thermofluid lab 2-part a

Upload: bennabdullah

Post on 07-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Thermofluid Lab 2-Part A

    1/19

    Thermal flu ids Lab-MEC 554/ Rev. 01-2016

    1

     

    UNIVERSITI TEKNOLOGI MARA 

    FACULTY OF

     MECHANICAL

     ENGINEERING

      ________________________________________________________________________ 

    Program  :  Bachelor Of  Engineering ( Hons ) Mechanical 

    Course  :  Thermalfluids Lab II 

    Code  :  MEC 554 

     ________________________________________________________________________ 

    TURBOMACHINARY 

    TITLE : Compressible flow in converging‐diverging nozzle 

    1. 

    OBJECTIVE 

      To study the pressure‐mass flow rate characteristic for convergent‐divergent duct. 

      To demonstrate the phenomena of  choking. 

    2.  THEORY 

  • 8/18/2019 Thermofluid Lab 2-Part A

    2/19

    Thermal flu ids Lab-MEC 554/ Rev. 01-2016

    2

     

  • 8/18/2019 Thermofluid Lab 2-Part A

    3/19

    Thermal flu ids Lab-MEC 554/ Rev. 01-2016

    3

     

  • 8/18/2019 Thermofluid Lab 2-Part A

    4/19

    Thermalf luids Lab-MEC 554/ Rev. 01-2016

    4

     

    3.  EQUIPMENT 

    The experiment

     apparatus

     consists

     of 

     a compressible

     flow

     bench

     equip

     with

     digital

     pressure

     sensors.

     

    4.  Experiment guidelines 

    Follow the instructions explain by the instructor regarding how to operate the experiment apparatus. 

    Before  starting  the  experiment,  make  sure  that  there  is  no  blockage  or  object  around  the  convergent‐

    divergent nozzle that will interfere with the air flow  into the nozzle. Connect the three pressure tap to the 

    appropriate pressure  sensors.  Start  the experiment  from  zero  velocity  and  then  increase  the  air  velocity 

    through  the nozzle  at  a  constant  increment  step  (eg. 200  rpm)  until  reaching  the maximum  air  velocity. 

    Make sure that you record the 3 pressure reading at the nozzle opening, throat and exit for each air velocity 

    step.  Repeat  the  experiment  by  decreasing  the  air  velocity  from  maximum  until  zero  velocity.  The  air 

    velocity can be adjusted by changing the rpm of  the air blower. 

    (Experimental   parameters  can  be  adjusted   according  to  the  conditions  and   available  apparatus  at   the 

    time the experiment  is conducted.) 

    5.  Data 

    1. 

    Calculate the mass flow rate values and the remaining parameters required using the formula 

    given. 

    2.  Plots the following graphs: 

    a.    vs (P0  – P2) b.  vs P2 c.

     

      vs (P0  – P3) 

    d.  vs P3 e.  (P0  – P2) vs (P0  – P3) 

    3. 

    Comment and analyze the graphs. Compared the maximum values for   and the minimum for P2/P0 from the trial with the theoretical values. 

  • 8/18/2019 Thermofluid Lab 2-Part A

    5/19

    Thermalf luids Lab-MEC 554/ Rev. 01-2016

    5

     

    Experiment ID:  Date: 

    Ambient air temperature :  Air density: 

    Atmospheric pressure :  Air specific heat ratio: 

    Convergent‐divergent nozzle specifications:

     

    No. 

    reading RPM  P1  P2  P3  (P0 ‐ P1)  (P0  – P2)  (P0  – P3)         2 1      [krpm]  [kg/s] 

  • 8/18/2019 Thermofluid Lab 2-Part A

    6/19

    Thermal flu ids Lab-MEC 554/ Rev. 01-2016

    1

     

    UNIVERSITI 

    TEKNOLOGI 

    MARA 

    FACULTY 

    OF 

    MECHANICAL 

    ENGINEERING  ________________________________________________________________________

     

    Program 

    Bachelor 

    Of  

    Engineering 

    Hons 

    Mechanical 

    Course  :  Thermalfluids Lab II 

    Code 

    MEC 

    554 

     ________________________________________________________________________ 

    TURBOMACHINARY 

    TITLE 

    Performance 

    of  

    Pump 

    1. 

    OBJECTIVE 

    To obtain the performance characteristics for a variable speed centrifugal pump operating at 3 different 

    impeller 

    speeds. 

    The 

    pump 

    performance 

    characteristics 

    that 

    will 

    be 

    study 

    are 

    pressure 

     jump, 

    power 

    requirement, flow rate influence and pump speed influence. 

    2.  THEORY 

  • 8/18/2019 Thermofluid Lab 2-Part A

    7/19

    Thermal flu ids Lab-MEC 554/ Rev. 01-2016

    2

     

  • 8/18/2019 Thermofluid Lab 2-Part A

    8/19

    Thermal flu ids Lab-MEC 554/ Rev. 01-2016

    3

     

  • 8/18/2019 Thermofluid Lab 2-Part A

    9/19

    Thermalf luids Lab-MEC 554/ Rev. 01-2016

    4

     

    3.  EQUIPMENT 

    The  experiment  apparatus  consists  of   a water  flow  bench  and  centrifugal  pump  rigged with  sensors  to 

    measures water pressure, flow‐rate, pump speed, pump torque and electric power consumed by the pump. 

    4.  Experiment guidelines 

    Follow the instructions explain by the instructor regarding how to operate the experiment apparatus. 

    Set  the bench  to only allow  the water  to  flow  through only one  centrifugal pump. Power on  the  correct 

    pump. Allow the system to reach a steady flow condition before recording the pressures, flow rate, pump 

    speed, pump torque and pump power. The speed of  the pump is control by rotating the pump speed control 

    dial on the control panel. To collect data for 3 different pump speeds, set the speed control dial to 100%, 

    75% and 50%. 

    For  every  pump  speed,  collect  at  least  5  data  points  based  on  variable  flow‐rate.  The  flow‐rate  can  be 

    adjusted using the water flow control valve situated at the highest point of  the bench. The flow meter can 

    be used as a guidance on setting the amount of  water flow passing through the pump. 

    (Experimental   parameters  can  be  adjusted   according  to  the  conditions  and   available  apparatus  at   the 

    time the experiment  is conducted.) 

    5.  Data 

    1.  Record the performance characteristic values in a table. Other performance characteristic that can 

    not be gained directly can be calculated using the formula given  in the theory section. (Be careful 

    on the parameters unit.) 

    2.  Plot  the  performance  graph  (Please  refer  to  the  graph  shown  in  the  theory  section).  The 

    performance curves that are of  interest are power curve, efficiency curve and pump head curve. 

    3. 

    Analyze and discuss the plots. 

  • 8/18/2019 Thermofluid Lab 2-Part A

    10/19

    Thermalf luids Lab-MEC 554/ Rev. 01-2016

    5

     

    Experiment ID:  Date: 

    Pump Speed, N:  rpm 

    rad/s 

    Water temperature : 

    Water density : 

    No. Electric 

    motor Pump Input  Pump output 

    Efficiency, 

    ηPower, 

    Pm 

    Torque, 

    Tshaft 

    Shaft 

    Power, 

    Wshaft 

    Volume 

    flow 

    rate, Q  

    Inlet pressure, 

    P1 

    Discharge 

    pressure, P2 

    Water 

    head, 

    hp 

    Output 

    power, 

    Pf  

    [kW]  [Nm]  [kW]  %  %  [m]  [kW]  [100%] 

  • 8/18/2019 Thermofluid Lab 2-Part A

    11/19

    Thermalf luids Lab-MEC 554/ Rev. 01-2016

    6

    Experiment ID:  Date: 

    Pump Speed, N:  rpm 

    rad/s 

    Water temperature : 

    Water density : 

    No. Electric 

    motor Pump Input  Pump output 

    Efficiency, 

    ηPower, 

    Pm 

    Torque, 

    Tshaft 

    Shaft 

    Power, 

    Wshaft 

    Volume 

    flow 

    rate, Q  

    Inlet pressure, 

    P1 

    Discharge 

    pressure, P2 

    Water 

    head, 

    hp 

    Output 

    power, 

    Pf  

    [kW]  [Nm]  [kW]  %  %  [m]  [kW]  [100%] 

  • 8/18/2019 Thermofluid Lab 2-Part A

    12/19

    Thermalf luids Lab-MEC 554/ Rev. 01-2016

    7

    Experiment ID:  Date: 

    Pump Speed, N:  rpm 

    rad/s 

    Water temperature : 

    Water density : 

    No. Electric 

    motor Pump Input  Pump output 

    Efficiency, 

    ηPower, 

    Pm 

    Torque, 

    Tshaft 

    Shaft 

    Power, 

    Wshaft 

    Volume 

    flow 

    rate, Q  

    Inlet pressure, 

    P1 

    Discharge 

    pressure, P2 

    Water 

    head, 

    hp 

    Output 

    power, 

    Pf  

    [kW]  [Nm]  [kW]  %  %  [m]  [kW]  [100%] 

  • 8/18/2019 Thermofluid Lab 2-Part A

    13/19

    Thermalf luids Lab-MEC 554/ LS 5/ Rev. 01-2016

    1

     UNIVERSITI TEKNOLOGI MARA

    FACULTY OF MECHANICAL ENGINEERING ________________________________________________________________________

    Program : Bachelor Of Engineering ( Hons ) MechanicalCourse : Thermalfluids Lab IICode : MEC 554

    HEAT TRANSFER LABORATORY SHEET

    TITLE : HEAT CONDUCTION SIMPLE BAR

    1. OBJECTIVE

    Investigate Fourier’s law for linear conduction of heat along a simple bar.

    2. THEORY

    If a plane wall of thickness (x) and area ( A) and thermal

    conductivity (k) supports a temperature difference (T) then theheat transfer rate by conduction is given by the equation:

    dx

    dT  Ak Q    

     Assuming a constant thermal conductivity throughout thematerial and a linear temperature distribution, this is:

     x

    T  Ak Q

     

    3. EQUIPMENT

    The equipment is shown in the figure below.

  • 8/18/2019 Thermofluid Lab 2-Part A

    14/19

    Thermalf luids Lab-MEC 554/ LS 5/ Rev. 01-2016

    2

    4. Experiment Guideline

    Select an intermediate position for the heater power control (e.g. 10 W) and allow sufficient time fora steady state to be achieved before recording the temperature (T) at all 9 sensor points (T1 to T9)

    and the input power reading on the wattmeter (Q ). Remember to measure the distance between

    each temperature sensors. This procedure should be repeated for other input powers (e.g. 20 Wand 30W) up to the maximum setting of the control. After each change, sufficient time must beallowed to achieve steady conditions.

    5. DATA

    HEATER SAMPLE REGION COOLER

    x (mm) 0 10 20 30 40 50 60 70 80

    x (m) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

    Test

    #

    Q  (W)

    T1

    (°C)

    T2

    (°C)

    T3

    (°C)

    T4

    (°C) 

    T5

    (°C) 

    T6

    (°C) 

    T7

    (°C) 

    T8

    (°C) 

    T9

    (°C) 

     A

    B

    C

    1. Plot the temperature profile along the entire length. This should reveal three distinct sections ofstraight lines (corresponding to the heater, brass sample, and cooler) having a slope of

    approximately T/x.2. Convert the measured temperatures to degrees Kelvin by the following formula:

    15.273

      C T K T   

    3. Calculate the cross-sectional area (A) of the circular cylinder by using the equation:

    2

    4d  A

        

     

    4. The brass sample region is the region of interest. Ignore all other temperature measurementsexcept T4, T5, and T6 and calculate the thermal conductivity of the brass. This is the slope of thestraight line in the brass sample region alone (plotted in 1), given by the equation:

    K m

    W units

     x

     A

    Qk 

     

    5. Find published values of brass in books or on the Internet. Compare the value you obtainedwith these values. Which type of brass does your results best compare with (e.g. yellow brass,red brass etc.)? Discuss any source of error in your measured results. Students shouldcomment on how changing the average temperature affects the thermal conductivity.

  • 8/18/2019 Thermofluid Lab 2-Part A

    15/19

    Thermalf luids Lab-MEC 554/ LS 5/ Rev. 01-2016

    3

     

    Experiment ID:

    HEATER SAMPLE REGION COOLER

    x (mm)

    x (m)

    Test

    #

    Q  (W)

    T1

    (°C)

    T2

    (°C)

    T3

    (°C)

    T4

    (°C) 

    T5

    (°C) 

    T6

    (°C) 

    T7

    (°C) 

    T8

    (°C) 

    T9

    (°C) 

  • 8/18/2019 Thermofluid Lab 2-Part A

    16/19

  • 8/18/2019 Thermofluid Lab 2-Part A

    17/19

    Thermalfluids Lab-MEC 554/ LS 4/ Rev. 01-2016

    2

    3. EQUIPMENT

    Control rectangular heated surfaces will be used to study heat transfer through forced convection.The surfaces are shown in the figure below. The finned surface consists of 9 fins that are each 0.1m high and 0.068 m wide. The pinned surface consists of 17 pins that each have a diameter of0.013 m and are 0.068 m long. (Make sure that you observed and take measurement of the surfacegeometry when you performed the experiment to confirmed the actual dimensions.)

    4. Experiment guidelines

    Place the heat exchanger into the test duct and record the ambient temperature (T ). Set the heaterpower control to 75 W. Allow the temperature to rise to 80°C then adjust the heater power control to20 W. This will prepare the heat exchanger for the experimental condition needed.To collect the heat exchanger surface temperature reading, start the stopwatch, wait 5 minute andrecord surface temperature (Ts).Repeat the steps above to obtained data for other conditions (eg. air velocity 0 m/s, 1 m/s, 2m/s….). To introduce air flow in the duct, turn the fan speed control to start the fan. Adjust the fanspeed control to give the desired air velocity. The air velocity can be measure using a thermalanemometer.

    The experiment can be repeated for different type of heat exchanger.

    (Experimental parameters can be adjusted according to the conditions and available apparatus at the time

     the experiment is conducted.)

  • 8/18/2019 Thermofluid Lab 2-Part A

    18/19

  • 8/18/2019 Thermofluid Lab 2-Part A

    19/19

    Thermalfluids Lab-MEC 554/ LS 4/ Rev. 01-2016

    Experiment ID:

    Surface geometry:

    Ambient airtemperature, T∞  :

    Power input,     :

    Air velocity [m/s] Heater Temperature,  Ts [

    0C]

    Ts - T∞  [0C] H [ W/(m·0C)]

    Experiment ID:

    Surface geometry:

    Ambient airtemperature, T∞  :

    Power input,     :

    Air velocity [m/s]Heater Temperature,

      Ts [0C]

    Ts - T∞  [0C] H [ W/(m·

    0C)]

    Experiment ID:

    Surface geometry:

    Ambient airtemperature, T∞  :

    Power input,     :

    Air velocity [m/s]Heater Temperature,

      Ts [0C]

    Ts - T∞  [0C] H [ W/(m·

    0C)]