the&sea$empress&incident&and&the&limpets&of&frenchman’s&steps,&...

15
ARCHERTHOMSON (2016). FIELD STUDIES (http://fsj.fieldstudiescouncil.org/) © Field Studies Council (02/09/2016) 1 THE SEA EMPRESS INCIDENT AND THE LIMPETS OF FRENCHMAN’S STEPS, TWENTY YEARS ON. JOHN ARCHERTHOMSON Honey Hook Cottage, Lower Freystrop, Haverfordwest, Pembrokeshire, SA62 4ET. UK Students and staff from FSC Dale Fort Field Centre have studied limpet populations on Frenchman’s Steps shore for over thirty years. Variations in population density and age structure have been measured and in particular the effects of the Sea Empress oil spill have been investigated. The oil pollution reduced the population density significantly and affected smaller (younger) limpets in particular, especially those on the lower half of the shore. Since then further changes in limpet population density have occurred. These are interpreted in the light of longterm oscillations in populations of barnacles and dogwhelks, which are related to the use (and subsequent banning) of TriButylTin antifouling paint. Longterm monitoring, using data collected by student groups, can be useful in highlighting variations in population density over time as well as being a worthwhile educational experience in its own right for the students and staff involved in the data collection. FIGURE 1. Frenchman’s Steps , Pembrokeshire (Grid Ref. SM822053). INTRODUCTION Limpets of the Genus Patella are very important organisms on European rocky shores. Their differential grazing activity on a wide range of microorganisms (biofilm) and seaweeds, including Fucus spp., and encrusting red seaweeds, affects the shore community so significantly that limpets have been called a “keystone species” in that their effect on community composition is greater than would be predicted from their abundance or biomass alone (Jenkins et al., 1999, Little et al., 2009). Factors that affect limpet abundance are therefore likely to affect the shore as a whole, which makes any longterm monitoring programme of limpets potentially interesting. Meaningful statements about the effect of an event on a rocky shore population depend on knowledge of what the population’s status was before the event. It is also imperative to know about “natural” variations in the population before deductions can be made concerning “unnatural” ones. However, very few suitable longterm data sets exist, for any ecosystem, to allow such deductions to be made with any confidence. When the Sea Empress oil spill occurred (see Figure 2) in February 1996, longterm data sets on the numbers and sizerange of the common limpet Patella vulgata L, collected by student groups from FSC Dale Fort, did exist. Details of the methodology are given below. Comparisons were made between pre and immediately postpollution results and the conclusions were presented in Field Studies (ArcherThomson, 1999). Useful background information on the effects of oil spills on rocky shores, the Sea Empress oil spill, chemical details of the oil and the biology of limpets can be found in this paper, but see Branch (1981) for a comprehensive overview of limpet biology and Crump et al.,

Upload: others

Post on 30-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

1  

THE  SEA  EMPRESS  INCIDENT  AND  THE  LIMPETS  OF  FRENCHMAN’S  STEPS,    TWENTY  YEARS  ON.  

 JOHN  ARCHER-­‐‑THOMSON  

Honey  Hook  Cottage,  Lower  Freystrop,  Haverfordwest,  Pembrokeshire,  SA62  4ET.  UK    

Students  and  staff  from  FSC  Dale  Fort  Field  Centre  have  studied  limpet  populations  on  Frenchman’s  Steps  shore  for  over  thirty  years.  Variations  in  population  density  and  age  structure  have  been  measured  and  in  particular   the   effects   of   the   Sea   Empress   oil   spill   have   been   investigated.   The   oil   pollution   reduced   the  population  density   significantly  and  affected   smaller   (younger)   limpets   in  particular,   especially   those  on  the  lower  half  of  the  shore.  Since  then  further  changes  in  limpet  population  density  have  occurred.  These  are  interpreted  in  the  light  of  long-­‐‑term  oscillations  in  populations  of  barnacles  and  dogwhelks,  which  are  related   to   the   use   (and   subsequent   banning)   of   Tri-­‐‑Butyl-­‐‑Tin   anti-­‐‑fouling   paint.   Long-­‐‑term  monitoring,  using  data  collected  by  student  groups,  can  be  useful  in  highlighting  variations  in  population  density  over  time   as   well   as   being   a   worthwhile   educational   experience   in   its   own   right   for   the   students   and   staff  involved  in  the  data  collection.  

 

   

FIGURE  1.  Frenchman’s  Steps  ,  Pembrokeshire  (Grid  Ref.  SM822053).    

INTRODUCTION    

Limpets   of   the   Genus   Patella   are   very   important   organisms   on   European   rocky   shores.   Their   differential  grazing  activity  on  a  wide  range  of  microorganisms  (biofilm)  and  seaweeds,  including  Fucus  spp.,  and  encrusting  red  seaweeds,  affects  the  shore  community  so  significantly  that  limpets  have  been  called  a  “keystone  species”  in  that  their  effect  on  community  composition  is  greater  than  would  be  predicted  from  their  abundance  or  biomass  alone  (Jenkins  et  al.,  1999,  Little  et  al.,  2009).  Factors  that  affect  limpet  abundance  are  therefore  likely  to  affect  the  shore  as  a  whole,  which  makes  any  long-­‐‑term  monitoring  programme  of  limpets  potentially  interesting.  

Meaningful   statements   about   the   effect   of   an   event   on   a   rocky   shore   population   depend   on   knowledge   of  what   the   population’s   status  was   before   the   event.   It   is   also   imperative   to   know   about   “natural”   variations   in   the  population  before  deductions  can  be  made  concerning  “unnatural”  ones.  However,  very  few  suitable  long-­‐‑term  data  sets  exist,  for  any  ecosystem,  to  allow  such  deductions  to  be  made  with  any  confidence.  

When  the  Sea  Empress  oil  spill  occurred  (see  Figure  2)  in  February  1996,  long-­‐‑term  data  sets  on  the  numbers  and   size-­‐‑range   of   the   common   limpet  Patella   vulgata  L,   collected   by   student   groups   from   FSC  Dale   Fort,   did   exist.    Details  of   the  methodology  are  given  below.  Comparisons  were  made  between  pre-­‐‑  and   immediately  post-­‐‑pollution  results  and  the  conclusions  were  presented  in  Field  Studies  (Archer-­‐‑Thomson,  1999).  Useful  background  information  on  the  effects  of  oil  spills  on  rocky  shores,  the  Sea  Empress  oil  spill,  chemical  details  of  the  oil  and  the  biology  of  limpets  can  be  found  in   this  paper,  but  see  Branch  (1981)   for  a  comprehensive  overview  of   limpet  biology  and  Crump  et  al.,  

Page 2: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

2  

(1998)  for  an  account  of  the  oil  spill  on  West  Angle  Bay,  Pembrokeshire.  In  summary,  the  oil  spill  reduced  the  numbers  of  limpets  in  total  (Figure  3)  with  especially  noticeable  declines  in  smaller  size  classes  on  the  lower  part  of  the  shore,  as  a  result  the  modal  class  for  the  population  rose  from  a  “normal”  value  in  the  10-­‐‑14.99  mm  size  class,  in  all  pre-­‐‑pollution  data  sets,  to  the  15-­‐‑19.9  mm  size  class  in  April  1996  (Figure  4).  In  April  1997  numbers  of  limpets  on  the  study  shore  had  returned   to  what  might   be   considered   “normal”   again   (Figure   5)   but   the  modal   class  was   still   shifted   to   the   right  (Figure  6).  By  April  1998  numbers  were  towards  the  high  side  of  the  “normal”  range  (Figure  7)  and  the  modal  class  had  returned  to  “normal”  as  well  (Figure  8).  Seemingly,  the  population  had  made  a  full  recovery,  in  terms  of  numbers  and  size  distribution,  within  two  years:  a  surprisingly  quick  revival  given  the  magnitude  of  the  event.     Student  data   sets  vary   in  quality.  However,   if   students   are   told   that   they  will   be   contributing   to   long-­‐‑term  monitoring,  conscientious  data  collection  is  far  more  likely  and  has  occurred  in  this  instance.  Two  sets  of  observations,  a   fortnight  apart,  by  different  A-­‐‑level  groups,   in  April  1996,  gave  similar  and  statistically  significant  results   (Archer-­‐‑Thomson,  1999)  (Figure  3).    

Having   realised   the   value   of   the   limpet   data,  monitoring   continued   in   April   of   each   year,   to   gain   further  insight  into  what  might  represent  “normal”  fluctuations  of  this  population.  To  help  with  the  consistency  of  recording,  final-­‐‑year  MSc  students  from  the  University  of  Leuven,  who  visit  FSC  Dale  Fort  annually,  were  used  to  collect  the  data.  In  more  recent  years  FSC  Dale  Fort  teaching  staff  have  collected  the  data.  There  is  now  an  unbroken  (except  2005)  set  of  data  for  the  Frenchman’s  Steps  population  up  to  April  2016.    

 

   

FIGURE  2.  Frenchman’s  Steps  and  surrounding  coastline.  On    15th  February  1996  the  Sea  Empress  oil  tanker  grounded  near    St  Ann’s  Head,  2  days  later  high  winds  drove  her  onto  the  rocks.  Over  70,000  tonnes  of  oil  was  spilt.  (Map  from  Archer-­‐‑Thomson,  1999)    

   

MATERIALS  AND  METHODS    

The  site  chosen  was  Frenchman’s  Steps,  Grid  Ref.  SM822053  (Figure  2).  This  is  a  sheltered  rocky  shore,  with  a  north-­‐‑north-­‐‑easterly  aspect  (Figure  1),  Ballantine’s  Exposure  Grade  4  (Ballantine,  1961).  Data  were  collected  by  groups  of  students  attending  field  courses  at  FSC  Dale  Fort  Field  Centre  and  latterly  by  FSC  Dale  Fort  teaching  staff.  All  data  collection  was  directly  supervised  by  the  author.  An  interrupted  belt  transect,  sampled  at  0.75  m  height  intervals,  was  established  from  a  fixed  starting  height  2.25  m  Above  Chart  Datum  (ACD).  This  is  where  the  bedrock  starts;  below  this  the   substrate   is   mobile   and   unsuitable   habitat   for   limpets.   Data   collection   continued   up   the   shore   until   the   upper  distributional  limit  of  limpets  was  reached.  50  cm  by  50  cm  quadrats  were  placed  at  0.5  m  (horizontal)  intervals  along  a  tape  measure  laid  out  at  each  height.  In  each  quadrat  the  longest  diameter  of  every  limpet  was  measured  and  recorded  in   its   appropriate   5   mm   size   class.   To   prevent   measuring   the   same   limpet   more   than   once,   each   shell   was   lightly  marked  with  chalk.  

The  number  of  quadrats  used  each  year  varied  with  the  numbers  of  students  involved  in  the  data  collection  so  the  results  were  standardised  to  give  totals  for  ten  quadrats  at  each  height.  No  changes  to  the  methodology  have  been  made  over  the  years  to  facilitate  comparisons  with  past  data  (Archer-­‐‑Thomson,  1999).  

Limpet   population   data   are   likely   to   show   a   degree   of   seasonality,   especially   as   recruitment   to   the   shore  occurs  in  the  autumn,  so  it  was  decided  to  standardise  data  collection  to  April  of  each  year  where  possible;  however,  some  data  sets  are  from  March  and  May.  

Page 3: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

3  

 

   FIGURE  3.  Limpet  numbers  at  Frenchman’s  Steps  at  the  given  heights  ACD  for  two  April  1996  data  sets  and  three  pre-­‐‑pollution  

examples  (1985-­‐‑1989).  

   

FIGURE  4.  Limpets  at  Frenchman’s  Steps:  size  frequency  data  for  a  typical  pre-­‐‑pollution  data  set  (A;  April  1985)  versus  an  April  1996  example  (B).  Modal  class  size  is  in  red.  

0

100

200

300

400

500

600

700

2.25 3 3.75 4.5 5.25 6 6.75

Tota

l num

ber o

f lim

pets

Vertical height ACD / metres

1985

1986

1989

1996

1996

0

100

200

300

400

500

600

700

Tota

l num

ber o

f lim

pets

Size class / mm

A. April 1985

0

100

200

300

400

500

600

700

Tota

l num

ber o

f lim

pets

Size class / mm

B. 29 April 1996

Page 4: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

4  

     

FIGURE  5.  Limpet  numbers  at  Frenchman’s  Steps  at  the  given  heights  ACD  for  two  April  1996  data  sets  and  three  pre-­‐‑pollution  examples  (1985-­‐‑1989),  and  a  one-­‐‑year  post-­‐‑pollution  example  (1997).  

 

   

FIGURE  6.  Limpets  at  Frenchman’s  Steps:  size  frequency  data  for  a  April  1996  data  set  (A)  versus  (B)  an  April  1997  (one-­‐‑year  post  pollution).  Modal  class  size  is  in  red.  

0

100

200

300

400

500

600

700

2.25 3 3.75 4.5 5.25 6 6.75

Tota

l num

ber o

f lim

pets

Vertical height ACD / metres

1985 1986 1989 1996 1996 1997

0

100

200

300

400

500

600

700

Tota

l num

ber o

f lim

pets

.

Size class / mm

A. 29 April 1996

0

100

200

300

400

500

600

700

Tota

l num

ber o

f lim

pets

.

Size class / mm

B. 30 April 1997

Page 5: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

5  

   FIGURE  7.  Limpet  numbers  at  Frenchman’s  Steps  at  the  given  heights  ACD  for  two  April  1996  data  sets  and  three  pre-­‐‑pollution  

examples  (1985-­‐‑1989),  and  two  post-­‐‑pollution  examples  (1997-­‐‑one-­‐‑year  post  pollution,  1998  –  two-­‐‑year  post  pollution).      

 

 FIGURE  8.  Limpets  at  Frenchman’s  Steps:  size  frequency  data  for  an  April  1996  data  set  (A)  versus  (B)  an  April  1998  (two-­‐‑year  post  

pollution).  Modal  class  size  is  in  red.    

0

100

200

300

400

500

600

700

2.25 3 3.75 4.5 5.25 6 6.75

Tota

l num

ber o

f lim

pets

Vertical height ACD / metres

1985

1986

1989

1996

1996

1997

1998

0

100

200

300

400

500

600

700

Tota

l num

ber o

f lim

pets

Size class / mm

A. 29 April 1996

0

100

200

300

400

500

600

700

Tota

l num

ber o

f lim

pets

Size class / mm

B. 30 April 1998

Page 6: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

6  

RESULTS  AND  ANALYSIS    

Table  1  shows  a  data  set  for  30  April  1998.  Table  A  contains  class  data  from  seven  quadrats  (student  groups),  whereas  Table  B  gives  the  standardised  results,  as  if  ten  quadrats  had  been  used.    

Table  2  gives   (standardised)   results   for   the  number  of   limpets   found   in   ten  50  x  50   cm  quadrats  at  various  heights  up  the  shore.  The   three  data  sets  before  1996  were  chosen  because   they  were  gathered   in  April  and  deemed  typical  for  the  shore.  The  two  sets  of  data  for  1996,  (1)  and  (2),  were  recorded  by  two  different  A-­‐‑level  groups,  on  the  3  and  29  of  April  respectively.  Analysis  of  these  results  is  presented  in  Archer-­‐‑Thomson  (1999).     Table  3  similarly  provides  (standardised)  data  for  size  frequencies.    TABLE  1.  Original  (A)  and  standardised  (B)  data  for  limpet  numbers  and  size  range  from  Frenchman’s  Steps  on  30  April  1998.      (A)  data  from  seven  quadrats  (student  groups).  (B)  the  converted  (standardised)  data  for  the  equivalent  of  ten  50  x  50  cm  quadrats.    The  shaded  cells  show:  

  the  height  at  which  most  limpets  were  found  (3.75m  ACD).     the  mode  for  the  size  class  data  (10.00-­‐‑14.99mm).     the  shift  in  the  modal  class  at  each  height  to  progressively  larger  limpet  sizes  as  height  up  the  shore  increases.  

(See  Archer-­‐‑Thomson  (1999)  for  an  explanation).    

A:  Data  from  seven  quadrats  (student  groups)     Vertical  height  above  chart  datum  /  m    Size  class  /  mm   2.25   3   3.75   4.5   5.25   6   6.75   TOTALS  

<  4.99   7   36   61   29   4   0   0   137  5.0−9.99   26   118   116   52   17   6   0   335  10.0−14.99   24   100   136   103   43   4   0   410  15.0−19.99   12   90   104   91   39   9   0   345  20.0−24.99   12   69   50   89   53   12   0   285  25.0−29.99   2   25   17   21   32   22   0   119  30.0−34.99   9   8   5   6   17   10   0   55  35.0−39.99   3   1   0   0   5   7   0   16  40.0−44.99   5   2             7  45.0−49.99   1               1  50.0−54.99                  55.0−59.99                  60.0−64.99                  65.0−69.99                  

TOTALS   101   449   489   391   210   70   0   1710                    B:  Converted  (standardized)  data  for  the  equivalent  of  ten  50  x  50  cm  quadrats     Vertical  height  above  chart  datum  /  m    Size  class  /  mm   2.25   3   3.75   4.5   5.25   6   6.75   TOTALS  

<  4.99   10   51   87   41   6   0     195  5.0−9.99   37   169   166   74   24   9     479  10.0−14.99   34   143   194   147   61   6     585  15.0−19.99   17   129   149   130   56   13     494  20.0−24.99   17   99   71   127   76   17     407  25.0−29.99   3   36   24   30   46   31     170  30.0−34.99   13   11   7   9   24   14     78  35.0−39.99   4   1       7   10     22  40.0−44.99   7   3             10  45.0−49.99   1               1  50.0−54.99                  55.0−59.99                  60.0−64.99                  65.0−69.99                  

TOTALS     143   642   698   558   300   100   2441          

Page 7: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

7  

TABLE  2.  The  number  of  limpets  found  in  ten  50cm  x  50  cm  quadrats  at  each  75  cm  vertical  height  interval  up  the  shore  at  Frenchman’s  Steps,  in  April  .  (  *Data  collected  in  March.  No  limpets  found  above  6.75  m  ACD).  

 April  data  

Vertical  height  above  chart  datum  /  m    Totals  2.25   3   3.75   4.5   5.25   6   6.75  

1985   191   504   693   556   333   49   0   2327  1986   152   407   480   338   228   55   0   1660                    1989   487   600   607   556   241   94   0   2585                    1996  (1)   72   177   335   313   248   75   5   1225  1996  (2)   26   174   320   346   264   36   0   1166  1997   64   330   432   519   235   145   0   1725  1998   143   642   698   558   300   100   0   2441  1999   333   567   657   529   354   118   0   2558  2000   320   472   558   553   351   152   0   2406  2001   119   383   510   630   293   121   0   2056  2002   174   423   723   560   389   103   0   2372  2003   98   584   711   552   238   78   0   2261  2004   129   396   479   540   269   70   2   1885  2005   No  data  collected  for  this  year    2006   228   364   421   490   293   104   0   1900  2007   190   410   423   328   228   15   0   1594  2008   208   422   392   330   266   146   30   1794  2009   220   222   424   498   290   18   0   1672  2010   159   775   818   862   493   268   0   3375  2011   163   811   1261   1126   553   203   0   4116  2012   168   716   856   1122   432   156   0   3450  2013   257   703   777   645   442   225   0   3048  2014   347   748   715   548   337   168   0   2863  2015*   396   806   728   560   318   114   0   2922  2016   374   846   648   616   388   94   0   2966  

    Table  4  presents  the  statistical  analysis  of  the  abundance  data  sets  from  Table  2.  The  total  number  of  limpets  at  each  height,  for  any  given  year,  is  compared  with  those  from  every  other  year.  It  should  be  noted  that  this  type  of  data  is  difficult   to   analyse   statistically.  Biological  data  of   this  nature   are  unlikely   to  meet   the   requirements  of  parametric  statistics   (e.g.  assuming  normally  distributed  data,  with  equal  variances)  so  non-­‐‑parametric   tests  were  used.  Because  the  variation  in  numbers,  with  height  up  the  shore  was  large  (as  a  consequence  of  the  environmental  gradient  on  rocky  shores  from  fully  marine  conditions  at  the  bottom  to  near  terrestrial  ones  at  the  top  of  the  shore)  the  analysis  had  to  be  based  on  a  matched-­‐‑pair  system  (2.25  m  ACD  versus  2.25  m  ACD  for  the  years  in  question  etc.).  Although  multivariate  techniques  could  have  been  used,  these  would  have  been  inaccessible  to  A-­‐‑level  students.  The  Wilcoxon  Matched  Pairs  test   was   deemed   the   most   suitable   test.     It   is   noted,   however,   that   given   the   small   sample   size   (seven   heights  maximum),  this  test  would  only  record  a  statistically  significant  difference  if  the  quadrat  totals  in  all  the  heights  from  one  year  were  greater   (or   lesser)   than   those   from  another.   Inherent  variation  at   site  one   (where   the   substrate  varies  from   year   to   year)   makes   this   constraint   significant.   Even   so,   the   analysis   did   largely   show   significant   differences  where  expected.  An  excellent  description  of   the   limitations  associated  with  this  statistics  test   is  given  in  Fowler  et  al.  (1998).     Table  4  has  been  colour   coded   to  aid   interpretation.  Normally,   the  Null  Hypothesis   is   rejected,   coded  S,  or  accepted,   coded   NS,   at   the   5%   significance   level   or   better.   In   Table   4   the   results   have   been   coded   (S)   if   the   Null  Hypothesis  could  be  rejected  at  the  10%  significance  level.  The  decision  to  indicate  rejection  at  this  level  is  because  of  the  inherent  variability  in  the  data  (increased  by  substrate  variation  at  site  one,  for  example)  and  because  the  Wilcoxon  test   ideally   needs   a   minimum   sample   size   of   six   non-­‐‑zero   differences.   Many   of   the   data   sets   give   six   non-­‐‑zero  differences,   some   give   seven,   but   operation   here   is   at   the   lower   end   of   the   ideal   sample   size   spectrum.   Thus,   (S)  indicates  a  tendency  in  the  data  and  is  therefore  still  a  useful  guide.  

A  look  at  Table  4  shows  a  cluster  of  significant  differences  (S)  for  the  1996  (oil  pollution)  data  sets  as  expected  but   also  another   cluster  of   significant  difference   (Ss)   for   the  2010  data  and   later,  which  highlights  how  different   the  2010,  and  later,  population  densities  are.  

When  working  at  the  5%  significance  level,  there  is  a  risk  of  rejecting  a  Null  Hypothesis  (H0),  when  it  is  true,  five  times  out  of  a  hundred  or  one  time  in  twenty.  This  is  referred  to  as  a  type  1  error.  Table  4  contains  a  great  many  Wilcoxon  Matched  Pairs  test  results  and  thus  the  risk  of  a  type  1  error  is  increased.  A  Friedman  test  analyses  the  data  set  in  table  two  as  a  whole,  whilst  still  operating  on  matched  pairs  (It  is  like  a  matched  pairs  Analysis  of  Variance    

Page 8: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

8  

TABLE  3.  The  number  of  limpets  in  each  5  mm  size  class  on  the  transect  up  the  shore  at  Frenchman’s  Steps.    Data  standardised  for  ten  50  x  50  cm  quadrats  at  each  height.  Cells  shaded:  

  show  the  modal  class.   (*  Data  collected  in  March.  No  limpets  found  bigger  than  69.99  mm).    

  Size  class  in  mm    April  data  

<  4.99  

5.00-­‐‑9.99  

10.00-­‐‑14.99  

15.00-­‐‑19.99  

20.00-­‐‑24.99  

25.00-­‐‑29.99  

30.00-­‐‑34.99  

35.00-­‐‑39.99  

40.00-­‐‑44.99  

45.00-­‐‑49.99  

50.00-­‐‑54.99  

55.00-­‐‑59.99  

60.00-­‐‑64.99  

65.00-­‐‑69.99   Totals  

1985   96   476   658   494   327   171   72   18   13   1   1         2327  1986   55   239   438   410   266   145   67   27   10   3           1660                                  1989   324   586   590   469   240   200   108   41   14   14           2585                                  1996  (1)   33   157   285   327   221   94   72   19   11   5           1225  1996  (2)   8   91   248   376   286   115   29   8   3   1           1166  1997   19   172   360   472   359   187   112   34   6   3   1         1725  1998   195   479   585   494   407   170   78   22   10   1           2441  1999   57   543   702   489   375   169   125   73   13   9   1   1   1     2558  2000   109   366   668   589   316   197   84   39   16   12   5   2   1   2   2406  2001   41   373   639   424   292   171   57   46   10   1   1   1       2056  2002   262   452   617   476   324   144   57   24   12   3   1         2372  2003   47   492   679   554   214   186   55   25   3   4   2         2261  2004   48   292   559   474   232   145   64   44   16   2   7   2       1885  2005   No  data  collected  this  year    2006   54   396   639   435   230   94   35   6   6   2   3         1900  2007   75   337   470   305   210   76   59   30   21   3   8         1594  2008   76   413   622   338   199   77   48   16   4   1           1794  2009   50   264   424   454   234   134   56   28   20   2   6         1672  2010   75   547   1072   775   457   216   120   71   33   9           3375  2011   253   1120   1204   841   335   213   79   43   21   8   1         4116  2012   174   608   1236   740   382   166   76   44   16   4   4         3450  2013   142   617   865   722   348   183   95   40   23   13           3048  2014   55   558   862   742   387   177   70   5   7   2           2863  2015*   26   588   846   820   370   164   42   44   14   6   2         2922  2016   10   280   1090   884   508   128   46   6   8   4   2         2966  

   would  be   to   a   series   of  matched  pair   t   tests,   suitable   if   the  data  were  normally  distributed,   or   if   sample   sizes  were  larger).  The  result  of  the  Friedman  test  on  the  data  as  a  whole  (see  FRIEDMAN  tab  in  the  Excel  spreadsheet  of  RAW  data  in  the  appendix*)  allows  the  rejection  of  the  H0  (that  there  is  no  significant  difference  between  the  medians  of  the  data  sets)  at  P<  0.001,  a  very  highly  significant  result.  The  chance  of  getting  a  result  this  significant  by  chance  is  less  than  one  in  a  thousand.  Although  the  Friedman  analysis  reduces  the  chance  of  a  type  1  error  significantly,  it  only  indicates  the  data  sets  as  a  whole  are  different,  and  does  not  show  which  data  sets  (years)  are  significantly  different  from  which  others.  Thus,  the  many  Wilcoxon  tests  are  necessary  despite  the  increased  risk  of  type  1  errors.  (*  For  interested  readers  RAW  limpet  survey  data  may  be  found  in  an  additional  file  supplied  with  this  on-­‐‑line  paper.)    

DISCUSSION    

Explanations  for  the  patterns  in  the  data,  from  1985  to  1998,  have  been  presented  previously  (Archer-­‐‑Thomson,  1999)  and  summarised  below.  

 The  total  number  of  limpets  at  each  height  [Table  2].     Limpet  densities  vary  with  height  up  the  shore.  Numbers  are  low  at  the  base  of  the  study  area,  2.25  m  ACD,  but  increase  with  height  to  a  maximum  value  in  the  middle  shore  (at  approximately  3.75  m  ACD),  decreasing  above  this  again  to  zero  by  about  6.75  m  ACD.  Portions  of  the  lowest  site  are  covered  with  pebbles,  the  amount  and  extent  varying  from  year  to  year,  which  explains  some  of  the  variation  at  the  bottom  of  the  shore.        

Page 9: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

9  

TABLE  4.  Wilcoxon  Matched  Pairs  Test  results  for  limpet  numbers  over  the  given  years  (April  data).  Data  standardised  for  ten  50  x  50  cm  quadrats  at  each  height.  The  shaded  cells  show:  NS   Non-­‐‑significant  result,  Accept  H0  (of  no  significant  difference  between  the  median  number  of  limpets  at  the  5%  significance  level).  S   Reject  H0  at  5%  significance  level.  (S)   Reject  H0  at  10%  significance  level  (see  text  for  explanation  as  you  would  normally  Accept  the  H0  here).  

 

Year  

1985  

1986  

1989  

1996(1)  

1996(2)  

1997  

1998  

1999  

2000  

2001  

2002  

2003  

2004  

2006  

2007  

2008  

2009  

2010  

2011  

2012  

2013  

2014  

2015  

2016  

1985     NS   NS   (S)   S   NS   NS   NS   NS   NS   NS   NS   NS   NS   S   NS   (S)   (S)   (S)   (S)   S   NS   NS   NS  

1986       S   NS   NS   NS   (S)   S   S   NS   S   NS   NS   NS   NS   NS   NS   S   S   S   S   S   S   S  

1989         (S)   (S)   NS   NS   NS   NS   NS   NS   NS   NS   NS   S   NS   (S)   NS   NS   NS   NS   NS   NS   NS  

1996  (1)           NS   NS   S   S   S   S   S   NS   (S)   S   NS   S   NS   S   S   S   S   S   S   S  

1996  (2)             (S)   S   S   S   S   S   (S)   S   S   NS   (S)   (S)   S   S   S   S   S   S   S  

1997               NS   NS   S   (S)   NS   NS   NS   NS   NS   NS   NS   S   S   S   S   S   (S)   (S)  

1998                 NS   NS   NS   NS   NS   S   NS   (S)   NS   NS   S   S   S   S   S   S   NS  

1999                   NS   NS   NS   NS   (S)   S   S   (S)   S   NS   NS   NS   (S)   NS   NS   NS  

2000                     NS   NS   NS   S   S   S   (S)   S   NS   NS   NS   (S)   NS   NS   NS  

2001                       NS   NS   NS   NS   NS   NS   NS   S   S   S   S   NS   NS   NS  

2002                         NS   S   NS   NS   NS   (S)   (S)   (S)   (S)   S   NS   NS   NS  

2003                           NS   NS   NS   NS   NS   S   S   S   S   (S)   S   (S)  

2004                             NS   NS   NS   NS   S   S   S   S   S   S   S  

2006                               NS   NS   NS   (S)   (S)   NS   S   S   S   (S)  

2007                                 NS   NS   (S)   (S)   (S)   S   S   S   S  

2008                                   NS   NS   NS   NS   S   (S)   NS   NS  

2009                                     (S)   (S)   (S)   S   S   S   S  

2010                                       NS   NS   NS   NS   NS   NS  

2011                                         NS   NS   NS   NS   NS  

2012                                           NS   NS   NS   NS  

2013                                             NS   NS   NS  

2014                                               NS   NS  

2015                                                 NS  

2016                                                  

      There  is  a  decrease  in  numbers  towards  the  top  of  the  shore,  because  conditions  become  increasingly  harsh  for  a   marine   snail.   Temperature   and   salinity   variation   and   dehydration   create   stresses   that   all   get   worse   as   emersion  (periods   spent  out  of  water)   times   increase.  Limpets  graze   selectively  on  green  algae   (both  macro  and  microscopic),  lichens  and  young  fucoids.  They  often  feed  at  night  when  the  tide  is  out  (Branch,  1981),  or  at  any  time  when  the  sea  is  calm  and  the  tide  is  in.  Feeding  time  and  food  supply  are  not  necessarily  reduced  in  the  upper  shore  but  a  limpet  might  feed   less   if   already   stressed  by  other   environmental   (abiotic)   factors.   In   short,   abiotic   factors  probably   set   the  upper  distributional  limits  (Branch,  1981).     Numbers  decrease  towards  the  bottom  of  the  shore  because  of  inter-­‐‑specific  competition  from  macro  algae  in  more  sheltered  regions  and  from  barnacles  in  more  exposed  ones.  Exposure  to  wave  action  will  vary  considerably  on  shores  in  different  locations.  A  headland  site  receives  far  more  wave  energy  than  an  embayed  one,  but  there  are  subtle  variations  along  small  horizontal  distances  as   the  slope  and  topography  vary  and  this  can  contribute  over   the  study  area  width  of  approximately  ten  metres.  Thus,  lower  distributional  limits  are  probably  set  by  biotic  (living)  factors.     It  follows  that  optimal  conditions,  between  the  two  extremes  mentioned  above,  exist  for  limpets  in  the  middle  shore.  Over   the   thirty   years   in  which   data   have   been   gathered,   the   trends   described   above   have   held   true  with   no  significant  deviation.    The  total  number  of  limpets  on  the  shore  over  time  [Table  2].  

Looking   at   the   population   as   a   whole   numbers   were   significantly   reduced   by   the   Sea   Empress   oil   spill,  recovering   to   normal   again  within   a   year   or   two.   From   1998   onwards,   the   population   fluctuated  within  what   had  become   expected   (“normal”?)   limits   up   until   2010.   In   2010   and   2011   limpet   numbers   exceeded   anything   hitherto  

Page 10: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

10  

experienced  (Figure  9).  Up  until  2010   it  was  assumed  that  “normal”  fluctuations   in   the  study  limpet  population  had  been   established.  Data   from   2010   and   2011   threw   this   assumption   into   doubt   but   the   question   now   became   one   of  whether  the  record  population  densities  were  “natural”  or  if  there  was  another  explanation  that  might  be  regarded  as  “unnatural”?  

FIGURE  9.  Total  number  of  limpets  on  Frenchman’s    Steps  sample  site,  1985-­‐‑2016.    

 

     

FIGURE  10.  (Left)  Dogwhelk  Nucella  lapillus  plus  egg  capsules  from  Frenchman’s  Steps.  (Right).  Typical  dogwhelk  Nucella  lapillus  density  in  recent  years  (photograph  taken  September  2009).  

   

  In  an  attempt  to  explain  the  record  high  limpet  densities  of  2010  and  2011,  it  is  necessary  to  include  anecdotal  evidence  and  field  observations  from  the  author’s  own  30-­‐‑year-­‐‑plus  experience  of  the  shores  around  FSC  Dale  Fort.  In  1982   there   were   virtually   no   dogwhelks   (Nucella   lapillus)   on   the   shores   between   the   Field   Centre   and   Dale   village  (Figure  2).  Local  shores  might  have  yielded  two  or  three  animals  in  an  area  of  1500  m2.  Dogwhelks  (Figure  10)  are  fairly  common  rocky  shore  animals  in  the  UK,  but  at  the  time  their  numbers  were  severely  depleted  by  Tri-­‐‑Butyl-­‐‑Tin  (TBT)  anti-­‐‑fouling  paint,  which  was  widely  used  to  prevent  fouling  organisms  (barnacles,  seaweeds,  etc.)   from  growing  on  the  hulls  of  pleasure  boats  and  larger  commercial  vessels.       In  the  1980s  unusual  changes  in  the  sexual  characteristics  of  dogwhelks  were  noticed  in  estuaries  and  other  areas  where   small  boats,  painted  with  TBT  anti-­‐‑fouling  paint,  were   concentrated   (Little   et  al.,   2009).  Studies   showed  

0

500

1000

1500

2000

2500

3000

3500

4000

4500 19

85

1986

1989

1996

1996

1997

1998

1999

2000

2001

2002

2003

2004

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

Tota

l num

ber o

f lim

pets

Page 11: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

11  

(Gibbs   et   al.,   1988)   that   female   dogwhelks  were   growing   a   non-­‐‑functional  male   reproductive   organ,  which   blocked  their   oviduct,   preventing   successful   reproduction.   This   condition  was   termed   ‘imposex’.   As   a   result,   over   about   20  years,  many   local  snail  populations  became  extinct.  TBT  paint  was  so   toxic   that   imposex  could  be   initiated   in  newly  hatched  snails  at  concentrations  of  only  2  ng  of  tin/l  of  seawater  (Little  et  al.,  2009).  Fortunately,  TBT  anti-­‐‑fouling  paints  were  banned  from  small  craft  (<25  m)  in  1985,  from  all  craft  in  2003  and  all  traces  of  the  paint  had  to  be  gone  from  hulls  by  2008,  by  International  Maritime  Organisation  statute.  

After  the  ban,  dogwhelk  populations  began  to  recover  on  the  shores  around  Dale  Fort  Field  Centre,  and  they  are   now   host   to   possibly   unsustainably   high   densities   (Figure   10).   Dogwhelks   typically   eat   barnacles   (the   acorn  barnacle   Semibalanus   balanoides,   being   the   favoured   species   (Crothers,   1985))   of  which   there   is   an   abundance   at   the  study  site.  A  suggestion  for  the  unusually  high  limpet  densities  in  2010  and  2011  is  that  the  dogwhelks  may  have  had  such   an   impact   on   the   local   barnacle   population   that   inter-­‐‑specific   competition   for   space   has   been   reduced   in   the  limpets’   favour,  allowing  far  more  to  survive  on  the  shore  than  hitherto.  This  fits   in  with  theories  about  rocky  shore  community  structure  and  the  inter-­‐‑relationships  between  organisms  such  as  barnacles,  limpets  and  dogwhelks  (Jenkins  et  al.,  1999).     It   is   noted   that   after   2011   (see   Figure   9)   the   number   of   limpets   started   to   decrease   again.   A   speculative  explanation   can   be   given   below,   although   further   data   will   be   needed   to   confirm   if   this   trend   back   to   “normal”  continues  in  future  years.  Dogwhelks  are  known  to  also  eat  young  limpets  (Branch,  1981).  In  2011  there  were  unusually  large  numbers  of  limpets  in  the  5.00-­‐‑9.99  mm  size  class  (Figure  11).  In  2012,  however,  when  the  limpet  population  had  decreased  from  an  all   time  high  of  4,116  animals   to  3,450,   the  numbers  of   limpets   in  the  5.00-­‐‑9.99  mm  size  class  had  decreased  substantially   (Figure  12).   It   is   suggested   that,  having  had  a  significant   impact  on   the  barnacle  population,  dogwhelks  were  now  predating  on  small,  thinner-­‐‑shelled  limpets  as  well,  which    might  explain  the  limpet  population  moving   towards   “normal”   again.   Between   2012   and   2013   (Figure   13)   there  was   a   reduction   in   the   total   number   of  limpets  on  the  shore  (Figure  9)  and  a  marked  drop  in  the  10.00-­‐‑14.99  mm  size  class  in  particular  (Figure  14).  This  might  represent   the  upper   size   limit   for   limpets   to   be  preyed  on  by  dogwhelks   (dogwhelks   favour   small   prey   if   available  (Crothers,  2012))  but   if  barnacle  prey   is  still   in  short  supply,   limpets  of   this  size  may  still  be  a  suitable  option.  Since  2013   the   total   population   density   of   limpets   seems   to   have   stabilised   albeit   at   a   higher   than   “normal”   level.   An  interesting   result   from   the  2016  data   shows  an   increase  again   in   the  10.00-­‐‑14.99  mm  size  class   (Figure  14).   It  will  be  useful   to  monitor   this  size  class   in  future  years   to  see   if   this  represents   the  start  of  a  new  trend  or   if   this   is  merely  a  short-­‐‑term  fluctuation.     Throughout   this   article   the   terms   “normal”,   “abnormal”,   “natural”   and   “unnatural”   have   been   in   inverted  commas  because  of  the  difficulties  in  establishing  whether  a  particular  shore  state  is  affected  by  human  activity  or  not.  Since  the  study  of  the  Frenchman’s  Steps  population  started  in  the  1980s  and  was  significantly  affected  by  Sea  Empress  oil   (definitely   “unnatural”),   it   was   assumed   that   the   population   state   was   “normal”   before   that   pollution   event.  However,  looking  at  the  data  again  in  the  light  of  TBT  effects  it   is  entirely  possible  that  the  lack  of  dogwhelks  in  the  1980s  allowed  a  higher  than  previous  population  density  of  barnacles  to  exist  and  therefore  the  limpet  densities  of  the  time   were   suppressed.   As   dogwhelk   numbers   recovered   after   the   TBT   ban,   barnacle   densities   may   have   been  depressed   allowing   limpet  numbers   to   increase   to   “normal”   levels   again.  Thus,   the   recent   (2010   and  onwards)  data  may  not  represent  an  unnaturally  high  limpet  density  at  all  but  a  recovery  to  pre-­‐‑TBT  levels.     In   summarising   the   trends   in   the   above  data,   it   is   possible   to   recognise   four  different   states   for   the   limpet  population  on  Frenchman’s  Steps  between  1985  and  2016   (Figure  9).  A  pre-­‐‑oil  pollution  state,   fluctuating  between  a  total  of  1,500  and  approximately  2,500  individuals.  An  oil  pollution  state  of  approximately  1,200  individuals.  A  post-­‐‑oil  pollution   state,   but   pre-­‐‑2010,   of   1,500   to   2,500   individuals   again   and   a   post-­‐‑2010   state   of   2,800   to   4,100   individuals.  Figure  15  summarises  these  four  states  and  indicates  whether  the  differences  are  statistically  significant,  or  not,  with  the  use  of  95%  confidence   limits  as   indicators.  With  the  obvious  exception  of   the  1996  data,   it   is   impossible   to  know  whether  these  other  states  indicate  “normal”,  “abnormal”,  “natural”  or  “unnatural”  conditions  for  this  population.  It  will   be   fascinating   to   see  what   transpires   over   the  next  decade   or   so   as   the   various  dogwhelk,   barnacle   and   limpet  interactions  play  out.  Hopefully  oil  pollution  will  not  play  a  part  in  the  shore  dynamics  again.    Size  frequency  data  [Table  3].     The  modal  class  for  21  out  of  the  25  size  frequency  data  sets  is  the  10.00-­‐‑14.99  mm  one  (Figures  8,  11,  12  &  13  for  example).  Exceptions   to   this  “rule”  occurred  when   the  Sea  Empress  oil  pollution  displaced   the  modal  class   to   the  right  (15.00-­‐‑19.99  mm  size  class)  in  1996  and  1997  (Figures  4  &  6).  There  was  also  anomalous  data  in  2009  for  which  no  explanation  can  be  given  by  the  author.     Limpets   from   the   genus   Patella   grow   throughout   their   lives   with   growth   rates   varying   greatly   with   food  supply  (Branch,  1981  and  Ballantine,  pers.  comm.).  For  this  particular  shore   it   is  reasonable  to  assume  that   the   largest  limpets   are   the   oldest   and   the   smallest   the   youngest.   Food   supply   and   feeding   time   vary  with   height   up   the   shore  (Branch,  1981)  so  this  assumption  must  be  treated  with  some  caution  but  it  should  hold  true  in  general.  There  are  fewer  larger,  older  limpets  because  they  die  of  old  age,  disease,  etc.  There  are  very  few  small,  young,  limpets  in  most  of  the    

Page 12: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

12  

 FIGURE  11.  Size  frequency  data  set,  limpets  of  Frenchman’s  Steps,  19th  April  2011.  Modal  class  size  is  in  red.  

 

   

FIGURE  12.  Size  frequency  data  set,  limpets  of  Frenchman’s  Steps,  8th  May  2012.  Modal  class  size  is  in  red.    

   

FIGURE  13.  Size  frequency  data  set,  limpets  of  Frenchman’s  Steps,  11th  April  2013.  Modal  class  size  is  in  red.  

0

200

400

600

800

1000

1200

1400 To

tal n

umbe

r of l

impe

ts

Size class / mm

0

200

400

600

800

1000

1200

1400

Tota

l num

ber o

f lim

pets

Size class / mm

0

200

400

600

800

1000

1200

1400

Tota

l num

ber o

f lim

pets

Size class / (mm)

Page 13: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

13  

data  sets.  This  could  be   for  a  number  of   reasons.  Firstly,  very  young   limpets  grow  through  the   first   few  size  classes  relatively  quickly  (Branch,  1981).  Secondly,  students  collecting  the  data  are  more  likely  to  miss  the  very  small  limpets,  as  they  are  harder  to  see  or  may  even  be  mistaken  for  barnacles.  Limpets  settle  from  the  plankton  when  their  shell  is  approximately   0.2   mm   long   (Lewis   &   Bowman,   1975)   and   favour   small,   damp  microhabitats   such   as   crevices   and  pools.  This  may  effectively  make  them  invisible  for  sampling  whilst  there.  The  sample  area  at  Frenchman’s  Steps  was  chosen   to  maximise   the  area  of  suitable  rock  surface  and  minimise   the  area  of  pools  and  crevices   thus  reducing   this  complication  as  far  as  possible.     It   is   interesting   to   note   that   the   population   density   data   have   varied   significantly   over   the   study   period,  showing   four   distinct   phases,   whereas   the   overall   pattern   in   size   frequency   data   is   more   consistent,   varying   only  during,  and  in  the  two-­‐‑year  period  after,  the  Sea  Empress  incident  (2009  excepting).  Reasons  for  the  shift  in  the  modal  class,  during  and  after  the  oil  spill  are  detailed  in  Archer-­‐‑Thomson  (1999).    

FIGURE  14.  Annual  April  shore  totals  (10-­‐‑14.99  mm  size  class)  for  limpets  of  Frenchman’s  Steps  (1985-­‐‑2016).    

   

FIGURE  15.  Mean  numbers  of  limpets,  for  the  given  heights  ACD,  plus  95%  confidence  limits  summary  data.    

0

200

400

600

800

1000

1200

1400

1985

1986

1989

1996

1996

1997

1998

1999

2000

2001

2002

2003

2004

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

Num

ber o

f lim

pets

-200

0

200

400

600

800

1000

1200

2.25   3   3.75   4.5   5.25   6   6.75  

Mea

n nu

mbe

r of l

impe

ts a

t eac

h he

ight

Height above chart datum / m

Pre-pollution 1985-1989

Pollution 1996

Post pollution 1997-2009

Recent 2010 - 2016

Page 14: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-THOMSON (2016). FIELD STUDIES (http://fsj.field-studies-council.org/)

Taxonomic note.There are three species of limpet in the genus Patella that occur on rocky shores in south-west Britain, Patella

vulgata Linnaeus, common limpet; Patella ulyssiponensis Gmelin, china limpet; and Patella intermedia Murray in Knapp, black-footed limpet. An excellent guide to their identification and biology is given in Fish & Fish (2011). Identification of the three species in the field with student groups is, to all practical purposes, impossible. It involves taking limpets off the rock to look at their foot colour and this invariably kills them. This would be unacceptably destructive on a site where long-term monitoring is intended and, more importantly, ethically unacceptable, especially with groups of students who are being taught to respect the environment in which they study. Fortunately P. vulgata is by far the most common limpet on the shore at Frenchman’s Steps (Ballantine pers. com. and author’s own experience), the other two species favour more wave exposed locations and the lower part of the shore. Patella ulyssiponensis also favours rock pools in the middle shore, where it feeds on encrusting red algae, but again there are no pools at the chosen sample heights. Therefore although there may be representatives of the other two species of limpet in the study area, it is likely their abundance is low and so will not affect the results significantly.

Biological note.Limpets have recently made the news (bbc.co.uk, science & environment, 18th Feb 2015) as they have the honour of hosting the strongest biological material ever tested having ousted spider silk from the top spot (Barber et al., 2015). Limpets feed using a tongue-like structure called a radula, which they scrape over the rock surface as they feed on various species of green seaweed, young stages of brown seaweeds, microscopic algae and other components of what is referred to as “biofilm” covering the rock surface. The radula is essentially a ribbon covered in teeth that are less than a millimetre in length (see excellent high magnification images of a limpet radula in Cremona, 2014, page 21). The teeth are made up of fibres consisting of an iron-based mineral called goethite laced through a protein base. Because the mineral fibres are so thin they are not prone to structural flaws that would normally weaken materials. The remarkable feature of these fibres is that the extreme strength is scale-independent, normally structures, like bridges and arches for example, have to be of a certain size to achieve their desired tensile strength; not so limpet radula teeth. The material is so strong that it can be compared to a single string of spaghetti holding up 1,500 one-kilogram bags of sugar! China limpets exploit the strength of their radula teeth to eat various species of pink paint weed in turn the paint weed has its growing point well below the surface so, even with a growth rate of less than a millimetre a year, it can withstand limpet grazing.

CONCLUDING REMARKS

Numbers of limpets on the shore at Frenchman’s Steps show considerable variation over the years that they have been studied by Dale Fort students and educational staff. Four main states have been identified namely, pre-oil pollution (1985-1989 data sets), pollution and immediate aftermath (1996-1997 data sets), post-oil pollution (1998-2009 data sets) and post 2010 (2010-2016 data sets). With the obvious exception of the oil pollution results assigning “normal/ abnormal” status to any of the data sets is problematic because of the plethora of other variables involved.

Size frequency data show a remarkable consistency across the years with the “norm” only being disrupted by a major oil spill and then for only two years.

Simple fieldwork, carried out with student groups armed with nothing more complex than quadrats, calipers or 15 cm rules, chalk, recording sheets, optical levels and metre rules can yield fascinating data. These results, however, reveal patterns that can be difficult to interpret with any certainty because of the number of variables acting on the shore community. This includes supply-side considerations to do with recruitment to the population and planktonic phases of shore organisms. One of the many features that keep the monitoring of this shore exciting is that the interpretation of the patterns keeps changing as each new data set is collected. Roll on the next thirty years!

DEDICATION AND THANKS

I would like to dedicate this paper to the memory of Dr. Bill Ballantine M.B.E. who knew more about limpets than most, was a staunch supporter of FSC Dale Fort from the 1950s and beyond, and an inspiration for the cause of marine conservation worldwide, latterly from his base in New Zealand. Hopefully he still investigates limpet biology, albeit on a distant shore.

I would also like to thank the various student groups, especially those from the University of Leuven, and the education staff of FSC Dale Fort for their help in gathering these data over the years. It would have been spectacularly tedious without you!

REFERENCES

Archer-Thomson, J.H.S., (1999). The Sea Empress incident and the limpets of Frenchman’s Steps. Field Studies, 9, 531-546.Ballantine, W.J., (1961). A biologically-defined exposure scale for the comparative description of rocky shores. Field Studies, 1 (3), 1-19.

Page 15: THE&SEA$EMPRESS&INCIDENT&AND&THE&LIMPETS&OF&FRENCHMAN’S&STEPS,& … · 2016-09-06 · ARCHER&THOMSON,(2016).,FIELD&STUDIES,(&studies&council.org/),,©Field,Studies,Council, , (02/09/2016),

ARCHER-­‐‑THOMSON  (2016).  FIELD  STUDIES  (http://fsj.field-­‐‑studies-­‐‑council.org/)  

 ©  Field  Studies  Council     (02/09/2016)  

15  

Barber,   J.H.,   Lu,  D.  &   Pugno,  N.M.,   (2015).   Extreme   strength   observed   in   limpet   teeth.   Journal   of   the   Royal   Society   Interface,   12:  http://dx.doi.org/10.1098/rsif.2014.1326  

Branch,   G.M.,   (1981).   The   biology   of   limpets:   physical   factors,   energy   flow   and   ecological   interactions.  Oceanography   and   Marine  Biology:  an  Annual  Review,  19,  235-­‐‑280.  

Crothers,  J.H.,  (1985).  Dog-­‐‑whelks:  an  introduction  to  the  biology  of  Nucella  lapillus  (L.).  Field  Studies,  6,  291-­‐‑360.  Crothers,  J.H.,  (2012).  Snails  on  rocky  sea  shores.  Naturalists’  Handbook  30.  Pelagic  Publishing,  Exeter.  Cremona,  J.,  (2014).  Seashores:  an  ecological  guide.  Crowood  Books,  Wiltshire.  Fish,  J.D.  &  Fish,  S.,  (2011).  A  student’s  guide  to  the  seashore,  3rd  edn.  Cambridge  University  Press,  Cambridge.  Crump,  R.  G.,  Morley,  H.S.  &  Williams,  A.D.,  (1998).  West  Angle  Bay,  a  case  study.  Littoral  monitoring  of  permanent  quadrats  before  

and  after  the  Sea  Empress  oil  spill.  Field  Studies,  9,  497-­‐‑511.  Fowler,  J.,  Cohen,  L.  &  Jarvis,  P.,  (1998).  Practical  Statistics  for  Field  Biology,  2nd  edn.  Wiley,  England.  Gibbs,   P.E.,   Pascoe,   P.L.,   &   Burt,   G.R.   (1988).   Sex   change   in   the   female   dog-­‐‑whelk,  Nucella   lapillus,   induced   by   tributyltin   from  

antifouling  paints.  Journal  of  the  Marine  Biological  Association  of  the  UK,  68,  715-­‐‑731.  Jenkins,  S.R.,  Hawkin,  S.J.,  &  Norton,  T.A.  (1999).  Direct  and  indirect  effects  of  a  macroalgal  canopy  and  limpet  grazing  in  structuring  

a  sheltered  intertidal  community.  Marine  Ecology  Progress  Series,  188,  81-­‐‑92.  Lewis,   J.R.   &   Bowman,   R.S.,   (1975).   Local   habitat   induced   variations   in   the   population   dynamics   of   Patella   vulgata.   Journal   of  

Experimental  Marine  Biology  and  Ecology,  17,  165-­‐‑203.  Little,  C.,  Williams,  G.A.  &  Trowbridge,  C.D.,  (2009).  The  Biology  of  Rocky  Shores,  2nd  edn.  Biology  of  Habitats.  Oxford  University  Press,  

Oxford.    

FURTHER  INFORMATION    Link  for  raw  data