thgem in ne-mixtures uv-photon detection in rich & more weizmann: m. cortesi, r. chechik, r....

37
THGEM in Ne-mixtures THGEM in Ne-mixtures UV-photon detection in RICH & more UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo, J. dos Santos, Nantes: S. Duval, D. Thers, Work within CERN-RD51 Amos Breskin Weizmann Institute of Science THGEM Recent works: Review NIM A 598 (2009) 107 2010 JINST 5 P01002 2009 JINST 4 P08001 Amos Breskin RICH2010 Cassis

Upload: leon-townsend

Post on 20-Jan-2016

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

THGEM in Ne-mixtures THGEM in Ne-mixtures UV-photon detection in RICH & moreUV-photon detection in RICH & more

Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN:V. PeskovCoimbra & Aveiro: J. Veloso, C. Azevedo, J. dos Santos, Nantes:S. Duval, D. Thers,

Work within CERN-RD51

Amos BreskinWeizmann Institute of Science

THGEM Recent works:Review NIM A 598 (2009) 1072010 JINST 5 P010022009 JINST 4 P08001

Amos Breskin RICH2010 Cassis

Page 2: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Amos Breskin

Thick Gas Electron Multiplier (THGEM)

SIMPLE, ROBUST, LARGE-AREAPrinted-circuit technology

Intensive R&DMany applications

1e- in

104- 105 e-s out

~40kV/cm

THGEM

Double-THGEM: 10-100 higher gains

~ 10-fold expanded GEMWeizmann 2003

Effective single-electron detectionFew-ns RMS time resolutionSub-mm position resolutionMHz/mm2 rate capabilityCryogenic operation: OKGas: molecular and noble gasesPressure: 1mbar - few barMagnetic fields

Thickness 0.5-1mm

small rim prevents discharges

Similar hole-multipliers:- Optimized GEM: L. Periale et al., NIM A478 (2002) 377.- LEM: P. Jeanneret, PhD thesis, 2001.

RICH2010 Cassis

Page 3: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Comparatively low operation voltages reduced discharge probability, discharge energy and charging-up effects

High gains, even with single-THGEM

High single-photoelectron gains even in the presence of ionizing background (higher dynamic range compared to Ar-mixtures)

Important for RICH: Ne yields ~2.5 fold less MIP-induced electrons than Ar

Photon detection efficiency?

Ne-based mixturesNe-based mixtures

Amos Breskin RICH2010 Cassis

Page 4: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Gain: Single/Double THGEM inGain: Single/Double THGEM in Ne-mixtures Ne-mixtures

Very high gain in Ne and Ne mixtures, even with X-raysAt very low voltages !!

X-rays: 2-THGEM 100% Ne: Gain 106 @ ~300VUV: 1-THGEM Ne/CF4(10%): Gain > 106 @ ~800V

106

Double-THGEM9 keV X-rays

Single-THGEMCsI PC + UV-light (180 nm)

106

Amos Breskin RICH2010 Cassis

2009 JINST 4 P08001 2009 JINST 4 P08001

Page 5: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Amos Breskin

A VERY FLAT UV-IMAGING DETECTORA VERY FLAT UV-IMAGING DETECTOR

~10-12 mm

h

Photocathode

THGEMs

readout

100x100mm2 THGEMWith 2D delay-line readout

0.3mm holes

Cortesi et al. 2007 JINST 2 P09002

window

Resistive anode

Spatial Resolution (FWHM) Ar/5%CH4 0.7 mm with 9 keV X-rays Ne 1.4 mm with 9 keV X-rays Ne/5%CH4 0.3 mm with 4 keV X-rays

RICH2010 Cassis

Page 6: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

THGEM/Ne-mixtures: Pulse shapeTHGEM/Ne-mixtures: Pulse shapeTHGEM signals w fast amp

Increasing %CH4 -> higher voltages & faster avalanches

Amos Breskin RICH2010 Cassis

Page 7: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Gain StabilityGain Stability

Single THGEM (t=0.4mm, d=0.5mm, a=1mm, rim=0.12mm) Gain = 104, UV light, e- flux ≈ 10 kHz/mm2

CsIUV

Amos Breskin RICH2010 Cassis

• GAIN-STABILTY (charging up, substrate polarization) function of : substrate material, rim size around hole, HV value, gain, radiation flux, surface resistivity, mode of operation etc. • Good stability (Trieste): Holes with no rim – but no-rim: 10-100 times lower gain• New results in Ne-mixtures (much lower HV): ~stability with rim

Page 8: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

UV-photon detectorsUV-photon detectors

RICH

Noble-liquids

Amos Breskin

RICH needs: high efficiency for photonslow sensitivity to MIPs & backgroundStability (CsI, gain)low discharge rate

RICH2010 Cassis

Page 9: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

R&D activity for upgrades of ALICE & COMPASS RICH

EXEMPLE: ALICE

Amos Breskin

Recent beam-tests @ CERN of THGEM/CsI UV-RICH protos:

Peskov, Levorato talks 

RICH2010 Cassis

Very High Momentum Particle Identification Detector (VHMPID)

Page 10: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Two UV-photon options considered for Two UV-photon options considered for ALICE & COMPASS RICHALICE & COMPASS RICH

THGEM (RETGEM)?

MWPC

Amos Breskin

Open geometry:Photon & ion feedback gain limitPC agingPC excitation effectsMIP sensitivity

Closed geometry:No photon feedbackReduced ion feedback

More robust, simplerReduced MIP sensitivity

high gainsLower PC aging

RICH2010 Cassis

Extensive Comparative study: THGEM/CsI vs MWPC/CsI:Talk by Peskov 

Page 11: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Double-THGEM photon-imaging detector Double-THGEM photon-imaging detector RICHRICH

UV photon

e-

Segmented readout electrode

CsI photocathode

THGEM

pephotocathode Edrift

MIPe

THGEM

Reflective CsI PC on top of THGEM:

- Photoelectron extraction efficiency (QEeff)- collection efficiency into holes

- Photon detection above threshold

Unique: Slightly reversed Edrift (50-100V/cm) Good photoelectron collection

low sensitivity to MIPS* background reduction & higher gain!

Amos Breskin

Chechik NIM A553(2005)35

RICH2010 Cassis

_______* Phenix GEM/CsI HBD Talk by Tserruya

Page 12: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Gain in 1-, 2-, 3-THGEMGain in 1-, 2-, 3-THGEM

Amos Breskin

105 105

Ne/5%CH4 Ne/5%CF4

THGEM: thickness t=0.4 mm, holes d=0.3 mm, rim h=0.1 mm, pitch a = 1 mm.Conversion gap 10 mm , transfers and induction gaps 2 mm X-ray rate: 1kHz/mm2

Similar HV for similar gains RICH2010 Cassis

9 keV x-rays @ 1KHz/mm2 9 keV x-rays @ 1KHz/mm2

Page 13: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

1-, 2-, 3-THGEM:Gain limit vs rate: 1-, 2-, 3-THGEM:Gain limit vs rate: x-raysx-rays

Amos Breskin

MAX-gain decrease with rate observed, similarly to other gas-detectors Rather limit

In this geometry, with 3-THGEM:Ne/5%CH4 & Ne/5%CF4 @ 104Hz/mm2 (x-rays) max-gain of ~6x104

1.5 x 107 electrons (~250 electrons)

105Hz/mm2 UV photons 5 x 106 electrons (gain 5 x 106)

105105

Ne/5%CH4 Ne/5%CF4

PESKOV talk PESKOV talk

Page 14: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Normal drift field

Reversed drift filed

@ gain 5x105 the breakdown rate with reversed drift field is almost 10 times lowerWith ~same pe collection efficiency

Ru+UV

Fe+UVUV only

Ru+UV

Fe+UV

UV only

pephotocathode Edrift

MIPe

THGEM

THGEM: Discharge rate THGEM: Discharge rate

Gain 5 105

Gain 5 105 Counting-RATES: Ru ~100 Hz/ cm2Fe ~10KHz/cm2

Triple THGEM, Ne+10%CH4

10-2 sparks/min

10-1 sparks/min

Amos Breskin RICH2010 Cassis

Page 15: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

To prove that Ne-based mixtures can be beneficial for RICH R&D to demonstrate, as a first step, that in Ne-mixtures one can reach:

- good photoelectron extraction from CsI photocathode extr

- good photoelectron collection efficiency coll

collextreffeffph AQE QE in

vacuumEffective

areaExtraction efficiencyBackscattering in gas

Collection into holes

theffphphoton fp

Combined Ne/CH4 (95:5) (MM = 200V)

1

10

100

1000

1 501 1001

Channels

Co

un

tsGain = 3.65e5

Gain = 1.9e5

Gain = 5.3e4

threshold

photocathode

pe

THGEM

Photon detection efficiencyPhoton detection efficiency

- high gain: high electron detection efficiency above threshold photon

Amos Breskin RICH2010 Cassis

EFFECTIVE PHOTON DETECTION EFFICIENCY:EFFECTIVE PHOTON DETECTION EFFICIENCY:

Absolute Detection Efficiency:Absolute Detection Efficiency:

Page 16: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

0.0 0.5 1.0 1.5 2.0 2.5 3.00.4

0.5

0.6

0.7

0.8

0.9

1.0Atm. pressureGas flow mode

E

xtra

ctio

n ef

ficie

ncy

EDrift

(kV/cm)

CH4 CF4 Ne/10% CF4 Ne/5% CF4 Ne/10% CH4 Ne/5% CH4 Ar/5% CH4

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.30

1

2

3

4

5

Ele

ctric

File

d (k

V/c

m)

Distance from center between holes (mm)

VTHGEM

= 500 V

VTHGEM

= 700 V

VTHGEM

= 900 V

Electric field at THGEM electrode surface

Photoelectron extraction from CsIPhotoelectron extraction from CsI

Ne/10%CF4 ~as good as CF4

e.g. value for Ne/10%CF4

Amos Breskin

feedback

d=0.3mm, a=0.7mm, t=0.4mm

Thicker THGEM higher fields

2010 JINST 5 P01002

CH4

CF4

Page 17: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

200 300 400 500 600 700 800 900 10000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2Atm. pressureGas flow mode

Single THGEM (t = 0.4 mm, d = 0.3 mm, a = 0.7 mm, h = 0.1 mm)

Co

llect

ion

effic

iency

VTHGEM

(V)

G=220 G=25 G=103G=210 G=103

Ne/5% CF4 Ne/5% CH4 Ne/10% CF4 Ne/10% CH4 Ne/23% CH4

Photoelectron collection into THGEM holesPhotoelectron collection into THGEM holes

Even at low gain 100% collection efficiency in Ne-mixtures

2010 JINST 5 P01002

Amos Breskin RICH2010 Cassis

Page 18: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Gas ∆VTHGEM(

V)

Gain (UV)

QE170nm

AeffThis

THGEM

Aeff[1]

Optimal THGEM

εextr εcoll εeffphThis

THGEM

εeffph2

Optimal THGEM

Ne/CH4(95/5) 800 5.4E4 0.3 0.54 0.91 0.73[2] 1 0.12 0.20

Ne/CH4(90/10) 900 1.3E5 0.3 0.54 0.91 0.79[3] 1 0.13 0.22

Ne/CF4(95/5) 750 6.0E5 0.3 0.54 0.91 0.763 1 0.12 0.21

Ne/CF4(90/10) 850 1.2E6 0.3 0.54 0.91 0.834 1 0.14 0.23

[1] Optimal THGEM: t = 0.4 mm , d = 0.3 mm, a = 1 mm; h = 0.01 mm, [2] Value for 1.5 kV/cm photocathode electric field[3] Values for 2kV/cm photocathode electric field

theffphphoton fpWire chamber: fpth~0.70 in COMPASS εphoton ~0.21 @170nm ~0.90 in ALICE εphoton ~0.27 @170nm

@ 170nm

Expected THGEM UV detector performanceExpected THGEM UV detector performance2010 JINST 5 P01002

Amos Breskin Need RICH-THGEM-proto beam studies~

expected ~0.2 for fpth~0.9

RICH2010 Cassis

Page 19: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Avalanche-ion blocking

• Avalanche ions impinging the photocathode

- damage the photocathode - lifetime limit,

- secondary effects – gain limits• Damage: Long understood issue• In present MWPC/CsI photon detectors: 100% ions hit

the photocathode• In cascaded-THGEM: few%• Patterned hole multipliers: 10-3 to 10-4

• Efforts to pattern THGEM electrodes

Page 20: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

The Micro-hole & Strip plate (MHSP) Weizmann/Coimbra/Aveiro

30mm

100mm

100mm

70mm

140mm

210mm

With MHSP/GEM cascade:BEST ION TRAPPING : ~10-4

100 X better than 3-GEM20 X better than Micromegas

ION BLOCKING with PATTERNED HOLE MULTIPLIERS

410V 70V

AC

+++++ions

electrons

103 104 105 2x10510-4

10-3

10-2

F-R-MHSP/GEM/MHSP R-MHSP/GEM/MHSP

Edrift

=0.5kV/cm

Ar/CH4 (95/5), 760 Torr

IBF

Total gain

IBF=3*10-4 @ Gain=105

Like GEM, but with additional patterned strip-electrodes: extra gain OR ion blocking.

Ion deflection by strips between holes efficient ion trapping

2007 JINST 2 P08004

RICH2010 CassisAmos Breskin

Page 21: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

CHALLENGE: visible-light Gas Photomultipliers! Cascaded patterned hole-multipliers with K-Cs-Sb photocathodes

Gain ~105 + full photoelectron collection efficiency

200 220 240 260 280103

104

105

106

K-Cs-Sb (QE~27%@375nm) CsI Exponential fit of Exponential fit of

F-R-MHSP/GEM/MHSPE

drift=0.5kV/cm

700 Torr Ar/CH4 (95/5)UV-LED 375nm

Gai

n

VAC2

[V]

Works uniquely due to efficient ion blocking

105

“flat-panel” large-area photon-imaging detectors insensitive to B numerous applications: RICH, large Astro experiments…

Cascaded GEM: gain limit was <100

2009 JINST 4 P07005

30mm

100mm

100mm

70mm

140mm

210mm

Bialkali PC

Visible photon

K-Cs-Sb QE~27% @ 375nmCsI

Sealed vis-GPM

RICH2010 CassisAmos Breskin

Page 22: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

THCOBRA: a patterned THGEM for ion blocking

• Pitch = 1 mm

• Hole diameter = 0.3 mm

• Rim = 0.1 mm

• Thickness = 0.4 mm

Aveiro/Coimbra/WeizmannVeloso POSTER

THGEM-FTHCOBRA

THGEM-THCOBRA

Need to block ions without loosing primary photoelectronsSo far: good ion blocking but loss of photoelectrons

Previous success: FRMHSP/GEM/MHSPIon blocking factor 104 & full electron collection

Ion blocking electrodes

Ion reduction: less feedback, less PC aging

RICH2010 CassisAmos Breskin

Page 23: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Cryo-THGEM applicationsCryo-THGEM applications

RICH2010 CassisAmos Breskin

Page 24: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Noble-gas detectors

WIMP

Gas

Liquid

e-EAr, Xe…

Primary scintillation

Secondary scintillation

Electron multiplier&/or photomultiplier

photomultiplier

Amos Breskin

Charge &/or scintillation-light detection in liquid phase

or Charge &/or scintillation-light detection

In gas phase of noble liquids:“TWO-PHASE DETECTORS”

Possible applications:• Noble liquid ionization calorimeters • Noble-Liquid TPCs (solar neutrinos) • Two-phase detectors for Rare Events (WIMPs, -decay, …)• Noble-liquid -camera for medical imaging• Gamma astronomy• Gamma inspection• .....

RICH2010 Cassis

Use THGEM electron multipliers & THGEM/CsI photomultipliers ?

Page 25: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Experimental setup at Budker-Novosibirsk

First results with double-THGEM in 2-phase First results with double-THGEM in 2-phase LAr @ 84KLAr @ 84K

Bondar 2008 JINST 3 P07001

Good prospects for CRYOGENIC GAS-PHOTOMULTIPLIERS operation in gas phase of noble liquids!

Amos Breskin RICH2010 Cassis

Double-THGEM in two-phase Xeat T=164K Max. gain limit due to connector…

2-THGEMG-10

1-THGEMG-10

2-THGEMKEVLAR

3-GEM

Stable operation in two-phase Ar, T=84KDouble-THGEM Gains: 8x103

2-THGEMG-10

two-phase Xe

Buzulutskov VCI 2010; in preparation for JINST

Page 26: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

THGEM and THGEM/G-APD @ Cryo temperatures

G-APD bipolar

G-APD unipolar

2-THGEM

Buzulutskov et al. (Budker/ITEP/Weizmann)

60 keV X-ray at 2THGEM gain=400 SiPM ~1000e before amplification!

Two-phase detectors with THGEM+SiPM ~0.6pe/initial e at THGEM gain=400 in Ar SiPM signal: Npe~ 0.6Ninitial e’s x SiPM gain

Efficient readout of noble-liquid detectors?

2-phase LAr detector

THGEM

G-APD (SiPM)

VCI 2010 & paper submitted to JINST

Idea: Good S/N @ low THGEM-gain, recordingavalanche photons with Geiger APDs (G-APD)

SiPM

RICH2010 CassisAmos Breskin

Page 27: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Cryo-GPM Cryo-GPM with windowswith windows2-phase or liquid scintillators

Amos Breskin

Best operation, confirmed at RT: Ne/CH4 or Ne/CF4

0 200 400 600 800 1000 120010-2

10-1

100

101

102

103

104

105

106

107

Effe

ctiv

e G

ain

VTHGEM

(V)

Ne/5% CF4 Ne/10% CF4 Ne/5% CH4 Ne/10% CH4 Ne/23% CH4

Single THGEM (t = 0.4 mm, d = 0.3 mm, a = 0.7 mm, h = 0.1 mm)

Atm. pressureGas flow mode

b)

radiation LXe

e-

THGEM GPM

EG

Secondary scintillation Xe

UV-window

106

GPM in noble-gas: gain affected by lack of impurities arXiv:1001.4741

GPM w window: better control of counting gas / stability

RICH2010 Cassis

Higher gain & lower HV

Page 28: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Cryo-GPM for LXe Medical Compton Camera

THGEM : thickness = 400 mm hole Ø = 300 mm hole spacing = 700 mm rim size = 50 mm

DriftE

IndE

VTHGEM

4 m

m

4 m

m

4 m

m

TransE

VTHGEM

Double-THGEM layout

MgF2 UV window

Reflective CsIphotocathode

Ne/CH4

GPM location

LXe TPCgamma-converterwith field shaping

Subatech-Nantes/Weizmann

44Sc + emitter

LXe Gamma Camera

PET

2009 JINST 4 P12008 2009 JINST 4 P12008

RICH2010 CassisAmos Breskin

Page 29: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Double THGEM (setup 2) Ne/CH4 (95:5)

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

0 100 200 300 400 500 600 700

V THGEM

Gai

n (

curr

ent

mo

de)

double THGEM 153 K

double THGEM 150 K

double THGEM 158 K

double THGEM 182 K

root temperature

Amos Breskin

Samuel Duval, Ran Budnik & Marco Cortesi (WIS)

105

182KDouble-THGEM RT & CRYO-T

150-158K

Double-THGEM/CsI at RT & CRYO-TPreliminary results @ CRYO-T in “improvised“ setup at WeizmannCryo-medium: LN2/ethanolSoon: studies at Nantes with LXe TPC

102

RT

Ne/5%CH4

Single-UV

Preliminary results in Ne/CF4 @ Coimbra: at RT, similar gain @ 1-3 bar

HV limit (connector)

RICH2010 Cassis

Page 30: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

XEMIS LXe Compton CameraXEMIS LXe Compton Camera

Amos Breskin

LXe-TPC

GPM

Tests in LXe: May 2010 @ Nantes

cryostat

RICH2010 Cassis

Page 31: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

2-phase DM detectors

XENON100Kg: running with PMTs!PROBLEM: cost & natural radioactivity of multi-ton detectors!

Proposed design of XENON 1ton

Possible design of the XENON 1 ton two-phase LXe DM TPC detector with ~ 121 QUPID vacuum photon detectors. Background: 1mBq/tube

Expectation: < 1 WIMP interaction/Kg/Day

Aprile/XENON

WIMPinteraction

LXe

e-

THGEM GPM Detector

Primary scintillation

EG

EL

Secondary scintillation Xe

THGEM GPM Detector

UV-window

UV-window

Ne/CF4

?

RD51: Weizmann/Nantes/Coimbra

THGEM-GPM (gas photomultiplier):• Simple, flat (save LXe), robust• Low-cost• Radio-clean ?• Lower thresholds ?

RICH2010 CassisAmos Breskin

Page 32: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Amos Breskin

Large THGEM electrodes

Industry: square-meters possible

300x300mm2 THGEM90,000 0.5mm diameter holes

(Print Electronics, IL)

600x600mm2 THGEM600,000 0.4mm diameter holes

(Eltos, IT)

Status: so far only “mechanical” electrodes

WEIZMANN

TRIESTE

RICH2010 Cassis

Page 33: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

SUMMARYSUMMARY

• a versatile robust electron multiplier

• Good suitability for photon detection with Ne-mixtures• RICH: expected photon detection efficiency ~20% @ 170nm• Good stability in background environment• Comparative results with MWPC/CsI: talk by PESKOV

• Various ongoing and potential applications @ RT & low-T UV-photon detectors for RICH

Sampling elements for Digital Hadron Calorimeters

Neutron-imaging detectors

Cryogenic UV-photon detectors for medical imaging and dark matter

Large-area moderate-resolution tracking detectors

Amos Breskin RICH2010 Cassis

Page 34: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Amos Breskin

SPARE SLIDES

RICH2010 Cassis

Page 35: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Amos Breskin

4 m

m

MgF2

4 m

m

4 m

m

8 m

m

4 m

m

MgF2

CsI photocathode CsI photocathode

4 m

m

MgF2

4 m

m

4 m

m

8 m

m

4 m

m

MgF2

CsI photocathode CsI photocathode

Combined and Double in Ne/CF4

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

0 200 400 600 800 1000

V THGEM (V)

Gai

n

MM = 330 NeCF4 10%

MM = 290 NeCF4 5%

DTHGEM NeCF4 10%

DTHGEM NeCF4 5%

Double-THGEM THGEM+Micromegas

GPM: Double-THGEM vs THGEM+MicromegasGPM: Double-THGEM vs THGEM+Micromegas

2-THGEM

THGEM+MM

107Ne/CF4 (5-10%)

THGEM: Thickness t=400mm, hole dia d=300 mm, pitch a=700mm, rim R=50mm. MICROMEGAS: t 5mm, d 30mm, a 60mm.

~25 photons pulse ~25 photons pulse

Weizmann/Nantes

Nov. 2009

Samuel Duval, Ran Budnik & Marco Cortesi RICH2010 Cassis

Page 36: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Amos Breskin

MICROMEGAS Ne mixtures

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

0 100 200 300 400V MM (V)

Gai

n

NeCF4 5%

NeCH4 5%

NeCH4 10%

NeCF4 10%

Combined and Double in Ne/CF4

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

0 200 400 600 800 1000

V THGEM (V)

Gai

n

MM = 330 NeCF4 10%

MM = 290 NeCF4 5%

DTHGEM NeCF4 10%

DTHGEM NeCF4 5%

2-THGEM

THGEM+MM

107

Samuel Duval, Ran Budnik & Marco Cortesi

102

Room temperature

Room temperature

Ne/CF4

2-THGEM vs THGEM-MicromegasMicromegas in Ne-mixtures

GPM: Double-THGEM vs THGEM+MicromegasGPM: Double-THGEM vs THGEM+Micromegas

RICH2010 Cassis

Page 37: THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

MICROMEGAS (InGrid)covered with CsI

photon

CsI PCCsI PC

Chip area: 14x14mm2.(256×256 pixels of 55×55 μm2)

TIMEPIX

Ingrid without CsI

Ingrid with CsI PC:

2D UV Image of a 10mm

diameter maskFew-micron resolutions

UV absorbed by the

fingerprinton the window

Melai, 2009 http://arxiv.org/abs/1003.2083

Fransen 2009

INGRID/CMOS PHOTON IMAGING DETECTOR

50mm mesh

RICH2010 CassisAmos Breskin