P

    RR

    T

    T

    igP

    SSP

    PRdTCSSimilarly

    HHdTCH

    For a change from state 1 to 2:

    The enthalpy change for the process, H = H2H1

    Alternative form

    )94.6(lnln

    )93.6()(

    12

    1

    2

    1

    2

    1212

    RR

    S

    ig

    P

    RR

    H

    ig

    P

    SSP

    PR

    T

    TCS

    HHTTCH

  • 8/12/2019 Thermodynamic Properties of Fluids

    56/70

    56

    A three-step calculational path

  • 8/12/2019 Thermodynamic Properties of Fluids

    57/70

    57

    A three step calculational path Step 11ig: A hypothetical process that transforms a real

    gas into an ideal gas at T1and P1.

    Step 1ig2ig: Changes in the ideal-gas state from (T1,P1)

    to (T2,P2).

    Step 2ig2: Another hypothetical process that transform

    the ideal gas back into a real gas at T2and P2.

    RigRig SSSHHH 111111

    )96.6(ln

    )95.6(

    1

    2

    12

    12

    2

    1

    2

    1

    P

    PR

    T

    dTCSSS

    dTCHHH

    T

    T

    ig

    P

    igigig

    T

    T

    ig

    P

    igigig

    RigRig SSSHHH222222

    E 6 9

  • 8/12/2019 Thermodynamic Properties of Fluids

    58/70

    58

    Ex. 6.9

    Estimate V, U, H and S for 1-butane vapor at 200C, 70 bar

    if H and S are set equal to zero for saturated liquid at 0C.Assume: Tc=420.0 K, Pc=40.43 bar, Tn=266.9 K, =0.191

    Cpig/R=1.967+31.630x10-3T-9.837x10-6T2 (T/K)

    Solution

    13

    10

    8.28770

    )15.473)(14.83(512.0

    512.0)142.0(191.0485.0

    ;4.3.)57.3.(

    731.143.40

    70127.1

    0.420

    15.273200

    molcmP

    ZRTV

    ZZZ

    EandETableandEq

    PT rr

  • 8/12/2019 Thermodynamic Properties of Fluids

    59/70

    59

  • 8/12/2019 Thermodynamic Properties of Fluids

    60/70

    60

    Step (a): Vaporization of saturated liquid 1-butane at 0C

  • 8/12/2019 Thermodynamic Properties of Fluids

    61/70

    61

    Step (a):Vaporization of saturated liquid 1 butane at 0 C

    The vapor pressure curve contains both

    The latent heat of vaporization, where Trn=266.9/420=0.636:

    )75.6(ln T

    BAPsat

    11.699,2126.10,0.420

    43.40lnint;

    9.2660133.1lnint;

    BAWhence

    BApocriticalthe

    BApoboilingnormalthe

    1137,229.266314.8979.9

    979.9636.0930.0

    )013.143.40(ln092.1930.0

    )013.1(ln092.1

    JmolH

    TP

    RTH

    lv

    n

    r

    c

    n

    lvn

    n

  • 8/12/2019 Thermodynamic Properties of Fluids

    62/70

    62

    11

    1

    380

    380

    8479

    15273

    81021

    810213680

    350013722

    1341

    1

    65004201527315273

    KJmol..

    ,

    T

    HS

    Jmol,.

    .),(H

    )....(T

    T

    H

    HFrom

    ./.TK.atheatlatentThe

    lv

    lv

    .

    lv

    .

    r

    r

    lv

    n

    lv

    r

    n

    Step (b): Transformation of saturated vapor into an ideal

  • 8/12/2019 Thermodynamic Properties of Fluids

    63/70

    63

    Step (b):Transformation of saturated vapor into an idealgas at (T1, P1).

    Tr= 0.650 and Pr= 1.2771/40.43 = 0.0316

    )88.6(

    )87.6(

    10

    11

    00

    rr

    r

    R

    r

    r

    r

    rr

    c

    R

    dT

    Bd

    dT

    Bd

    PR

    S

    dT

    BdTB

    dT

    BdTBP

    RT

    H

    )90.6(722.0

    )89.6(675.0

    )66.3(172.0

    139.0

    )65.3(

    422.0

    083.0

    2.5

    1

    6.2

    0

    2.4

    1

    6.1

    0

    rr

    rr

    r

    r

    TdT

    dB

    TdT

    dB

    TB

    TB

    11

    1

    1

    1

    88.0)314.8)(1063.0(

    344)420)(314.8)(0985.0(,

    KJmolS

    JmolHSo

    R

    R

    Step (c): Changes in the ideal gas state

  • 8/12/2019 Thermodynamic Properties of Fluids

    64/70

    64

    Step (c):Changes in the ideal gas state

    Tam= 373.15 K, Tlm= 364.04 K,

    A = 1.967, B = 31.630x10-3, C = -9.837x10-6

    Hig= 20,564 J mol-1

    Sig= 22.18 J mol-1K-1

    1

    2

    1

    2

    1

    2

    12

    1212

    2

    1

    2

    1

    966

    956

    P

    PlnR

    T

    TlnC

    P

    PlnR

    T

    dTCSSS:)..(Eq

    )TT(CdTCHHH:)..(Eq

    S

    ig

    P

    T

    T

    ig

    P

    igigig

    H

    ig

    P

    T

    T

    ig

    P

    igigig

    Step (d): Transformation from the ideal gas to real gas

  • 8/12/2019 Thermodynamic Properties of Fluids

    65/70

    65

    Step (d): Transformation from the ideal gasto real gasstate at T2and P2.

    Tr= 1.127 Pr= 1.731 At the higher P; Eqs.(6.85) and (6.86) with interpolated

    values from Table E.7, E.8, E.11 and E.12.

    1

    13

    11

    1

    11

    2

    1

    2

    2

    2

    218,3210

    )8.287)(70(233,34

    18.1418.22)88.0(84.79

    233,34485,8564,20)344(810,21

    18.14)314.8)(705.1(

    485,8)0.420)(314.8)(430.2(

    705.1)726.0)(191.0(566.1

    430.2)713.0)(191.0(294.2

    JmolbarJcm

    PVHU

    KJmolSS

    JmolHH

    KJmolS

    JmolH

    R

    S

    RT

    H

    R

    R

    R

    C

    R

  • 8/12/2019 Thermodynamic Properties of Fluids

    66/70

    Ex 6 10

  • 8/12/2019 Thermodynamic Properties of Fluids

    67/70

    67

    Ex. 6.10

    Estimate V, HR, and SRfor an equimolar mixture of

    carbon dioxide(1) and propane(2) at 450 K and 140 bar by

    the Lee/Kesler correlations.

    Solution

    From Table B.1,

    41.215.58

    140335.1

    0.337

    450,

    15.58)48.42)(5.0()83.73)(5.0(

    0.337)8.369)(5.0()2.304)(5.0(

    188.0)152.0)(5.0()224.0)(5.0(

    2211

    2211

    2211

    prpr

    ccpc

    ccpc

    PTWhence

    barPyPyP

    KTyTyT

    yy

  • 8/12/2019 Thermodynamic Properties of Fluids

    68/70

    68

  • 8/12/2019 Thermodynamic Properties of Fluids

    69/70

  • 8/12/2019 Thermodynamic Properties of Fluids

    70/70