thermoelectric and thermal rectification properties of quantum dot junctions david m t kuo 1 and...

40
Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering, Natio nal Central University, Taiwan 2:Research Center for Applied Science, Academ ic Sinica, Taiwan The detail can be found in PRB 81, 205321 (2010)

Upload: tyrone-tinsley

Post on 01-Apr-2015

220 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

Thermoelectric and thermal rectification properties of quantum dot junctions

David M T Kuo1 and Yia-Chung Chang2

1:Department of Electrical Engineering, National Central University, Taiwan

2:Research Center for Applied Science, Academic Sinica, Taiwan

The detail can be found in PRB 81, 205321 (2010)

Page 2: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

Urbana-2003-July

Page 3: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

References

• [1]A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, Energy Environ Science, 2, 466 (2009)

• [2]G. Mahan, B. Sales and J. Sharp, Physics Today,50, 42 (1997).• [3]R. Venkatasubramanian, E. Siivola,T. Colpitts,B. O'Quinn, Nature

413,597 (2001).”BiTe/SbTe quantum well superlattice”• [4]A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K.Yu, W. A. Godda

rd III and J. R. Heath, Nature, 451, 168(2008).”Silicon quantum wire”

• [5]T. C. Harman, P. J. Taylor, M. P. Walsh, B. E.LaForge, Science 297, 2229 (2002).”PbSeTe Quantum dot superlattice “

• [6]K. F. Hsu,S. Loo,F. Guo,W. Chen,J. S. Dyck,C. Uher, T. Hogan,E. K. Polychroniadis,M. G. Kanatzidis, Science 303, 818(2004)

• .[7]A. Majumdar, Science 303, 777 (2004).• [8]G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P.Fleurial and T. Ca

illat, International Materials Reviews,48, 45 (2003)• [9]Y. M. Lin and M. S. Dresselhaus, Phys. Rev. B 68, 075304 (2003).

Page 4: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

1:System

Amorphous insulator

Large intradot and interdot Coulomb interactions

Page 5: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

1-0:Fabrication

Page 6: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

1-1:Hamiltonian (Anderson model)

The key effects included are the intradot and interdotCoulomb interactions and the coupling between the QDs with the metallic leads

There is one energy level within each QD

Page 7: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

1-2:Nonequilibrium Green’s function technique

Ref[1]D. M. T. Kuo and Y. C. Chang, Phys. Rev. Lett. 99,086803(2007)

Ref[2]Y. C. Chang and D. M. T Kuo, Phys. Rev. B 77,245412 (2008)

)(Lf )(Rf

Page 8: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2:Linear response

ZT as a function of T for different detuning energies. Solid and dash lines correspond, respectively, without and with intradot Coulomb interactions .

EF

Eg

e

eTGSZT

2

Homogenous QD size, dilute QD density

1/ 0 TT

Ref[3]P. Murphy, S. Mukerjee, J. Morre, Phys. Rev. B 78, 161406 (2008).

Fg EE RL

0, ZT

Page 9: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2-1:Interdot Coulomb interactions

(a) (b) (c) (d)

Side view

Top view

High QD density

(a)

(b)(c )

(d)

0, ZT

Page 10: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2-2: ZT detuned by Eg

Noninteraction case

Eg

EFFg EE

High QD density

Page 11: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2-3: Inelastic scattering effect on ZT

QD size fluctuations, defects between metallic electrodesand insulators and electron-phonon interactions,

)()(

1)( ,,

iellg

l

ielg

lrl iUE

N

iE

NG

Page 12: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2-4: Electrical conductance, thermal power and thermal conductance

e

eTGSZT

2

These curves correspond to Fig.3.The temperature-dependence of ZT is similar to thatof the electrical conductivity.

Page 13: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2-5: Ge, S and Ke as a function of gate voltage

Ge: Coulomb oscillation S: Sawtooth-like shapeKe: Sensitive to T

30

Page 14: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2-6:Midway between the good and poor conductors

Page 15: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2.7 Without vacuum layer

0,L 0,RRLt ,

Page 16: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2.8 Different dot sizes

2nm

Page 17: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

2.9 Thickness of SiO2

Page 18: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

3-1:Thermal rectification effect

TL TR TL TR

0 RL TTT0 RL TTT

Two dot case

0,, ARLA

RBLB ,,

015 TkU BAB

030 TkUU BBA

)8.())()()()(1(/

)7.()]()(2)())(21)[(1(/

eqEfEfEENQ

eqUEfEUENEfEENNQ

BRBLFBBB

ABBLRFABBABLRFBABB

1/ 0 TT

Page 19: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

3-2: Thermal rectification efficiency(2 dots)

)0(

|)0(|)0(

TQ

TQTQQ

)0( TQ)0( TQ

TL TR TLTR

0,, ARLA

RBLB ,,

030 TkUU BBA

015 TkU BAB

Ref[4] R. Scheiber et al, New. J. Phys. 10, 083016 (2008)

Page 20: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

3-3: Thermal rectification (three QDs)

Dot A

015 TkUU BACAB

08 TkU BBC

40FA EE

80FB EE

120FC EE

Page 21: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

3-4:The shift of QD energy levels caused by electrochemical potential

TH TLTHTL

VHVLVH VL

TkU BBC 10

Solid curves includingDashed curves excluding

T

VS

Page 22: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

3-5: Interdot Coulomb interactions

Solid line UAC=15kBT0

Dashed line UAC=10kBT0

Dotted line UAC=5kBT0

Dot-Dashed line UAC=0

Page 23: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

3-6: Thermal rectification efficiency2 dots3 dots

Page 24: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4:Conclusion

(A) Figure of merit, ZT[1]The optimization of ZT depends not only on the temperature but a

lso on the detuning energy [2]Inelastic scattering effect of electron-phonon interactions, QD size

fluctuations, and defects lead to a considerable reduction to the ZT values

(B)Thermal rectification [1] Very strong asymmetrical coupling between the dots and the elect

rodes. [2] Large energy level separation between dots

[3]Strong interdot Coulomb interactions

Fg EE

Page 25: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4. Thermal rectification

Page 26: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4.1 Tunneling rates

0 RL VVV

TH TLTH

TL

0 RL VVV

Page 27: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4.2 Tuning energy level

Page 28: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4.3 Three-dots with uniform size

)0(

)0(

TQ

TQQ The dot-dashed line indicates the junction

system without asymmetrical heat current,when dots are identical.

Page 29: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4.4: Different sizes

)0(

)0(

TQ

TQQ

120

80

40

FC

FB

FA

EE

EE

EE

|)30(|

)30(

TQ

TQCa

)20(

)20(

TQ

TQCb

Page 30: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4.5 :Gate voltage

50geV 60geV 70geV

Page 31: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4.6: Interdot Coulomb interactions

Page 32: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

4.7:Energy level shifted by electrochemical potential

Page 33: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5:A single molecular QD

(a)Hard to scaling up the thermal devices.(b)Hard to integrate with silicon based electronics.

[1]P. Murphy, S.Mukerjee and J. Morre, Phys. Rev. B 78, 161406 (2008).

Page 34: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5.1: )()(),( TandTSTG ee

Page 35: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5.2:Detuning energy

Fd EE

Page 36: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5.3: )()(),( TandTSTG ee

Page 37: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5.4

Page 38: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5.5

Page 39: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5.6:

Page 40: Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,

5.7: S to resolve high order phonon assisted tunneling