this book can be ordered in a paper bound reprint fromfs.gallup.unm.edu/chinesemath8.pdf · 1 Ù...

of 144 /144

Author: lamdat

Post on 24-Jun-2018

213 views

Category:

Documents


0 download

Embed Size (px)

TRANSCRIPT

  • This book can be ordered in a paper bound reprint from:

    The Educational Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212 USA Toll Free: 1-866-880-5373 E-mail: [email protected]

    Peer Reviewer: Prof. Wenpeng Zhang, Department of Mathematics, Northwest University, Xian, Shaanxi, P. R. China. Prof. Xingsen Li, Ningbo Institute of Technology, Zhejiang University, Ningbo, P. R. China. Prof. Chunyan Yang and Weihua Li, Guangdong University of Technology, Institute of Extenics and Innovative Methods, Guangzhou, P. R. China. Prof. Qiaoxing Li, Lanzhou University, Lanzhou, P. R. China. Ph. D. Xiaomei Li, Dept. of Computer Science, Guangdong University of Technology, P. R. China. Copyright 2012 by The Educational Publisher, translators, editors and authors for their papers Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN: 9781599731902 Words: 175,000 Standard Address Number: 297-5092 Printed in the United States of America

  • 8

    8

    c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

    1 {0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 SmarandacheSmarandache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.1 'uSmarandache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.2 aSmarandacheEulerI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.3 aSmarandacheEulerII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.4 'uSmarandache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2.5 'uSmarandacheSmarandacheI . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2.5.1 9yG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2.5.2 'K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    2.6 'uSmarandacheSmarandacheII . . . . . . . . . . . . . . . . . . . . . . . . 20

    2.7 'uSmarandache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3 Smarandache9Smarandache' . . . . . . . . . . . . . . . . 27

    3.1 aSmarandache' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    3.2 'uSmarandachepSmarandache . . . . . . . . . . . . . . . . . . . . . 29

    3.3 'uSmarandache9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    3.4 'uSmarandachepSmarandache . . . . . . . . . . . . . . . . . . 39

    3.5 'uSmarandacheV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    3.6 a2Smarandache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    3.7 Smarandache91aSmarandache . . . . . . . . . . . . . 48

    3.8 'uSmarandache LCMSmarandache . . . . . . . . . . . . . . . . . . . . . . 51

    3.9 'uSmarandache LCM9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    4 SmarandacheS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    4.1 Smarandache LCM 'SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    4.2 Smarandache LCM 'SII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    4.3 Smarandache 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    4.3.1 Smarandache1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    4.3.2 Smarandache V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    4.4 Smarandache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    4.5 Smarandache 3n iS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    I

  • 8

    4.6 Smarandache kn iS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    4.7 Smarandache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    5 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    5.1 kFibonacciLucas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    5.2 Dirichlet L-n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    5.3 2Dirichlet L- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    5.3.1 'un5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    5.3.2 'un5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    II

  • c

    c

    q, 5, AO5|. /

    , X|u, {3u, y

    \N|, 3I, [email protected]|. F1

  • c

    IV

  • 1 {0

    1 {0

    35kK, vk)6, {7Z;[F.Smarandache

    J108)K, ;[,. 0

    k'SmarandacheSmarandache9'K#?.

    ?nSmarandacheS(n)mn|m!, =

    S(n) = min{m : m N, n|m!}.

    lS(n)

  • Smarandache9'K

    2

  • 1 SmarandacheSmarandache

    1 SmarandacheSmarandache

    2.1 'uSmarandache

    ?n, F. SmarandacheS(n)mn|m!.~XS(n)cAS(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) =

    3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 10, S(11) = 11, S(12) = 4, . 'uS(n){5, z[1, 7], p2E.

    'uS(n)5, N?1, k(J, ~XF.

    Luca3z[2]?

    A(x) =1

    x

    n6x

    S(n)

    e.OK, A(x)r.O. 3z[3]y?

    n>1

    n

    S(1) S(2) S(n)

    , Je:

    : ?x > 1, kC

    LS(x)

    n6x

    ln S(n) = ln x ln ln x + O(1).

    'u, 8qvk

  • Smarandache9'K

    ?k > 1, k

    LS(s) 1x

    n6x

    ln S(n) = ln x + C + O

    (1

    lnk x

    )

    ,

    CO~.

    yn2.1, IeAn.

    nnn 2.1 ?p, kC

    p6x

    ln p

    p= ln x + O(1),

    p6x

    ln p = x + O( x

    ln x

    )

    .

    y:z[4 6].e|^dnny. kLS(x).O.

    , dS(n)5, ?nkS(n) 6 n, dEuler

    (z[6]n3. 1), k

    LS(x)=1

    x

    n6x

    ln S(n) 61

    x

    n6x

    ln n

    =1

    x

    n6x

    x

    1

    ln ndy 61

    x

    x

    1

    ln ydy +ln(x + 1)

    x

    =ln x 1 + 1x

    +ln(x + 1)

    x.

    =

    LS(x) =1

    x

    n6x

    ln S(n) 6 ln x + O(1). (2-1)

    g, |^n5OS(x) 1x

    n6x

    LnS(n) e.. ?

    n > 1, w,nkfp, n = p n1, udS(n)5

    S(n) > p

    ln S(n) = ln S(p n1) > ln p.

    ld(z[6]n3.17), k

    LS(x)

    =1

    x

    n6x

    ln S(n)

    4

  • 1 SmarandacheSmarandache

    >1

    x

    pn16x

    ln p

    =1

    x

    p6

    x

    ln p

    n6xp

    1 +

    n6

    x

    1

    p6 xn

    ln p

    p6

    x

    ln p

    n6

    x

    1

    =1

    x

    p6

    x

    ln p (

    x

    p+ O(1)

    )

    +

    n6

    x

    1 (x

    n+ O

    ( x

    n ln x

    ))

    p6

    x

    ln p (

    x + O(1))

    =1

    x

    x

    p6

    x

    ln p

    p+ O

    n6

    x

    ln p

    + x

    n6

    x

    1

    n+ O(x)

    x

    p6

    x

    ln p + O(

    x)

    =1

    x

    {

    x ln

    x + O(

    x) + x ln

    x + O(x)

    x

    (x + O

    (x

    ln x

    ))}

    =ln

    x + ln

    x + O(1)

    = ln x + O(1).

    =

    LS(x) > ln x + O(1). (2-2)

    d(2-1)9(2-2)k

    LS(x) = ln x + O(1).

    un2.1y.

    2.2 aSmarandacheEulerI

    u?n, SmarandacheS(n)mn|m!,=S(n) = min{m : m N, n|m!}.Smarandache59A^+

  • Smarandache9'K

    nnn 2.2 Euler5, =u?pmn, Kk(mn) =

    (m)(n).

    nnn 2.3 n = p11 p22 pkk nIO), Kk

    (n) =k

    i=1

    pi1i (pi 1).

    nnn 2.4 n > 2, K7k2|(n).

    yyy: (1)enkf, p, Kp > 22|p 1.qdn2.3(p 1)|(n),2|(n).

    (2)envkf, n > 2, 7kn = 2k,ku1.dEuler

    5(n) = 2k1(2 1) = 2k1, k2|(n). d(1)(2), n2.4.

    nnn 2.5 n = p11 p22 pkk nIO), K

    S(n) = max{S(p11 ), S(p22 ), , S(pkk )}.

    yyy: z[7].

    nnn 2.6 upk, kS(pk) 6 kp.AO/, k < p, kS(pk) = kp.

    yyy: z[7].

    nnn 2.7 y = p2(p 1) p, p, K > 3, yN4O.

    yyy: y = (p 1)p2 ln p p, > 3, y > 0,(.en2.2y.rk = 7\(n) = S(nk),=

    (n) = S(n7). (2-4)

    w,n = 1(2-4)). e?n > 16.

    n > 1n = p11 p22 pkk nIO),Kdn2.5k

    S(n7) = max{S(p711 ), S(p722 ), , S(p7kk )} = S(p7r). (2-5)

    dn2.2,

    (n) = (pr)

    (n

    pr

    )

    = pr1(p 1)(

    n

    pr

    )

    . (2-6)

    (2-4))(2-6),

    pr1(p 1)(

    n

    pr

    )

    = S(p7r). (2-7)

    6

  • 1 SmarandacheSmarandache

    r = 1, ep = 2,d(2-7)

    S(27) = 8 = (n

    2

    )

    ,

    =n = 32,

    (32) = 25 24 = 16 6= S(327),

    n = 32(2-4)).

    ep = 3,K

    S(37) = 18 = 2(n

    3

    )

    ,

    n2.4g, (2-4)).

    n, ep = 5, 7, 11, (2-4)).

    ep > 11,K

    S(p7) = 7p = (p 1)(

    n

    p

    )

    ,

    2|p 1, n2.4g, (2-4)).r = 2, ep = 2, d(2-7)

    S(214) = 16 = 2(n

    4

    )

    ,

    =(n4 ) = 8, Kn = 64,

    S(647) = S(242) = 46 6= 32 = 26 25 = (64),

    n = 64(2-4)).

    ep = 3, K

    S(314) = 30 = 6(n

    9

    )

    ,

    n2.4 g, (2-4)).

    ny,ep = 5, 7, 11, 13,(2-4)).

    ep > 17,K

    S(p14) = 14p = p(p 1)(

    n

    p2

    )

    ,

    =k

    7 =p 1

    2

    (n

    p2

    )

    ,

    n2.4g, (2-4)).

    r = 3, ep = 2,

    S(221) = 24 = 22(n

    8

    )

    ,

    7

  • Smarandache9'K

    Kn8 = 9, n = 72,

    (72) = (23 22)(32 3) = 24, S(727) = S(221 314) = 30 6= 24 = (72),

    n = 72(2-4)).

    ep = 3,K

    S(321) = 45 = 18( n

    27

    )

    ,

    n2.4g, (2-4)).

    ep = 5, 7, 11, 13, 17, 19,ny(2-4)).

    ep > 23,dn2.6k,

    S(p21) = 21p = p2(p 1)(

    n

    p3

    )

    ,

    =

    21 = p(p 1)(

    n

    p3

    )

    ,

    p > 23g,(2-4)).

    r = 4, ep = 2,

    S(228) = 32 = 23( n

    16

    )

    ,

    =(

    n16

    )= 4, n = 80,

    (80) = (24 23)(5 1) = 32, S(807) = S(228 57) = 32 = (80),

    n = 80(2-4)).

    ep = 3,

    S(328) = 60 = 33 2( n

    81

    )

    ,

    U, d(2-4)).

    ep > 5,dn2.6k,

    28p > S(p28) = p3(p 1)(

    n

    p4

    )

    ,

    =

    28 > p2(p 1)(

    n

    p4

    )

    ,

    p > 5g, (2-4)).

    r = 5,ep = 2,

    S(235) = 42 = 24( n

    32

    )

    ,

    8

  • 1 SmarandacheSmarandache

    n2.4g, (2-4)).

    ep > 3,

    35p > S(p35) = p4(p 1)(

    n

    p5

    )

    ,

    =

    35 > p3(p 1)(

    n

    p5

    )

    ,

    p > 3g, (2-4)).

    r > 6,ep = 2,

    S(27r) = 2r1( n

    2r

    )

    ,

    =2r1|S(p7r), dSmarandachen2.5!2.6 , U, (2-4)).

    ep > 3,K

    7rp > S(p7r) = pr1(p 1)(

    n

    pr

    )

    ,

    =

    7r > pr2(p 1)(

    n

    pr

    )

    > pr2(p 1),

    dn2.7,U, (2-4)).

    n: k = 7, (n) = S(nk)=k)n = 1, 80.dn2.2y

    .

    2.3 aSmarandacheEulerII

    un, SmarandacheS(n), (n)Euler, !UY

    SmarandacheEuler

    (n) = S(nk)

    ). 3!, (2-3)3k = 7), !3d:

    (2-3)3k > 8)L9)K. =kXeAn.

    nnn 2.3 k = 8, (2-3)=k)n = 1, 125, 250, 289, 578.

    nnn 2.4 k = 9, (2-3)=k)n = 1, 361, 722.

    nnn 2.5 k > 10, (2-3)=3k).

    nnn 2.6 en = p11 p22 pss nIO),

    S(pkr) = max{S(pk11 ), S(pk22 ), , S(pkss )},

    9

  • Smarandache9'K

    Kp > 2k + 1k > 1, r > 2, (2-3)); 2k + 1, (2-3) =k2

    ), n = 2p2.

    e5ny. kn2.3y. rk = 8\(2-3),

    (n) = S(n8). (2-8)

    w,n = 1(2-8)).e?n > 16.

    n > 1n = p11 p22 pss nIO), Kdn2.6k

    S(n8) = max{S(p811 ), S(p822 ), , S(p8kk )} = S(p8r) (2-9)

    dn2.3,

    (n) = (pr)

    (n

    pr

    )

    = pr1(p 1)(

    n

    pr

    )

    . (2-10)

    (2-8)-(2-10),

    pr1(p 1)(

    n

    pr

    )

    = S(p8r). (2-11)

    p = 2, r = 1,d(2-11)

    (n

    2

    )

    = S(28) = 10, (2-12)

    d(2-12)(

    n2

    )> 1. Kn7fq,

    S(q8)

    =

    18, q = 3

    35, q = 5

    49, q = 7

    8q, q > 7

    (2-13)

    (2-9)(2-12)g. p = 2, r = 1, (2-8)).

    (32) = 25 24 = 16 6= S(327), n = 32(2-8)).p = 2, r = 2, d(2-11)2(n

    4) = S(216) = 18, =(n

    4) = 9, n2.4g,

    p = 2, r = 2, (2-8)).

    ny,p = 2, r = 3, 4, 5, 6, 7, 8, (2-8)).

    p = 2, r > 8, dn2.6k

    8r >1

    2S(28r) =

    1

    22r1

    ( n

    2r

    )

    = 2r2( n

    2r

    )

    > 2r2 =1

    42r,

    =32r > 2r, g. p = 2, r > 8, (2-8)).

    p = 3, r = 1, d(5)22(

    n3

    )= S

    (38)

    = 18, =(

    n3

    )= 9, n2.4g

    ,p = 3, r = 1, (2-8)).

    10

  • 1 SmarandacheSmarandache

    ny,p = 3, r = 2, 3, 4,(2-8)).

    p = 3, r > 5, dn2.6k

    8r >1

    3S(28r) =

    2

    33r1

    ( n

    3r

    )

    = 2 3r2( n

    3r

    )

    > 2 3r2 > 2er2 >

    2

    (

    1 + (r 2) + 12(r 2)2 + 1

    6(r 2)3 + 1

    24(r 2)4 + 1

    120(r 2)5

    )

    > 8r,

    g.p = 3, r > 5,(2-8)).

    p = 5, r = 1, d(2-11)4(

    n5

    )= S(58) = 35,g,(2-8)).

    p = 5, r = 2,20(

    n25

    )= S(516) = 70, =2( n

    25) = 7, g, (2-8)).

    p = 5, r = 3,100( n125) = S(524) = 100, =

    (n

    125

    )= 1, n = 125, 250,

    (125) = (53) = 100 = S(524) = S(1258),

    (250) = (2 53) = 100 = S(524) = S(2508),

    n = 125, 250(2-8)).

    p = 5, r = 4, 53 4(

    n625

    )> S(532) = 130,(2-8)). n

    p = 5, r > 4, (2-8)).

    p = 7, r = 1,d(2-11)6(

    n7

    )= S(78) = 49,g,(2-8)).

    np = 7, r = 2, (2-8)).p = 7, r = 3,

    72 6( n

    243

    )

    > S(724) = 147,

    (2-8));p = 7, r > 3, (2-8)); p = 11, 13, r > 1, (2-8)).

    p = 17, r = 1,d(2-11)16(

    n17

    )= S

    (178)

    = 17 8,g,(2-8)).

    p = 17, r = 2,k17 16(

    n172

    )= S

    (1716

    )= 17 16,=

    (n

    289

    )= 1,n = 289, 578,

    (289) = (172)

    = 272 = S(1716

    )= S(2898),

    (578) = 272 = S(1716

    )= S

    (5788

    ),

    n = 289, 578(2-8)).

    p = 17, r > 3, du17r1 16(

    n17r

    )> S

    (178r

    ),(2-8)).

    p = 19, r = 1,k18(

    n19

    )= S

    (198)

    = 8 19,g,(2-8)).n,p = 19, r = 2, 3,(2-8));p = 19, r > 4, 19r > 19r218( n19r ) >

    18 19r2,g. (2-8)).p > 19, r = 1,k(p 1)(np ) = S(p8) = 8 p,(p, p 1) = 1, e

    11

  • Smarandache9'K

    k 8pp1 = 2k(k N+), =p =k(p1)

    4 , g.(2-8)).

    p > 19, r > 2,dn2.6k

    8r > pr2(p 1)(

    n

    pr

    )

    > 22 23r2,

    w,g.(2-8)).

    n:k = 8,(2-8)=k)n = 1, 125, 250, 289, 578.y

    n2.3.

    n,^q{yn2.4.

    eyn2.5. ?k,n > 1, n = p11 p22 pss

    nIO), dS(n)

    S(nk) = max{S(pk11 ), S(pk22 ), , S(pkss )} = S(pkr).

    q

    (n) = (pr)

    (n

    pr

    )

    = pr1(p 1)(

    n

    pr

    )

    , (2-14)

    d(2-3)

    pr1(p 1)(

    n

    pr

    )

    = S(pkr). (2-15)

    p 6 S(pkr) 6 krp.

    epr1(p 1)( npr

    ) = krp,Kd(n)95pr1(p 1)|krp,=pr2(p 1)|kr.-y = pr2(p 1) kr, p,yr.K

    y = (p 1)pr2 ln p k.

    p > 2k + 1r > 2,y > 0,dyN4O,y > 0.

    (2-15)p > 2k+1r > 2).==3knU(2-13)

    .

    , dn2.2-2.6,(n2.4!n2.5y{n2.6.

    2.4 'uSmarandache

    SmarandachedF.Smarandache3 Only Problems Not Solutions ?, S(n) = min{m : n|m!}.5

  • 1 SmarandacheSmarandache

    d?1L.

    Erdos[15]QuAknkS(n) = P (n),P (n)n

    f. u8c(JAleksandar Ivic[25], y

    N(x) = x exp

    {

    2 log x log log x

    (

    1 + O

    (log log log x

    log log x

    ))}

    ,

    pN(x)LkLxvS(n) = P (n).Mark

    FarrisPatrick Mitchell[26]SmarandacheS(n)3e.O,

    Xe(J:

    (p 1) 6 S(p) 6 (p 1)( + 1 + logp ) + 1;

    Jozsef Sandor[27]Smarandache)5, y

    S(m1 + m2 + + mk) < S(m1) + S(m2) + + S(mk)

    S(m1 + m2 + + mk) > S(m1) + S(m2) + + S(mk)

    3). Lu Yaming[28]?y3e3|).

    'uS(n)Z(n)kN5, AOZ(n)du5K5

    5k(J.+3[29]JeK:kk

    n|d1

    S(d); Z(n)Majumdar3[30]Jeo

    :

    (1)Z(n) = 2n 1=n = 2k,kK;(2)Z(n) = n 1=n = pk,pu3;(3)XJnULn = 2k/, KkZ(n) 6 n 1;(4)?nkZ(n) 6= Z(n + 1).!K), u+JK),

    MajumdarJo(. `(5, keA

    n.

    nnn 2.8 eS(n) = P (n),nIO)n = p11 p22 prr Pr+1(n), @o7kr+1 =

    1;u1 6 k 6 r,7kk 6 P (n) 2.

    yyy: er+1 > 1, KkP2(n)|n,n|S(n)! = P (n)!,KP 2(n)|P (n)!.P (n)g

    .kr+1 = 1.

    n!fp,=vp|n!, p+1 n!,Kk =

    l=1

    [npl

    ]

    (y

    13

  • Smarandache9'K

    [31]). dukpkk |P (n)!,dk

    k 6

    l=1

    [P (n)

    plk

    ]

    6

    l=1

    P (n)

    plk=

    P (n)

    pk 1,

    dpk 6= 2w,kk 6 P (n) 2; pk = 2, Kkt2t < P (n) < 2t+1,dk

    k 6t

    l=1

    [P (n)

    2l

    ]

    6

    t

    l=1

    P (n)

    2l= P (n) P (n) 2

    2t+1< P (n) 1,

    kdk 6 P (n) 2.

    \BZ(n), #Z(n) = min{m : n|m(m + 1)}, w,

    NnZ(n) = Z(n),nZ(n) = Z(2n), d

    '.e'uZ(n)5.

    nnn 2.9 n = pk, Z(n) = n1;nkf,K7kZ(n) 6n2 1.

    yyy:dZ(n)Z(n) 6 n 1, n = pkkpk|Z(n)(Z(n) + 1), k

    pk|Z(n)

    pk|Z(n) + 1,

    dZ(n) > pk 1 = n 1,dkZ(n) = n 1.nkf, dn7)pu1

    , n = mk,(m, k) = 1,dk, K733b, b

    ukK{Xmb l mod kmb l mod k, d7kZ(n) 6min{mb, mb 1}.5k|(mb + mb),dkk|(b + b),kb + b = k,duk, 7kmin{b, b} 6 (k1)2 ,d

    Z(n) 6 mk 1

    2=

    n

    2 m

    26

    n

    2 1.

    dneAn.

    nnn 2.7 -

    f(n) =

    d|n

    1

    S(d),

    @o3n 6 xN(x), f(n),

    N(x) = x exp

    {

    2 log x log log x

    (

    1 + O

    (log log log x

    log log x

    ))}

    ,

    14

  • 1 SmarandacheSmarandache

    =f(n)3Ak.

    yyy:dAleksandar Ivic[25](J, IyS(n) = P (n), f(n).

    eS(n) = P (n),dn2.8, nIO)n = p11 p22 prr P (n), k 6

    P (n) 2,nPn = mP (n),dk

    f(n)=

    d|n

    1

    S(d)=

    d|m

    1

    S(d)+

    d|m

    1

    S(dP (n))

    =

    d|m

    1

    S(d)+

    d|m

    1

    P (n)

    =

    d|m

    1

    S(d)+

    rk=1(k + 1)

    P (n).

    I5ud|m, S(d) < S(n) = P (n), k + 1 6 P (n) 1 < P (n), du1, , 1fuP (n),u1ff

    uP (n),d, d\U.n2.7y.

    nnn 2.8 (i)Z(n) = 2n 1=n = 2k, kK;(ii) Z(n) = n 1=n = pk, pu2;(iii)XJnULn = 2k/, KkZ(n) 6 n 1.

    yyy:(i)n = 2k(=k, k = 0w,), dkZ(n) = Z(2n),d

    n2.9Z(n) = 2n 1; eZ(n) = 2n 1,7kn, KZ(n) = Z(n) 6 n 1, bn 6= 2k,2nkf,dn2.9Z(n) = Z(2n) 6 2n

    21 = n1,

    g, n = 2k.

    (ii)n = pk, pu2, dkZ(n) = Z(n), dn2.9Z(n) =

    n 1; eZ(n) = n 1,w,nU, bn 6= pk,Knkf, dn2.7Z(n) = Z(n) 6 n2 1,g, kn = pk, pu2.

    (iii)enULn = 2k/, K7kn, dkZ(n) = Z(n) 6 n 1,Knkf, dn2.9dk

    Z(n) = Z(2n) 62n

    2 1 = n 1.

    nnn 2.9 ?nkZ(n) 6= Z(n + 1).

    yyy:bknZ(n) = Z(n + 1) = m,K3k, knk = (n + 1)k = m(m+1)2

    ,d

    u(n, n+1) = 1,dkn+1|k, n|k,dkn+1 6 k, n 6 k,m(m+1)2 > n(n+1),km > n + 1,dn2.8K7kn = 2t, n + 1 = 2t

    ,Un = 1, dw,

    kZ(1) 6= Z(2).

    15

  • Smarandache9'K

    nnn 2.10 ?x > 1, k

    x2J

    j=1

    aj

    logjx+ O

    [x2

    logJ+1x

    ]

    6

    n6x

    Z(n) 63

    8x2 + O

    [x2

    lnx

    ]

    ,

    aj =(j+1)

    2.

    yyy: kym:dn2.8,n = 2k, Z(n) = 2n1,n = pk,Z(n) = pk 1, nkf, Z(n) 6 n 1; nk2fkZ(n) 6 (n1)2 , d

    n6x

    Z(n)=

    k6[x2]

    Z(2k) +

    k6[x2]

    Z(2k + 1) + O(x)

    6

    k6[x2]

    2k 1 +

    k6[x2]

    k +

    p6x

    p 12

    +

    k6ln x

    2k + O(x)

    =3

    k6[x2]

    k +

    p6x

    p 12

    +

    k6ln x

    2k + O(x)

    =3

    8x2 + O

    (x2

    ln x

    )

    .

    eyn: P (n)|nZ(n)(Z(n)+1)

    2,kP (n)|Z(n)(Z(n) + 1),

    Z(n) > P (n) 1,d:

    n6x

    Z(n)>

    n6x

    (P (n) 1)

    =

    n6x

    P (n) + O(x)

    =x2J

    j==1

    aj

    logjx+ O

    (x2

    logJ+1x

    )

    .

    z[25].

    2.5 'uSmarandacheSmarandacheI

    2.5.1 9yG

    ?nF. SmarandacheS(n)mn|m!=S(n) = min{m : m N, n|m!}. lS(n)

  • 1 SmarandacheSmarandache

    5,N?1,k(J[7,27,28,33,36]. ~X, Lu Yaming

    aS(n))5[28] , yTk|), =y?

    k > 2

    S(m1 + m2 + + mk) = S(m1) + S(m2) + + S(mk)

    k|)(m1, m2, ,mk).Jozsef Sandor[27]?`?k > 2, 3|

    (m1, m2, , mk)

    v

    S(m1 + m2 + + mk) > S(m1) + S(m2) + + S(mk).

    , q3|(m1 + m2 + + mk)v

    S(m1 + m2 + + mk) < S(m1) + S(m2) + + S(mk).

    d, M[36]k'S(n)(J[36]. =yC

    n6x

    (S(n) P (n))2 = 2(32)x

    32

    3 ln x+ O

    (

    x32

    ln2 x

    )

    ,

    P (n)Lnf, (s)LRiemann Zeta-.

    y3,Z(n)

    Z(n) = min

    {

    m : m N, n

    m(m + 1)

    2

    }

    .

    TkSmarandache. 'u5, ,8,

    k

  • Smarandache9'K

    nnn 2.12 ?n,

    Z(n) + 1 = S(n)

    =n = p m, p, mp12 ?. =m|p12 .

    w,, Tn.)K(A)9(B). =yk

    ), z)N/. , AO3m[1, 100], Z(n) =

    S(n)k9),On = 1, 6, 14, 15, 22, 28, 33, 66, 91.uK(B),w,Z(n)+

    1 = S(n)3m[1, 50]k19 ), O

    n = 3, 5, 7, 10, 11, 13, 17, 19, 21, 23, 26, 29, 31, 34, 37, 39, 41, 43, 47.

    |^{ny.

    kyn2.10. , n = 1, Z(n) = S(n). n = 2, 3, 4, 5,

    w,vZ(n) = S(n). u, bn > 6vZ(n) = S(n), Z(n) =

    S(n) = k. dZ(n)9S(n), k, nve

    :

    n

    k(k + 1)

    2, n|k!. (2-16)

    k,y3(2-16)k+1U. XJk+1,k+1 =

    p,u3n|p(p1)2(n, p) = 1, n|p1

    2.ln

    p2

    i=1

    i =(p 1)(p 2)

    2.

    k = p 1n|k(k+1)2 g(n, p) > 1, dup, p|n. 2dun|k!, p|k!. U, p = k + 1,pU(p 1)!, ly3(2-16)k + 1U.

    g, y3(2-16)kk. kk+12

    , ek, Kk), k = a b, a > 1, b >1a 6= b. u5(k, k+1

    2) = 1,Jk = a b|(k 1)!k+1

    2|(k 1)! 2dun

    k(k+1)

    2 n|(k 1)!. kn|k!g. k,, k = p.duk, p > 3, lp, 2p, , p1uk 1z(k 1)!, udnk(k+1)2 E,n|(k 1)!. kg, k.

    (kkk = p,dnp(p+1)2

    p!, n

    p+12 ,w,kS(n) < p;n = pZ(n) 6= S(n). n = p m, mp+12

    18

  • 1 SmarandacheSmarandache

    ?u1.

    y3yn = p m, mp+12?u1, kZ(n) = S(n).

    dw,kS(pm) = S(p) = p.mp1

    i=1

    i = p(p1)2

    , Kmp+12g!

    Z(pm) = p, lZ(pm) = S(pm).

    , y3kZ(n) = S(n) = k. ^y{5y(. b

    3k = 2m, Z(n) = S(n) = k = 2m,KdZ(n)9S(n)

    ,nk(k+1)2 = m(2m + 1) 9(2m)!. dc2m + 1U, K

    (n, 2m + 1) = 1, n2m1

    i=1

    i = m(2m 1), w,2mn

    m(2m + 1)g!(n, 2m + 1) > 1,d5p = 2m + 1|n, l2dn|(2m)!p = 2m + 1|(2m)!, g!2m + 1U, ymU, KNn|(2m 1)!, 2mn|(2m)!g!lmp, k = 2p. un|p(2p + 1)! 9n|(2p)!. , nup(2p + 1)?U!`?k|p(2p + 1), UkS(k) = 2p. u, n2.10y.

    y3yn2.11. n2.10y{q, pVL. b

    nvZ(n) + 1 = S(n), Z(n) + 1 = S(n) = k. udZ(n)9S(n)

    Jk,

    n

    k(k 1)2

    , n|k!. (2-17)

    w,, f(2-17)k!KJn|(k 1)!, kn|k!g. dk = p. 2dn|p(p1)2 , 5S(

    p12 ) < p,

    n = p m,mp12?. Nyn = p m,mp1

    2?, n

    vZ(n) + 1 = S(n).

    (2-17)k = 2m, k 1 = 2m 1, l3nZ(n)+1 = S(n) = 2m. ,Z(n)+1 = S(n)=n = p m,mp12 ?. u, n2.11y.

    2.5.2 'K

    'uSmarandacheS(n)9SmarandacheZ(n)5,

    ?, E,3K. Buk,?1?, p0

    S(n)9Z(n) k'kK.

    KKK2.1 ?n,H(n)Lm[1, n]kS(n)

    19

  • Smarandache9'K

    . H(n)C5. :

    limn

    H(n)

    n= 1.

    KKK2.2 kkn,

    d|n

    1

    S(d)

    ,

    d|nLnk. ?=n = 1, 8.

    KKK2.3 S(n)P (n)9

    P (nS(n))5,

    n6x

    S(n)

    P (n),

    n6x

    P (n)

    S(n)

    C, P (n)Lnf. xu, 1C

    uc x,c,u1~;1ATx. ,K2.3K2.1'. XJK2.1(, @o1C.

    KKK2.4 Z(n)5K, knXn = m(m+1)2 , kZ(n) = m 7.n = p11 p

    22 pkk n IO

    ), ddF.Smarandache5

    S(n) = max16i6r

    {S(pii )} S(p) = u p,

    p,pi, ,i, u 6 .

    y35p|n9S(n) = u p,n = p n1,nv(2-19)k

    Z(n) + u p = p n1. (2-20)

    ky3(2-20) = 1. Kb > 2, ud(2-20)p|Z(n) =m.dZ(n) = m n = p n1m(m+1)2 , (m, m + 1) = 1,p|m.ld(2-20)p|S(n) = u p, =p1|u,lp1 6 u.,, 5S(n) =S(p) = u p, dF.SmarandacheS(n)5u 6 ,p1 6 u 6 . dpw,. XJp = 2, K > 3, p1 6 u 6 . u

    kU:u = a = 2. 5n > 59S(n) = 4,dk

    U:n = 12,n = 12(2)). XJnv(2-19),K(2-

    20)7kS(n) = p, = u = 1.3e, -Z(n) = m = p v, K(2-20)

    v + 1 = n1,

    n1 = v + 1,=n = p (v + 1), Z(n) = p v. 2dZ(n)n = p (v + 1)Z(n)(Z(n) + 1)

    2=

    pv (pv + 1)2

    ,

    (v + 1)

    Z(n)(Z(n) + 1)

    2=

    v (pv + 1)2

    ,

    5(v + 1, v) = 1,vdv + 1|pv + p p + 1,=v +1|p 1v + 1|p12 . w,

    p12 ?u1fr, n = p r (2-19)).

    dkZ(p r) = p (r 1).v, d(v + 1)

    Z(n)(Z(n) + 1)

    2=

    v (pv + 1)2

    ,

    22

  • 1 SmarandacheSmarandache

    (v + 1)

    pv + 1

    2=

    (p 1)(v + 1) + v p + 22

    .

    dd

    p 1 = (2k + 1) (v + 1).

    up 1 = 2 h,h, Kv+12uhf. Ny?

    r|hr < h, n = p 2 r (2-19)). dk

    Z(p 2 r) = p (2 r 1).

    , 5r|h. kNp 2 rm(m+1)2 .udZ(n)

    Z(p 2 r) = p (2 r 1).

    uyn2.13.

    y3yn2.14. d5k = 2, n = 1, kZ(1) + S(1) = 2=n = 1

    (2-19)). XJ(2-19)k)n > 2,Kdn2.13y{

    Jn = p u, p > 5, S(u) < p. \(2-19)

    Z(p u) + S(p u) = 2p u.

    ddpZ(p u).Z(p u) = p v, Kv = 2u 1.dZ(n)p u

    p(2u1)(p(2u1)+1)2 . lu

    p12 . d, u

    p12 ?u1, Z(p

    u) = p (u 1), dn = p u(2-19)); up12 ?k

    Z(p u) = p (2u 1),

    d

    Z(p u) + S(p u) = 2p u.

    un2.14y.

    dn2.13J. n2.13 UFermat,

    pFermat , p 1vku1f.

    2.7 'uSmarandache

    ?n, F.SmarandacheS(n)mn | m!.

    23

  • Smarandache9'K

    =S(n) = min{m : m N, n|m!}. {7Z;[F.Smarandache35Only Problems, Not Solutions6\,

  • 1 SmarandacheSmarandache

    2.2 ?n, k4

    limn

    PS(n)

    n= 1.

    !|^{ny. kOn PS(n).. n > 1, n = p11 p

    22 prr LnIO), @odS(n)95

    S(n) = S (pii ) = m pi. ei = 1, @om = 1S(n) = pi. ei > 1, @om > 1, KS(n). n PS(n)m[1, n]kS(n) = 19S(n)n! w,S(n) = 1=n = 1. u-M = ln n, Kk

    n PS(n) = 1 +

    k6n

    S(k)=S(p), >2

    1 6 1 +

    S(k)6M

    1 +

    kp6n

    p>M, >2

    1. (2-21)

    y3OO(2-21), w,k

    kp6n

    p>M, >2

    1 6

    kp26n

    2p>M

    1 +

    kp6n

    p>M, >3

    1 6

    M2

    M, >3

    k6 np

    1

    M2

    M, >3

    n

    p n

    ln n+

    p6

    n

    p>M, >p

    n

    p+

    p6

    n

    p>M, 36

    M

    n

    p+

    p6

    n

    p>

    M, >3

    n

    p

    nln n

    +n

    2

    M1+

    n

    M n

    ln n. (2-22)

    u(2-21),, I#O{. ?p 6 M , -(p) =[

    Mp1

    ]

    , =(p)LL Mp1. u =

    p6M

    p(p). ?vS(k) 6

    Mk, S(k) = S(p), KdS(k)kp|M !, l 6

    j=1

    [M

    pj

    ]

    6

    M

    p 1. kvS(k) 6 Mku, kLu, =d(u). k

    S(k)6M

    16

    d|u1 =

    p6M

    (1 + (p))

    =

    p6M

    (

    1 +

    [M

    p 1

    ])

    =exp

    p6M

    ln

    (

    1 +

    [M

    p 1

    ])

    , (2-23)

    25

  • Smarandache9'K

    exp(y) = ey.

    dn/(z[4]9[6])

    (M) =

    p6M

    1 =M

    ln M+ O

    (M

    ln2 M

    )

    ,

    p6M

    ln p = M + O

    (M

    ln M

    )

    :

    p6M

    ln

    (

    1 +

    [M

    p 1

    ])

    6

    p6M

    ln

    (

    1 +M

    p 1

    )

    =

    p6M

    [

    ln (p 1 + M) ln p ln(

    1 1p

    )]

    6(M) ln(2M)

    p6M

    ln p +

    p6M

    1

    p

    =M ln(2M)

    ln M M + O

    (M

    ln M

    )

    = O

    (M

    ln M

    )

    . (2-24)

    5M = ln n, d(2-23)9(2-24)O:

    S(k)6M

    1 exp(

    c ln nln ln n

    )

    , (2-25)

    c~.

    5 exp(

    cln nln lnn

    ) n

    lnn, u((2-21), (2-22)9(2-25)O:

    n PS(n) = 1 +

    k6n

    S(k)=S(p), >2

    1 = O( n

    ln n

    )

    .

    PS(n) = n + O( n

    ln n

    )

    .

    uny.

    26

  • 1n Smarandache9Smarandache'

    1n Smarandache9Smarandache'

    3.1 aSmarandache'

    cSmarandacheS(n), mn|m!, =S(n) =min{m : m N, n|m!}. lS(n) N: XJn = p11 p22 pkk LnIO), @o

    S(n) = max{S(p11 ), S(p22 ), , S(pkk )}.

    'uS(n)5, z[7, 36, 53 55, 57]. 3z[58], Sandor\

    SmarandacheS(n)S(n), Xe, u?n, S(n)

    mm!|n, =k

    S(n) = max{m : m N, m!|n}.

    'uS(n)5k?1L, XJ. ~X3z[59]

    Zk'S(n)

    d|nSL(d) =

    d|nS(d)

    )5k(, =e

    A =

    n :

    d|nSL(d) =

    d|nS(d), n N

    ,

    Ku?s, Drichlet?f(s) =

    n>1,nA1ns3s 6 1u, 3s > 1,

    k

    f(s) = (s)

    (

    1 112s

    )

    ,

    SL(n)Smarandache LCM,

    SL(n) = max{k : [1, 2, , k]|n, k N},

    (s)LRiemann zeta.

    3z[27], Sandor\SmarandacheZ(n)Xe: u?n,

    27

  • Smarandache9'K

    Z(n)m, n|m(m+1)2 , =

    Z(n) = min

    {

    m : m N, n

    m(m + 1)

    2

    }

    .

    lZ(n)OZ(n)cA: Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) =

    7, Z(5) = 4, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 8, Z(10) = 1, . 'uZ(n)5, N?1, k(J[4,6,6368], Z(n){

    5:

    a)u?9p, Z(p) = p 1;b)u?,Z(2) = 2+1 1.!0'uSmarandacheSmarandache

    Z(n) + S(n) 1 = kn, k > 1 (3-1)

    )5. K8cvk 1v(3-1); k > 3, (3-1)).

    |^9|{ny. {, S(n) =

    m. k = 1, w,n = 1v(3-1). n = 1(3-1)).

    ebn > 1v(3-1). dSmarandacheZ(n)

    Z(n)(Z(n) 1) + mZ(n) = nZ(n).

    dd(Z(n)nmZ(n), 5m!|n, mZ(n) = qn, Z(n) = qn

    m. d 1vZ(n) = n. m = 2, d(3-1)Z(n) = n 1n > 1, dn = p, > 1, p, un = p, > 1(3-1)). m = 3,

    28

  • 1n Smarandache9Smarandache'

    =S(n) = m = 3, Kn = 6, yn = 6v(3-1).k = 1, nv

    (3-1)=n = 1. k = 2, w,n = 1v(3-1).

    n, bn > 1v(3-1). Z(n)dk

    Z(n)(Z(n) 1) + mZ(n) = 2nZ(n).

    nmZ(n), 5m!|n, mZ(n) = qn, Z(n) = qnm . d\(3-1) q

    nm +m1 = 2n. dS(n) = mm!|n,ln = m!n2,

    dz

    k(m 1)! n2 + m 1 = 2m! n2. (3-3)

    3(3-3)kw,(m 1)!, d5(3-3)1nm 1U(m 1)!. w,(m 1)!m 1=m = 1, 2, 3.m = 1, d(3-3)k = 2, dkZ(n) = 2n, dZ(n)95,

    vkn > 1 vZ(n) = 2n. m = 2,d(3-1)Z(n) = 2n 1n > 1,,n = 2, > 1(3-1)). m = 3,=S(n) = m = 3,Kn = 6, yn = 6

    v(3-1). n, k = 2, nv(3-1)=n = 2, > 1.

    k > 3, dyn, vkn > 1vZ(n) =

    kn,Z(n) = kn 1, n = 6v(3-1). (3-1)).n, Bn3.1y.

    3.2 'uSmarandachepSmarandache

    SmarandacheS(n)mn|m!,=S(n) = min{m :n|m!}. SmarandacheZ(n)v

    m

    k=1

    kUn

    m,=Z(n) = min{m : n|(m(m + 1))/2}.~X,Z(n)cAZ(1) = 1, Z(2) =3, Z(3) = 2, Z(4) = 7, Z(5) = 5, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 9, Z(10) =

    4, Z(11) = 10, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5, Z(16) = 3, Z(17) =

    16, Z(18) = 8, Z(19) = 18, Z(20) = 15, .'uS(n)Z(n), N5,

    (

    J[7,29,6972]. 32.5!

    Z(n) = S(n), Z(n) + 1 = S(n)

    )5, ).

    29

  • Smarandache9'K

    z[75]?SmarandachepSc(n),

    max{m : y|n!, 1 < y 6 m, (m + 1)n!}.

    ~X, Sc(n)cASc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) = 6, Sc(5) =

    5, Sc(7) = 10, Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) = 12, Sc(13) = 16, Sc(14) =

    16, Sc(15) = 16, . z[72] Sc(n)Z(n)m'X

    Z(n) + Sc(n) = 2n,

    (J, Je.

    : n N+, Sc(n) + Z(n) = 2n

    =n = 1, 3, p2+1, 3 + 2uu2, p > 5

    ,p2+1 + 2?.

    !y, =en.

    nnn 3.2 n,

    Sc(n) + Z(n) = 2n

    )Un = 1, 3, p2+1, 3 + 2uu2, p > 5

    , p2+1 + 2?.

    nnn 3.3 n,:

    (1)n2, nSc(n) + Z(n) = 2n);

    (2)n, nk3f, nSc(n) + Z(n) =

    2n).

    yn3.2n3.3, keAn.

    nnn 3.1 eSc(n) = x N+,n 6= 3,Kx + 1un.

    nnn 3.2 (1)e N+,KZ(2) = 2+1 1;(2)epu2, N+, KZ(p) = p 1.

    nnn 3.3 n N+,n > 59, KkSc(n) < 3n/2.

    nnn 3.4 n, 3nn + n7/12m7k.

    n3.1-3.4yz[30, 75, 77].

    eyn3.2. n, 65?.

    30

  • 1n Smarandache9Smarandache'

    (1)n = 1v.

    (2)n = 3, Z(3) = 2, Sc(3) = 3,3).

    (3)n = 3( > 2),3 + 2, K

    Sc(3) = 3 + 1, Z(3) = 3 1,

    3).

    (4)n = 3( > 2),3 + 2, Kdn3.1n3.2, k

    Sc(3) > 3 + 1, Z(3) = 3 1,

    3).

    (5)n = p , > 1, p > 5, K

    Z(p) = p 1

    n 6= 3, 2:en = p2 , > 1, Kp 1(mod3),u

    p2 1(mod3),

    l

    p2 + 2 0(mod3),

    Kp2 + 2 U, dn3.1, dn).

    en = p2+1,p > 5, p2+1 + 2 ?, d

    n3.1,

    Sc(p2+1) = p2+1 + 1.

    dn3.2, Z(p2+1) = p2+1 1,KSc(p2+1) + Z(p2+1) = p2+1 + 1 + p2+1 1 =2p2+1,n = p2+1. ep2+1 + 2, Kdn3.1, Sc(p2+1) >

    p2+1, n = p2+1).

    (6)2n, n = p11 n1, (p1, n1) = 1, 1 > 1, p1 > 3 , {

    n1x 1(modp11 )

    k), ?{

    n21x2 1(modp11 )

    k), )y,K1 6 y 6 p11 1,qp11 yc{), K

    31

  • Smarandache9'K

    1 6 y 6(p

    11 1)

    2. d

    n21y2 (modp11 ),

    K

    p11 |(n1y 1)(n1y + 1),

    (n1y 1, n1y + 1)|2, u(p11 1)|(n1y 1)(p11 1)|(n1y + 1).e(p11 1)|(n1y 1),Kn = p11 n2

    (n1y1)(n1y)

    2 , l

    Z(n) = m 6 n1y 1 6(p11 1)n1

    2 1 6 n

    2,

    e(p11 1)|(n1y + 1), Kn = p11 n1(n1y1)(n1y)

    2, l

    Z(n) = m 6 n1y 6(p11 1)n1

    26

    n

    2.

    dn3.3, n > 59, Kk

    Sc(n) + Z(n) 1,

    Z(2) = 2 1, Sc(2) > 1,

    n = 2v.

    (2)n = 2kp, > 1, (2k, p) = 1, p > 3, {

    4kx 1(modp)

    k),{

    16k2x2 1(modp)

    k), )y,K1 6 y 6 p 1,qp yc{), K1 6 y 6 (p

    1)2 .d

    16k2y2 1(modp),

    Kp|(4ky 1)(4ky + 1),(4ky 1, 4ky + 1) = 1,up|(4ky 1)p|(4ky + 1).

    32

  • 1n Smarandache9Smarandache'

    ep|(4ky 1), Kn = 2kp4ky(4ky1)

    2, lk

    Z(n) = m 6 4ky 1 6 4k(p 1)2

    1 6 n 2k 1 6(

    1 1p

    )

    n.

    ep|(4ky + 1), Kn = 2kp4ky(4ky+1)

    2 , lk

    Z(n) = m 6 4ky 64k(p 1)

    26 n 2k 6

    (

    1 1p

    )

    n.

    (3)n = (2k + 1)2, > 1, k > 1, K{

    (2k + 1)x 1(mod2+1)

    (2k + 1)x 1(mod2+1)

    7k), ), {

    (2k + 1)x 1(mod2+1)

    ), e1 6 6 2 1, K=, K

    2 + 1 6 6 2+1 1,

    K

    2+1 6 2+1 2 1 = 2 1,

    2+1 v{(2k + 1)x 1(mod2+1),

    {7kv

    1 6 6 2 1

    ), K2+1|[(2k + 1) + 1]2+1|[(2k + 1) 1].e2+1|[(2k + 1) + 1],K2+1(2k + 1)|[(2k + 1) + 1](2k + 1), l

    Z(n) 6 (2k + 1) 6 (2 1)(2k + 1) 6(

    1 12

    )

    n.

    2+1|[(2k + 1) 1], nkZ(n) 6(1 12

    )n.

    o, u(2),(3), =

    n = 2p11 p22 pkk ( > 1, i > 1, k > 2)

    33

  • Smarandache9'K

    IO), -

    q = min{2, p11 , p22 , , pkk },

    K

    n = 2p11 p22 pkk > q3 ,

    lq < 3

    n,K

    Z(n) 6 n

    (

    1 1q

    )

    < n

    (

    1 13

    n

    )

    = n n 23 ,

    , n, dn3.4,

    Sc(n) + Z(n) < n + n712 + n n 23 < 2n,

    =Tnv. n, n3.3.

    3.3 'uSmarandache9

    ?nSmarandacheZ(n)vm

    k=1

    kUn

    m,=Z(n) = min{m : m N+, n|m(m+1)2 }. dZ(n)NZ(1) =1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 4, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) =

    8, Z(10) = 4, Z(11) = 10, .NZ(n) 5,

    (J[30,79,80]:

    (a)u?n,kZ(n) > 1;

    (b)u?pk, kZ(pk) = pk 1, Z(2k) = 2k+1 1;(c)en?, KZ(n) = max{Z(m) : m|n}.z[27]\Z(n)Z(n), vnU

    mk=1 k

    m, =Z(n) = max{

    m : m N+, m(m+1)2 |n}

    . ~XZ(n)cA

    Z(1) = 1, Z(2) = 1, Z(3) = 2, Z(4) = 1, Z(5) = 1, Z(6) = 3, Z(7) = 1, Z(8) =

    1, Z(9) = 2, . dz[27, 82], Z(n)kXe5:(d)p, qevp = 2q 1, KZ(pq) = p; ep = 2q + 1, KZ(pq) = p 1;(e)en = 3st(s?,t), KZ(n) > 2;

    (f)ka, b, kZ(ab) > max{Z(a), Z(b)}.+aZ(n)9Z(n)

    Z(n) + Z(n) = n (3-4)

    )5, Je:

    : (A)(3-4)kk). Nk)n = 6;

    34

  • 1n Smarandache9Smarandache'

    (B)(3-4)k)7p(p > 5).

    'udK, z[83]?1, y(B), ((A)Em

    K. !?0?1, |^{|{y

    (5, e(:

    nnn 3.4 (3-4)k)n = 6;(3-4)k)n = pk,p,

    k?.

    yyy:?.

    1)n, e45y:

    1.1)n = 2k(k > 1), kZ(2k) = 2k+1 1, Z(2k) = 1.lZ(2k) + Z(2k) 6=2k,2k(3-4)).

    1.2)n = 2p(p),ep = 3,KZ(6) = 3, Z(6) = 3,lZ(6) + Z(6) =

    6,n = 6(3-4));ep = 5,KZ(10) = 4, Z(10) = 4,lZ(10) + Z(10) = 8 6=10, n = 10(3-4));ep > 5,KZ(2p) = 1,=Z(2p) = 2p 1, (3-4)k). KI2p|2p(2p1)2 ,dd2p 1, g.

    1.3)n = 2kp(k,),e2kpm3/XA = 2B 1'X, KU

    px = 2 2y 1, (3-5)

    U32y = 2 px 1.px,yOu, k. , o3xy(3-5). v(3-5)xyOPXe?

    b,da,c:

    1.3.1)epx = 2 2y 1, KZ(n) = max{px} = pb = 2 2a 1.-

    Z(n) = m = n Z(n) = 2kp pb = 2kp 2 2a + 1,

    Kk

    2kp

    (2kp pb)(2kp 2 2a + 2)2

    (3-6)

    k = 1, Ka = 1,pb = 3,u8(n = 2p/;k > 1, d(3-6)

    2kpb|(2kpb 1)(2k1p 2a + 1)

    w,, b = b < ,U2, d(3-4)).

    1.3.2)epx = 2 2y + 1,K

    Z(n) = max{px 1} = pd 1 = 2 2c.

    35

  • Smarandache9'K

    -

    Z(n) = m = n Z(n) = 2kp pd + 1 = 2kp 2 2c,

    K

    2kp

    (2kp 2 2c)(2kp pd + 2)2

    (3-7)

    k = c,d(3-7)k2p|(p2)(2kppd+2),U,(3-4)d);k > c,k2kcp|(2kc1p1)(2kppd+2),p|(2kc1p1)(2kppd+2)U, ld(3-4)).

    1.3.3) e3'X(3-5). KZ(n) = 1. Z(n) 6= n 1. K1.2)?, 2g.

    1.4)n = 2kuv, (2k, u) = (u, v) = (v, 2k) = 1.Px,yOu,vf,z

    uk. nfme3/XA = 2B 1'X, Ux =2 2z 1x = 2y 2z 1,U32z = 2x12zy = 2x1. w,3x,y,zve?9:

    1.4.1)ex = 2 2z 1,KZ(n) = max{x} = x1 = 2 2z1 1.-

    Z(n) = m = n Z(n) = 2kuv x1 = 2kuv 2 2z1 + 1.

    5, u = ex1, Kk

    2kuv

    (2kuv x1)(2kuv 2 2z1 + 2)2

    (3-8)

    k = 1, kz1 = 1, 2ev|(2ev 1)(uv 1), ,v|(2ev x1)(uv 1)U,g; k > 1, k

    2kev|(2kev 1)(2k1uv 2z1 + 1),

    lg.

    1.4.2)ex = 2 2z + 1, KZ(n) = max{x 1} = x2 1 = 2 2z2. -

    Z(n) = m = n Z(n) = 2kuv x2 + 1 = 2kuv 2 2z2,

    K

    2kuv

    (2kuv 2 2z2)(2kuv 2 2z2 + 1)2

    , (3-9)

    k = z2,k2uv|(uv2)(2kuv2k+1+1),U,g;k > z2,k

    2kz2+1uv(2kuv 2)(2kuv x2 + 2),

    36

  • 1n Smarandache9Smarandache'

    u|(2kuv 2)(2kuv x2 + 2)U, g.1.4.3)ex = 2y 2z 1,KZ(n) = max{x} = x3 = 2y3 2z3 1. -

    Z(n) = m = n Z(n) = 2kuv x3 = 2kuv 2y3 2z3 + 1.

    5, u = tx3, Kk

    2kuv

    (2kuv x3)(2kuv 2y3 2z3 + 2)2

    , (3-10)

    k = 1, kz3 = 1, 2tv|(2tv 1)(uv 2y3 + 1), ,v|(2tv 1)(uv 2y3 + 1)U, g; k > 1, k2ktv|(2ktv 1)(2k1uv 2z3y3 + 1), g.

    1.4.4)e= 2y 2z + 1, KZ(n) = max{x 1} = x4 1 = 2y4 2z4. -

    Z(n) = m = n Z(n) = 2kuv x4 + 1 = 2kuv 2y4 2z4 ,

    5, v = sy4, Kk

    2kuv

    (2kuv 2y4 2z4)(2kuv 2y4 2z4 + 1)2

    , (3-11)

    k = z4, k2uv|(uv 2y4)(2kuv 2z4+1y4 + 1), U, g;k > z4,k2

    kz4+1su|(2kz4su2)(2kuvx4 +2),u|(2kz4su2)(2kuvx4 +2)U, g.

    1.4.5)e34'X, KZ(n) = 1.Z(n) 6= n 1,Kn 1g.

    n, (3-4))k=kn = 6.

    2)n, e3?:

    2.1)w,n = 1(3-4)).

    2.2)n = pk(p, k), ep = 3,KZ(n) = n 1, Z(n) = 2,l

    Z(n) + Z(n) 6= n; ep > 5,KZ(n) = n 1, Z(n) = 1.n = pk(3-4)).

    2.3)nkf, n = uv,p(u, v) = 1. x,yOu,vf.

    5, u > v. eA?:

    2.3.1)e3'Xx = 2y 1. Z(n) = max{x} = x1 = 2y1 1. Pu = bx1. -

    Z(n) = m = n Z(n) = uv x1 = uv 2y1 + 1,

    Kk

    uv

    (uv x1)(uv 2y1 + 2)2

    ,

    37

  • Smarandache9'K

    dd

    bv

    (bv 1)(uv 2y1 + 2)2

    ,

    v

    (bv 1)(uv 2y1 + 2)2

    ,

    w,, g.

    2.3.2)e3'Xx = 2y + 1. Z(n) = max{x 1} = x2 1 = 2y2. Pn = dy2.-

    Z(n) = m = n Z(n) = uv x2 + 1 = uv 2y2,

    Kk

    uv

    (uv x2 + 2)(uv 2y2)2

    ,

    2du|(du 2)(uv x2 + 2), u|(du 2)(uv x2 + 2), w,, g.2.3.3)e3/Xx = 2y 1'X, KZ(n) = 1. -Z(n) = m = n 1, w

    ,nn(n1)

    2 . eydmvZ(n).

    d{uX 1(modv)k). u2X2 1(modv)k). )Y , K1 6 Y 6 v 1. Kv|(uY 1)(uY + 1).

    v|(uY 1), kn = uv

    uY (uY 1)2

    ,

    Z(n) = m 6 uY 1 6 u(v 1) 1 < uv 1;

    v|(uY + 1), kn = uv

    uY (uY + 1)

    2,

    Z(n) = m 6 uY 6 u(v 1) < uv 1.

    m = n 1vZ(n).nA, n(3-4))=n = pk, p > 5, k

    .

    n, n3.4.

    38

  • 1n Smarandache9Smarandache'

    3.4 'uSmarandachepSmarandache

    ?n,SmarandacheZ(n)nm

    k=1

    km,

    =Z(n) = min{

    m : nm(m+1)

    2

    }

    .~X, TcA:Z(1) = 1, Z(2) = 3, Z(3) =

    2, Z(4) = 7, Z(5) = 5, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 9, Z(l0) = 4, Z(11) =

    l0, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5, Z(16) = 31, Z(17) = 16, Z(18) =

    8, Z(l9) = 8, Z(20) = 15, .'u, N5,

    (J,

    z[85 89]. ~X, +3z[87]Z(n) = S(n), Z(n) + 1 = S(n))5, ), 'u, 32.5!k[.

    3z[75], ?SmarandachepSc(n), Sc(n)vy|n!1 6y 6 mm,=Sc(n) = max{m : y|n!, 1 6 y 6 m, m + 1n!}.~X,Sc(n)cA:Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) =

    6, Sc(6) = 6, Sc(7) = 10, Sc(8) = 10, Sc(9) = 10, Sc(l0) = 10, Sc(11) = 12, Sc(12) =

    12, Sc(13) = 16, Sc(14) = 16, Sc(15) = 16, .z[75]Sc(n)5, ye(: eSc(n) = x, n 6= 3,

    Kx + 1un.

    3z[91]?SmarandacheZ(n), Z(n)vm

    k=1

    kn

    m, =Z(n) = max{

    m : m(m+1)2 |n}

    . z[272]Z(n)5,

    (J. z[86]nm'XZ(n) + Z(n) = n

    (3.3!)Sc(n) = Z(n) + n,

    (J, J

    ):

    :Sc(n) = Z(n) + n)p, p,2, p + 2. !8K, e:

    nnn 3.5 Sc(n) = Z(n) + n)p, p, 2, p + 2, 9v^(2 1)n( > 1), n + 2 , n.

    3ynckeAn.

    nnn 3.5 eSc(n) = x Z,n 6= 3,Kx + 1un.

    yyy:z[75].

    dd, Sc(n)3n = 1, n = 3, 3{e.

    nnn 3.6

    Z(p) =

    2, p 6= 31, p = 3

    39

  • Smarandache9'K

    nnn 3.7 en 0(mod(2 1)),KkZ(n) > 2 > 1.

    nnn 3.8

    Z(n) 6

    8n + 1 1

    2.

    n3.6-n3.8yz[27].

    nnn 3.9 n = p00 p11 p

    22 pkk (p0 = 2, pi > 3, k > 1, i > 1)nIO),k

    Z(n) 6 n nmin{p00 , p11 , p22 , , pkk }

    yyy:aqu3.3!yn3.3{. n = p00 p11 p

    22 pkk (p0 = 2, pi > 3, k >

    1, i > 1)IO), 5y.

    (i)n = 2kp, > 1, (2k, p) = 1, p > 3, d{

    4kx 1(modp)

    k), {

    16k2x2 1(modp)

    k), )y,K1 6 y 6 p1,qpyc{), K

    1 6 y 6 p1

    2.d

    16k2y2 1(modp),

    Kp |(4ky 1)(4ky + 1),(4ky 1, 4ky + 1) = 1,up |4ky 1 p |4ky + 1 .ep |4ky 1, Kn = 2kp

    4ky(4ky1)

    2, l

    Z(n)=m 6 4ky 1

    64k(p 1)

    2 1 6 n 2k 1 6

    (

    1 1p

    )

    n

    6n nmin{p00 , p11 , p22 , , pkk }

    .

    ep |4ky + 1, Kn = 2kp4ky(4ky+1)

    2, lk

    Z(n) = m 6 4ky 64k(p 1)

    26 n 2k =

    (

    1 1p

    )

    n 6 n nmin{p00 , p11 , p22 , , pkk }

    .

    (ii)n = 2(2k + 1), ( > 1, k > 1),K{

    (2k + 1)x 1(mod2+1)

    (2k + 1) 1(mod2+1)

    40

  • 1n Smarandache9Smarandache'

    k), ), {

    (2k + 1)x 1(mod2+1)

    ), e1 6 6 2 1,K=, K

    2 + 1 6 6 2+1 1,

    K

    2+1 6 2+1 2 1 = 2 1,

    2+1 v{(2k + 1)x 1(mod2+1),

    {7kv1 6 6 21),K2+1 |(2k + 1) + 12+1 |(2k + 1) 1,e2+1 |(2k + 1) + 1,K

    2+1(2k + 1) |[(2k + 1) + 1](2k + 1),

    l

    Z(n) 6 (2k + 1) 6 (2 1)(2k + 1) 6(

    1 12

    )

    n 6 n nmin{p00 , p11 , p22 , , pkk }

    .

    2+1|(2k + 1) 1, nk

    Z(n) 6

    (

    1 12

    )

    n 6 n nmin{p00 , p11 , p22 , , pkk }

    .

    n(i),(ii)k, n = p00 p11 p

    22 pkk (p0 = 2, pi > 3, k > 1, i > 1)IO)

    , K

    Z(n) 6 n nmin{p00 , p11 , p22 , , pkk }

    .

    eny, 5y.

    (1)n = 1, Z(1) = 1, Sc(1) = 1,K1).

    (2)n = 3( > 1),dn3.6, Z(3) = 2,en = 3),KSc(3) =

    2 + 3,3|3 + 2 + 1,l3 + 2 + 1Un3.5g, n = 3).

    (3)n = p( > 1, p > 5),dn3.6,Z(p) = 1,en = p),KSc(p) =

    1 + p,p > 5, 3|p2+2,dn3.5, U, p + 2(2) ,n = p( > 1, p > 5)v.

    (4)n = 2( > 1),em(m+1)2 |2,(m, m+1) = 1,Km = 1,Z(2) = 1,en = 2),KSc(2) = 1 + 2,2|(2 + 1 + 1),n3.5g,n = 2( > 1)

    41

  • Smarandache9'K

    ).

    (5)n = p11 p22 pkk (k > 2, i > 1) IO). q5y.

    (i)2n,K2pii ,l2|Sc(n),env,K7L2Z(n).yZ(n),e3( > 1),(2 1)|n,KZ(n) > 2 1,e3( > 1),(2 + 1)|n,KZ(n) > 2,l

    Z(n) = max{max{2k : k(2k + 1)|n}, max{2k 1 : k(2k 1)|n}}.

    2n5?

    1,eZ(n) = 2 1 > 1,K(2 1)|n,k|n, |[n + (2 1) + 1]. env, KSc(n) = 2 1 + n.Sc(n) + 1, n3.5g.1, eZ(n) = 2 > 1,K(2 + 1)|n,k|n, (2 + 1)|n.env,

    KSc(n) = 2 + n.Sc(n) + 1, n3.5g.

    , eZ(n) = 1, d > 1, K(2 1)n, len + 2,dn3.5, n ). en + 2, dn3.5, n). =(2 1)n, n + 2 n).

    (ii)2|n,env, K7LZ(n),Z(n) > 2,

    Z(n) = m > 2,m(m + 1)

    2|n ,

    K(m + 1)|n,?(m + 1)|(n + m + 1), Sc(n) = n + m + 1,n3.5g.d, Sc(n) = Z(n) + n)p, p, 2, p + 2, 9v^(2 1)n( > 1), n + 2 , n. n3.5y.

    3.5 'uSmarandacheV

    ?n,SmarandacheZ(n)m

    n|m(m+1)2 , =Z(n) = min{

    m : m N, n|m(m+1)2}

    .dZ

    ;[Smarandache3z[7]?. 'uZ(n)5, N?1,

    k(J[28,36,9799]. ~X:

    (1)u?n,Z(n) < n.

    (2)?p > 3, Z(p) = p 1.(3)?p > 39k N, Z(pk) = pk 1.p = 2, KkZ(2k) = 2k+1 1.(4)Z(n)\,=Z(m+n)uZ(m)+Z(n);Z(n), =Z(m

    n)uZ(m) Z(n).l{5w, Z(n)5, 'u5ku

    42

  • 1n Smarandache9Smarandache'

    ?.

    dSmarandache,Sdf(n)Sdf(n) = min{m : m N, n|m!!}. TSmarandacheV, 'u5, k?1

    (J[4,6,31,100]. ~X, Sdf(n)k5,

    =Sdf(n)5C, `en, KSdf(n), en

    KSdf(n). Nuy, Sdf(n)5,c3n

    Sdf(n)Ly5.

    Z(n)Sdf(n), Ly5, U3m

    XQ? !8e)5, =

    Z(n) = Sdf(n), Z(n) + 1 = Sdf(n)

    k).!L{0K), =yen.

    nnn 3.6 ?n > 1,

    Z(n) = Sdf(n) (3-12)

    =k),k)=k2/:

    n = 45;

    n = p11 p22 pkk p,

    k > 1, p1 < p2 < < pk < p, 1 6 i 6 k, i > 1,p + 1 0(modpii ).

    nnn 3.7 ?n > 1,

    Z(n) + 1 = Sdf(n) (3-13)

    =k), k)=k3/:

    n = 9;

    n = p;

    n = p11 p22 pkk p,

    k > 1, p1 < p2 < < pk < p , 1 6 i 6 k, i > 0 3i > 1, p 1 0(modpii ).

    eyn. kn3.6. , n = 1, Z(n) = Sdf(n).

    Ny, n = 2, 3, 4, 5, 6, 7, Z(n) = Sdf(n). un > 8.

    ky(3-12)Uk). n = 2p11 p12 pkk nIO).

    (1)ek = 0,=n = 2, ddSdf(n)5Sdf(2), Z(2) = 2+1 1, lSdf(2) 6= Z(2).dnv.

    43

  • Smarandache9'K

    (2)ek > 1,Kn = 2p11 p12 pkk .dSdf(n) 5C, eZ(n) =

    Sdf(n) = a,Ka7, Z(n) = Sdf(n) = 2m,udZ(n)k

    2p11 p12 pkk |m(2m + 1). (3-14)

    d(3-14), 7k2|m,pii 7kpii |m pi |(2m + 1). d2|m

    2|m!!. (3-15)

    PS1 = {pii : pii |m}, S2 = {pjj : p

    jj |(2m + 1)}.

    5,=S2 6= ,eS2 = ,Kkpii kpii |m,q2|m,ud2p11 p

    22 pkk |

    (2m1)2m2

    , Z(n) 6 2m 1,S2 6= u:(i)eS1 = ,=pii , pii |(2m + 1). emax{pii } 6 m,((3-15), Sdf(n) 6 m;

    emax{pii } > m,((3-15), Sdf(n) = 2s, 7pi0i0

    S2,pi0i0 |s. ,m 6= s.l

    Sdf(n) 6= 2m;

    (ii)eS1 6= , pii S1, pjj S2. emax{pii } < max{p

    jj },aq(i)

    {, max{pjj } 6 m,max{pjj } > m,kSdf(n) 6= 2m. emax{pii } >

    max{pjj }, Sdf(n) 6 m.n(i),(ii), dSd(n) 6= Z(n).y(3-12)Uk).en, n = p11 p

    12 pkk p nIO). e3?:

    (1)ek = 0,=n = p,dZ(p) = p 1, Sdf(n), Z(p) 6=Sdf(p).

    (2)ek > 1 = 1,Kn = p11 p12 pkk p.

    emax{pii } < p, KdSdf(n)5

    Sdf(n) = Sdf(p11 p12 pkk p) = max{Sdf(p11 ), , Sdf(p

    kk ), Sdf(p)} = p.

    eZ(n) = Sdf(n) = p, KdZ(n)

    p11 p12 pkk p

    p(p + 1)

    2.

    u7Lpii |(p + 1), =p + 1 0(modpii ).,, yvp + 1 0(modpii ), kZ(n) = p.h < p,(i)eh < p 1,Kdp h(h+1)

    2, p11 p

    12 pkk p

    h(h+1)2

    , Z(n) 6= h;(ii)eh = p1,Kdpii |(p+1)9(p1, p+1) = 2, p11 p12 pkk p

    (p1)p2 ,Z(n) 6=

    p 1.l, ep + 1 0(modpii ), KkZ(n) = Sdf(n), =(3-12)|).emax{pii } > p, KdSdf(n) = p, Sdf(n) = max

    16i6k{Sdf(pii )} = Sdf(p

    jj ).

    (i)eSdf(n) = p,Kdmax{pii } > p, max{pii } p(p+1)

    2, Z(n) 6= p,lZ(n) 6=

    44

  • 1n Smarandache9Smarandache'

    Sdf(n).

    (ii)eSdf(n) = max16i6k

    {Sdf(pii )} = Sdf(pjj ), dSdf(n)5,7kpj |Sdf(p

    jj ),

    upj |Sdf(n).k5, =?p9 > 2, p = 32, kSdf(p) < p,

    ep 6 2 1, KSdf(p) = (2 1)p < p(p = 32); ep < 2 1, KNdp2|p!!, Sdf(p) < p. Sdf(n) = max

    16i6k{Sdf(pii )} = Sdf(32) = 9, N

    yn = 32 5 = 45), {.uSdf(n) = max

    16i6k{Sdf(pii )} = Sdf(p

    jj ) < p

    jj , eZ(n) = Sdf(n) =

    m,Km < pjj p

    11 p

    12 pkk p|

    m(m+1)2 . qd, pj |m,lp

    jj |m,m 1 > 2, Kn = p11 p12 pkk p.

    eSdf(n) = max16i6k

    {Sdf(pii )} = Sdf(p), dk > 1p 6= 32,uSdf(n) =

    Sdf(p) = m < p.ddp|m9m < pp m(m+1)2 , dZ(n) 6= m,Z(n) 6=Sdf(n).

    eSdf(n) = max16i6k

    {Sdf(pii )} = Sdf(pjj ), d > 2, 3ej >

    2pjj 6= 32,uSdf(n) = Sdf(p

    jj ) = m < p

    jj . , dp

    jj

    m(m+1)2, Z(n) 6=

    m,Z(n) 6= Sdf(n).uBn3.6y.

    eyn3.7. n3.6y{q, VL. dZ(p) = p 19Sdf(p) = p,n = pv(3-13). n = pk/, Z(pk) + 1 = pk 1 + 1 = pk,n = 32Sdf(pk) < pk,,Uv(3-13). n = 32 = 9T

    (3-13)A). n = p11 p12 pkk p/, Ny, Z(n) + 1 =

    Sdf(n)=vp 1 0(modpii ). {n3.6y{aq,p2K.

    3.6 a2Smarandache

    SmarandacheZ(n):

    Z(n) = min{m : m N+, n

    m(m + 1)

    2}. (3-16)

    z[105]2Smarandache, ?n,2Smarandache

    Z3(n)

    Z3(n) = min{m : m N+, n

    m(m + 1)(m + 2)

    6}. (3-17)

    45

  • Smarandache9'K

    !0'uZ3(n)5, On = 2lp, n = 2lpk, n = 2l

    3k, l, k N+, p > 3, Z3(n)/. ), 9CKk[29,36,107].

    nnn 3.10 ?k, p, eZ3(kp) = m, Km7lp 2, lp 1, lp, l N+n/.

    yyy:Z3(n) > 1,p = 2, 3, nw,. p > 3, dp|m(m + 1)(m +2)/6, Kp7m, m + 1, m + 2, dm7klp 2, lp 1, lp, l N+n/.y..

    e'uZ3(n)A{59y.

    (1)n = 2lp, l N+, p > 3,Z3(2lp) = m,m = gp2,m = gp1,m =gpn9gk:

    (a)eg = 1, m = p 2,d=km + 1 = p 1, d2lp|(p 2)(p 1)p/6,Kk2l+1|p 1,^{L=, p 1 0(mod2l+1),Z3(2lp) = p 2;em =p 1, d2lp|(p 1)p(p + 1)/6,Kk2l|p 12l|p + 1,=p 1 0(mod2l),p 1 60(mod(2l+1)), Z3(2

    lp) = p 1;e2lp|p(p + 1)(p + 2)/6,Kkp + 1 0(mod(l + 1)), dp + 1 0(mod2l),AkZ3(2lp) = p 1.

    (b)n,eg = 2, m = 2p2,d2lp|(2p2)(2p1)2p/6,K2l1|p1,=p1 0(mod2),p 1 6 0(mod2l), Z3(2lp) = 2p 2;m 6= 2p 1,em = 2p 1,K2lp|(2p1)2p(2p+1)/6,U;em = 2p,d2lp|2p(2p+1)(2p+2)/6,K2l1|p+1,=p + 1 0(mod2l1),p + 1 6 0(mod2l).

    (c)eg = 2k, k > 1, k N ,d2lp|(2kp 2)(2kp 1)2kp/6, K2l|2k,dZ3(n)5,2k = 2l, d, Z3(2

    lp) = 2lp 2.(d)eg > 3, m = gp 2,d2lp|(gp 2)(gp 1)gp/6, k2l+1|gp 1;em =

    gp 1,d2lp|(gp 1)gp(gp + 1)/6,K2l1|gp 12l|gp + 1;em = gp,d2lp|gp(gp +1)(gp + 2)/6, K2l+1|gp + 1,k2l|gp + 1, dAkm = gp 1.n, eg > 3,m = 2gp 2,dk2l1|gp 1;em = 2gp, g > 3, dk2l1|gp + 1.dmv

    46

  • 1n Smarandache9Smarandache'

    kU/. n, k

    Z3(2lp) =

    p 2, p 1 0(mod2l+1);p 1, p 1 0(mod2l);2p 2, p 1 0(mod2l1);2p, p + 1 0(mod2l1);gp 2, gp 1 0(mod2l+1);gp 1, gp 1 0(mod2l);2sp 2, sp 1 0(mod2l1);2sp, sp + 1 0(mod2l1);2lp 2, ,

    3 6 g 6 2l 1, 3 6 s 6 2l1 1.(2)n, n = 2lpk, l N+, k N+, p > 3, k

    Z3(2lpk) =

    pk 2, pk 1 0(mod2l+1);pk 1, pk 1 0(mod2l);2pk 2, pk 1 0(mod2l1);2pk, pk + 1 0(mod2l1);gpk 2, gpk 1 0(mod2l+1);gpk 1, gpk 1 0(mod2l);2spk 2, spk 1 0(mod2l1);2spk, spk + 1 0(mod2l1);2lpk 2, ,

    3 6 g 6 2l 1, 3 6 s 6 2l1 1.n = 2l 3k, l, k N+, 9z[105]52 (z[105][4])k

    Z3(2l 3k) =

    3k+1 2, 3k+1 1 0(mod2l+1);3k+1 1, 3k+1 1 0(mod2l);2 3k+1 2, 3k+1 1 0(mod2l1);2 3k+1, 3k+1 + 1 0(mod2l1);g 3k+1 2, g 3k+1 1 0(mod2l+1);g 3k+1 1, g 3k+1 1 0(mod2l);2s 3k+1 2, s 3k+1 1 0(mod2l1);2s 3k+1, s 3k+1 + 1 0(mod2l1);2l 3k+1 2,,

    47

  • Smarandache9'K

    3 6 g 6 2l 1, 3 6 s 6 2l1 1.

    3.7 Smarandache91aSmarandache

    ?n, SmarandacheS(n)mn|m!.=S(n) = min{m : m N, n|m!}.1aSmarandacheZ2(n)knk

    2(k+1)2

    4 ,

    Z2(n) = min

    {

    k : k N, n

    k2(k + 1)2

    4

    }

    ,

    NLk8. 9k'Smarandache

    z[7]. lS(n)9Z2(n)NcA:

    S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, .

    Z2(1) = 1, Z2(2) = 3, Z2(3) = 2, Z2(4) = 3, Z2(5) = 4, Z2(6) = 3, Z2(7) = 6, Z2(8) = 7, .

    'uS(n)5, N?1, k(J[28,36,97100]. ~

    Xz[28]

    S(m1 + m2 + + mk) =k

    i=1

    S(mi)

    )5, |^)nny?k > 3, Tk

    |)(m1, m2, , mk).z[36]S(n)K, yC

    n6x

    (S(n) P (n))2 = 2(32)x

    32

    3 ln x+ O

    (

    x32

    ln2 x

    )

    ,

    P (n)Lnf,(s)LRiemann zeta-.

    z[97 98]S(2p1(2p 1))e.OK, y?p > 7, kO

    S(2p1(2p 1)) > 6p + 19S(2p + 1) > 6p + 1.

    C, z[99](:=y?p > 17?

    a 9b,kO

    S(ap + bp) > 8p + 1.

    d, z[100]?Smarandache,e.OK, =Smarandache

    48

  • 1n Smarandache9Smarandache'

    e.OK, y?n > 3kO:

    S(Fn) = S(22n + 1) > 8 2n + 1,

    Fn = 22n + 1.

    'uS(n)SN~, p2. uZ2(n)5,

    8), $kC5.

    !8|^{Z2(n) + 1 = S(n))5,

    k), N/`ye:

    nnn 3.8 ?n,Z2(n) + 1 = S(n)k=ken/):

    (A)n = 3, 4, 12, 33, 2 33, 22 33, 23 33, 24 33, 34, 2 34, 22 34, 23 34, 24 34;(B)n = p m,p > 5, m (p1)2

    4?;

    (C)n = p2 m,p > 52p 1, m(2p 1)2?u1.

    w,Tn.)Z2(n) + 1 = S(n))5K. =y

    k)z)N/.

    e|^{9Smarandache5ny. k'g,

    59k'SNz[4 6]. Ny:

    n = 3, 4, 12, 33, 2 33, 22 33, 23 33, 24 33, 34, 2 34, 22 34, 23 34, 24 34

    , Z2(n) + 1 = S(n)w,. y3eA[?:

    S(n) = S(p) = p > 5, n = mp,KS(m) < p(m,p) = 1.denv

    Z2(n)+1 = S(n),@oZ2(n) = p1,dZ2(n)kn (p1)2p2

    4,=mp| (p1)2p2

    4.

    m| (p1)24 ,dm(p1)2

    4 ?. , n = mpm|(p1)2

    4 , kS(n) =

    p, Z2(n) = p 1, n = mpZ2(n) + 1 = S(n)). uyn1(B).

    S(n) = S(p2) = 2p, p > 5, n = mp2,KS(n) < 2p(m, p) = 1.denv

    Z2(n) + 1 = S(n),@oZ2(n) = 2p 1,dZ2(n)kn (2p 1)2p2,

    mp2|(2p 1)p2,m|(2p 1)2.

    w,m 6= 1, Kn = p2, S(p2) = 2p,Z2(p2) = p 1.dn = p2vZ2(n) + 1 = S(n).um7L(2p 1)2u1. d, 2p 1, n = mp2, Z2(n) 6= p 1, Z2(n) 6= p, Z2(n) = 2p 1, S(n) = 2p, n = mp2 vZ2(n) + 1 = S(n).uyn/(C).

    y3yS(n) = S(p)p > 59 > 3, nvZ2(n) + 1 = S(n).

    n = mp, S(m) 6 S(p), (m, p) = 1. ukS(n) = hp, ph 6 .env

    49

  • Smarandache9'K

    Z2(n) + 1 = S(n),KZ2(n) = hp 1. udZ2(n)k

    n = mp

    (hp 1)2m2p24

    ld5p2|h2 6 2.p|h. > h > 5. p > 5 > 5,p2|h2 6 2U, dkp2 > 2.y3S(n) = 3, dn = 36.yn = 3Z2(n) + 1 = S(n)

    ); S(n) = S(32) = 6, n = 9, 18, 36, 45, yvZ2(n) + 1 =

    S(n);S(n) = S(33) = 9,

    n = 33, 2 33, 22 33, 5 33, 7 33, 23 33, 10 33, 14 33, 16 33, 20 33.

    dy

    n = 33, 2 33, 22 33, 23 33, 24 33

    vZ2(n) + 1 = S(n);S(n) = S(34) = 9, k

    n = 34, 2 34, 22 34, 23 34, 24 34

    vZ2(n) + 1 = S(n).

    S(n) = S(2).w,n = 1, 2vZ2(n)+1 = S(n). eS(n) = S(4) =

    4, @on = 4, 12.yn = 4, 12vZ2(n) + 1 = S(n);S(n) = S(23) = 4, d

    n = 8, 24.ynvZ2(n) + 1 = S(n);S(n) = S(24) = 6, d

    n = 16, 3 16, 5 16, 15 16.uvZ2(n) + 1 = S(n); S(n) =S(25) = 8,

    n = 25, 3 25, 5 25, 7 25, 15 25, 21 25, 35 25, 105 25,

    dNyvZ2(n) + 1 = S(n);

    S(n) = S(2) = 2h, > max{6, h}

    , n = m 2, KS(m) < S(2)(m, 2) = 1.denvZ2(n) + 1 = S(n), KdZ2(n),

    n = m 2

    (2h 1)2(2h)24

    = (2h 1)2h2 ,

    dd2|h2 6 ( 1)2 < 2, 95U, A^8B{Ny > 6,2 > ( 1)2 > h2.n, n3.8y.

    50

  • 1n Smarandache9Smarandache'

    3.8 'uSmarandache LCMSmarandache

    ?n,SmarandacheS(n)mn|m!.=S(n) = min{m : m N, n|m!}, Smarandache LCMSL(n)k,n|[1, 2, , k],[1, 2, , k] L1, 2, , k. 'u5, N?1, (J[8,14,29,3739] . ~X, z[39]

    SL(n)K, yC

    n6x

    (SL(n) P (n))2 = 25 (

    5

    2 x

    52

    ln x

    )

    + O

    (

    x52

    ln x

    )

    ,

    P (n)Lnf.

    z[39]?SL(n) = S(n))5, )TK. =y:?

    vTLn = 12n = p11 p22 prr p, p1, p2, , pr, p

    1, 2, , r, vp > pii (i = 1, 2, , r).!0|^9|{

    n6x

    S(n)

    SL(n)(3-18)

    C5. Kk, (3-18)C5N

    55, XJC

    n6x

    S(n)

    SL(n) x

    , @oS(n)SL(n)A??!!K?1

    , y(5. N/`=ye(.

    nnn 3.9 ?x > 1kC

    n6x

    S(n)

    SL(n)= x + O

    (x ln ln x

    ln x

    )

    .

    nnn 3.10 ?x > 1kC

    n6x

    P (n)

    SL(n)= x + O

    (x ln ln x

    ln x

    )

    ,

    P (n)Lnf.

    w,n~f, == ln ln xlnx f, 3

    rCkK.

    51

  • Smarandache9'K

    eyn. yn3.9, aq/, n3.10. L{

    C/

    n6x

    S(n)

    SL(n)=

    n6x

    S(n) SL(n)SL(n)

    +

    n6x

    1

    =x + O

    n6x

    |SL(n) S(n)|SL(n)

    . (3-19)

    y3|^S(n)9SL(n)59|{5O(3-19).

    dSL(n)5nIO)p11 p22 pkk k

    SL(n) = max{p11 , p22 , , pkk }.

    eSL(n)p,@oS(n)p.d, 3ekSL(n) S(n) = 0.3(3-19), k"[email protected](n)un, =

    SL(n) = max{p11 , p22 , , pkk } p, > 2.

    Am[1, x]kv^n8, ?n A, n = p11 , p22 , , pkk =p n1, (p, n1) = 1. y3?:A = B + C,n BXJSL(n) =p > ln

    2 x9(ln lnx)2

    . n CXJSL(n) = p < ln2 x9(ln lnx)2

    . uk

    n6x

    |SL(n) S(n)|SL(n)

    =

    nB

    |SL(n) S(n)|SL(n)

    +

    nC

    |SL(n) S(n)|SL(n)

    6

    n69x(ln ln x)2

    ln2 x

    ln2 x9(ln ln x)2

    6p6 xn

    >2

    1 +

    nC1 R1 + R2. (3-20)

    y3OO(3-20). kOR1. 5p 6 ln4 xk 6 4 ln ln x u

    dnk

    R1 6

    n6 xln4 x

    p6 xn>2

    1 +

    xln4 x

    6n6 9x(ln ln x)2

    ln2 x

    p6 xn>2

    n6 xln4 x

    p6

    xn

    6ln x

    1 +

    xln4 x

    6n6 9x(ln ln x)2

    ln2 x

    p6

    xn

    64 ln lnx

    1

    n6 xln4 x

    x

    n

    ln x

    ln ln x+

    xln4 x

    6n6 9x(ln ln x)2

    ln2 x

    x

    n

    x ln ln xln x

    . (3-21)

    52

  • 1n Smarandache9Smarandache'

    y3OR2,58CLp11 p

    22 pkk ,

    i 6 2 ln ln x, pi 6lnx

    3 ln lnx, i = 1, 2, . u5

    p6y

    ln p = y + O

    (y

    ln y

    )

    , ln(

    1 1ln p

    )

    1ln p

    ,

    k

    R2 =

    nC1 6

    p6 ln x3 ln ln x

    0662 ln ln x

    p

    =

    p6 ln x3 ln ln x

    p2 ln ln x

    1 1ln p

    p6 ln x3 ln ln x

    (

    1 1ln p

    )1exp

    2 ln ln x

    p6 ln x3 ln ln x

    ln p

    exp

    3

    4ln x +

    p6 ln x3 ln ln x

    1

    ln p

    xln x

    , (3-22)

    exp(y) = ey.

    ((3-20),(3-21)9(3-22), O

    n6x

    |SL(n) S(n)|SL(n)

    x ln ln xln x

    . (3-23)

    |^(3-19)9(3-23)C

    n6x

    S(n)

    SL(n)= x + O

    (x ln ln x

    ln x

    )

    .

    un3.9y.

    5SL(n) = p,S(n) = P (n) = p; SL(n), P (n) 6

    S(n) 6 SL(n), udyn3.9{n3.10.

    3.9 'uSmarandache LCM9

    u?n, Smarandache LCM

    SL(n) = min{k : k|[1, 2, , k], k N}.

    53

  • Smarandache9'K

    'u59kN?1L,

    (J. ~XMurthy3

    z[14]yn,SL(n) = S(n). ?

    SL(n) = S(n), S(n) 6= n

    )5. pS(n) = min{m : n|m!,m N}Smaranache. Le Mao-hua3z[19] )Murthy3z[14]JK, =n = 12 n =

    p11 p22 prr p, (p > pii , i = 1, 2, , r)k).Lv Zhongtian 3z[20]?SL(n)C5, O

    n6x

    SL(n) =2

    12

    x2

    ln x+

    k

    i=2

    ci x2lni x

    + O

    (x2

    lnk+1 x

    )

    ,

    px > 1, k,cO~.

    u?n,Smarandache LCM

    SL(n) = max{k : [1, 2, , k]|k, k N}.

    dSL(n)N,SL(1) = 1, SL(2) = 2, SL(3) = 1, SL(4) = 2, SL(5) =

    1, SL(6) = 3, SL(7) = 1, SL(8) = 2, SL(9) = 1, SL(10) = 2,. w,, n

    , SL(n) = 1, n, SL(n) > 2. 'u5, N?

    1L, XJ, z[4, 19 21].~X3z[21], Tian Chengliang

    d|nSL(d) = n

    d|nSL(d) = (n)

    )5, ck)n = 1, )n = 1, 3, 14. d

    3z[21], SL(n)?9, k(J:

    n=1

    SL(n)

    ns= (s)

    =1

    p

    (p1)(ps 1)[1, 2, , p]

    n6x

    SL(n) = c x + o(ln2 x),

    (s)Riemann zeta-.

    54

  • 1n Smarandache9Smarandache'

    Z3z[59]

    d|n SL(d) =

    d|n S(d), )

    (1)n;

    (2)3n, Kn = 2p11 p22 pkk , p1 > 5, > 1, i > 0, k > 1, i = 1, 2, , k;(3)3|n,Kn = 2 31p22 pkk , p2 > 5, > 1, i > 0, k > 2, i = 1, 2, , k.

    A =

    n :

    d|nSL(d) =

    d|nS(d), n N

    ,

    f(s) =

    n=1nA

    1

    ns, (Re(s) > 1),

    KZ'u)8

    f(s) = (s)

    (

    1 112s

    )

    ,

    (s)Riemann zeta-.

    !8|^{

    d|nSL(d) + 1 = 2(n) (3-24)

    )5, k), =en.

    nnn 3.11 ?n, (3-24)k)=n = p, > 1, p > 3

    .

    yyy: dSL(n), n = 1, 2w,(3-24)). e6?1?

    :

    (1)en = p > 3,K(n) = (p) = 1,

    d|nSL(d)+1 = SL(1) SL(p)+1 = 2,

    , w,n = p(3-24)).

    (2)en, @oXe:

    1)n = 2, > 1,(n) = (2) = 1,

    d|nSL(d) + 1 = SL(1) SL(2) SL(2) + 1 = 2 + 1,

    K2 + 1 = 2,=2 = 1, = 0, > 1g. n = 2, > 1(3-24)).

    2)n = 2p, > 1, > 1, p > 3, d(n) = (2p) = 2,

    55

  • Smarandache9'K

    dSL(n)5

    d|2pSL(d) + 1 =

    m=0

    n=0SL(2mpn) + 1 > 2+ + 1 > 4,

    n = 2p , > 1, > 1, p > 3, (3-24)).

    3)n = 2p11 p22 pkk , > 1, i > 1, i = 1, 2, , k, k > 1, pi > 3 p

    .(n) = (2p11 p22 pkk ) = k + 1,

    d|2p11 p22 p

    kk

    SL(d) + 1=

    n=0

    1

    m1=0

    k

    mk=0

    SL(2npm11 pm22 pmkk ) + 1

    >2+

    k

    i=1i

    + 1

    >2+k1 + 1

    >2k+1 + 1

    > 2k+1.

    n = 2p11 p22 pkk , (3-24)).

    4)n = p, > 1, p > 3. k(n) = (p) = 1,d

    d|pSL(d) + 1 =

    m=0SL(pm) + 1 = 1 + 1 = 2, (3-24). n = p

    (3-24)).

    5)n = p11 p22 pkk , i > 1, 3 6 p1 < p2 < pk, i = 1, 2, , k, k > 2, du

    (n) = (p11 p22 pkk ) = k,

    d|p11 p22 p

    kk

    SL(d) + 1 =1

    m1=0

    2

    m2=0

    k

    mk=0

    SL(pm11 pm22 pmkk ) + 1 = 1 + 1 = 2,

    d7k2 = 2k,=k = 1,k > 2g.n = p11 p22 pkk , (3-24)).

    n?(1)(2), (3-24)k)=n = p, > 1, p > 3,

    n3.11y.

    56

  • 1o SmarandacheS

    1o SmarandacheS

    4.1 Smarandache LCM 'SI

    (x1, x2, ..., xt)[x1, x2, ..., xt]OLx1, x2, ..., xtf.

    r u1. ?n, K

    T (r, n) =[n, n + 1, ..., n + r 1]

    [1, 2, ..., r]

    PSLR(r) = {T (r, n)}n=1rSmarandache LCM'S. Maohua Le [22]

    5, 'uSLR(2), SLR(3) SLR(4)4, w,

    T (2, n) =1

    2n(n + 1).

    T (3, n) =

    16n(n + 1)(n + 2), en ;

    112

    n(n + 1)(n + 2),en .

    T (4, n) =

    124n(n + 1)(n + 2)(n + 3), en 6 0(mod3);172n(n + 1)(n + 2)(n + 3), en 0(mod3).

    !r = 54, =en.

    nnn 4.1 u?n,k

    T (5, n) =

    57

  • Smarandache9'K

    1120

    n(n + 1)(n + 2)(n + 3)(n + 4), n 6 0(mod2)n 6 0(mod3)n 6 0(mod4)n + 1 6 0(mod3);

    1240n(n + 1)(n + 2)(n + 3)(n + 4), n 0(mod2)n 6 0(mod3)n 6 0(mod4)

    n + 1 6 0(mod3);1

    360n(n + 1)(n + 2)(n + 3)(n + 4), n 0(mod2), n 6 0(mod3)n 6 0(mod2),n 6 0(mod3), n 6 0(mod4), n + 1 6 0(mod3);

    1480

    n(n + 1)(n + 2)(n + 3)(n + 4), n 6 0(mod3), n 0(mod4), n + 1 6 0(mod3);1

    720n(n + 1)(n + 2)(n + 3)(n + 4), n 0(mod2), n 6 0(mod3), n 6 0(mod4),n + 1 (mod3)n 0(mod2), n 0(mod3),n 6 0(mod4);

    11440n(n + 1)(n + 2)(n + 3)(n + 4), n 6 0(mod3), n 0(mod4), n + 1 0(mod3)

    n 0(mod3), n 0(mod4).

    e|^55yn4.1. ,[n, n + 1, n + 2, n +

    3, n + 4] = [n(n + 1), (n + 2)(n + 3), n + 4], [n(n + 1), (n + 2)(n + 3), n + 4](n(n +

    1), (n+2)(n+3), n+4) 6= n(n+1)(n+2)(n+3)(n+4). u?52?n9n. )T (r, n)

    4, '[n, n + 1, n + 2, n + 3, n + 4], 3dnOa?1`. du

    {'Xd'X, ^r8yeZda.

    (1)en 0(mod2), n 6 0(mod3), n 6 0(mod4),

    [n, n+1, n+2, n+3, n+4]

    2 3 4 5 6

    10 11 12 13 14

    14 15 16 17 18

    22 23 24 25 26

    26 27 28 29 30

    34 35 36 37 38

    38 39 40 41 42

    n[n, n+2, n+4] = 14[n(n+2)(n+4)],[n+1, n+3] = (n+1)(n+3),

    en + 1 0(mod3),Kn + 4 0(mod3),

    [n, n + 1, n + 2, n + 3, n + 4] =

    112

    [n(n + 1)(n + 2)(n + 3)(n + 4)],n + 1 0(mod3),14 [n(n + 1)(n + 2)(n + 3)(n + 4)], n + 1 6 0(mod3).

    58

  • 1o SmarandacheS

    (2)en 0(mod3),n 6 0(mod2),

    [n, n+1, n+2, n+3, n+4]

    3 4 5 6 7

    9 10 11 12 13

    15 16 17 18 19

    21 22 23 24 25

    27 28 29 30 31

    33 34 35 36 37

    [n + 1, n + 3] = 12 [(n + 1)(n + 3)], qn 0(mod3),n + 3 0(mod3),[n, n + 3] = 13 [n(n + 3)],d

    [n, n + 1, n + 2, n + 3, n + 4] =1

    6[n(n + 1)(n + 2)(n + 3)(n + 4)].

    (3)en 0(mod4),n 6 0(mod3),

    [n, n+1, n+2, n+3, n+4]

    4 5 6 7 8

    8 9 10 11 12

    16 17 18 19 20

    20 21 22 23 24

    28 29 30 31 32

    32 33 34 35 36

    40 41 42 43 44

    n, qn 0(mod4),n + 4 0(mod4), [n, n + 2, n + 4] = 18 [n(n +2)(n + 4)], en + 1 0(mod3),Kn + 4 0(mod3),

    [n, n + 1, n + 2, n + 3, n + 4] =

    18n(n + 1)(n + 2)(n + 3)(n + 4), n + 1 6 0(mod3),124

    n(n + 1)(n + 2)(n + 3)(n + 4),n + 1 0(mod3).

    (4)en 0(mod2),n 0(mod3),n 6 0(mod4),

    59

  • Smarandache9'K

    [n, n+1, n+2, n+3, n+4]

    6 7 8 9 10

    18 19 20 21 22

    30 31 32 33 34

    42 43 44 45 46

    54 55 56 57 58

    n[n, n + 2, n + 4] = 14 [n(n + 2)(n + 4)],n n + 3 0(mod3),

    [n, n + 1, n + 2, n + 3, n + 4] =1

    12[n(n + 1)(n + 2)(n + 3)(n + 4)].

    (5)en 0(mod3),n 0(mod4),

    [n, n+1, n+2, n+3, n+4]

    12 13 14 15 16

    24 25 26 27 28

    36 37 38 39 40

    48 49 50 51 52

    60 61 62 63 64

    n[n, n + 2, n + 4] = 18[n(n + 2)(n + 4)],, n n + 4 0(mod4),n

    n + 3 0(mod3), [n, n + 3] = 13 [n(n + 3)],

    [n, n + 1, n + 2, n + 3, n + 4] =1

    24[n(n + 1)(n + 2)(n + 3)(n + 4)].

    (6)en 6 0(mod2),n 6 0(mod3),n 6 0(mod4)

    60

  • 1o SmarandacheS

    [n, n+1, n+2, n+3, n+4]

    5 6 7 8 9

    7 8 9 10 11

    11 12 13 14 15

    13 14 15 16 17

    17 18 19 20 21

    19 20 21 22 23

    23 24 25 26 27

    25 26 27 28 29

    [n+1, n+3] = 12 [(n+1)(n+3)],en+1 0(mod3),[n, n+1, n+2, n+3, n+4] = 1

    6[n(n+1)(n+2)(n+3)(n+4)];en+1 0( mod 3), [n, n+1, n+2, n+3, n+4] =

    12 [n(n + 1)(n + 2)(n + 3)(n + 4)].

    r8a?1n, ^48a, Bn4.1.

    4.2 Smarandache LCM 'SII

    !Smarandache LCM'SO3u2,3,4,54,

    !Smarandache LCM'S, Smarandache LCM'S

    O'ur!'un, =eA(J.

    nnn 4.2 ?g,n, rkXe4

    T (r + 1, n) =n + r

    r + 1

    ([1, 2, ..., r], r + 1)

    ([n, n + 1, ..., n + r 1], n + r)T (r, n),

    4.1 XJr + 1 n + r Kk{

    T (r + 1, n) =n + r

    r + 1T (r, n).

    nnn 4.3 ?g,n, rk,4

    T (r, n + 1) =n + r

    n

    (n, [n + 1, ..., n + r])

    ([n, n + 1, ..., n + r 1], n + r)T (r, n).

    4.2 XJn n + r r < nKk{

    T (r, n + 1) =n + r

    n T (r, n);

    61

  • Smarandache9'K

    XJn n + r r > nKk

    T (r, n + 1) = (n + r) T (r, n).

    nnn 4.4 ?g,n, rk4

    T (r + 1, n + 1)=n + r

    n n + r + 1

    r + 1 ([1, 2, ..., r], r + 1)([n + 1, ..., n + r], n + r + 1)

    (n, [n + 1, ..., n + r])([n, n + 1, ..., n + r 1], n + r) T (r, n).

    yAn, IeAn.

    nnn 4.1 ?ab, k(a, b)[a, b] = ab.

    nnn 4.2 ?s, ts < t, k

    (x1, x2, ..., xt) = ((x1, ..., xs), (xs+1, ..., xt))

    [x1, x2, ..., xt] = [[x1, ..., xs], [xs+1, ..., xt]].

    n4.14.2yz[6].

    e5yn4,2. kT (r, n) , n4.14.2, k

    [n, n + 1, ..., n + r]= [[n, n + 1, ..., n + r 1], n + r]

    =[n, n + 1, ..., n + r 1](n + r)([n, n + 1, ..., n + r 1], n + r) ,

    [1, 2, , r + 1] = [[1, 2, , r], r + 1] = (r + 1)[1, 2, , r]([1, 2, , r], r + 1) ,

    u'uT (r + 1, n)4

    T (r + 1, n)=[n, n + 1, ..., n + r]

    [1, 2, ..., r + 1]

    =[[n, n + 1, ..., n + r 1], n + r]

    [[1, 2, ..., r], r + 1]

    =

    (n+r)[n,n+1,...,n+r1]([n,n+1,...,n+r1],n+r)

    (r+1)[1,...,r]([1,2,...,r],r+1)

    =n + r

    r + 1

    [n, n + 1, ..., n + r 1][1, 2, ..., r]

    ([1, 2, ..., r], r + 1)

    ([n, n + 1, ..., n + r 1], n + r)

    =n + r

    r + 1

    ([1, 2, ..., r], r + 1)

    ([n, n + 1, ..., n + r 1], n + r)T (r, n).

    n4.2y.

    62

  • 1o SmarandacheS

    4.1y. r + 1 n + r , w,k

    ([1, 2, , r], r + 1) = 1,

    ([n, n + 1, , n + r 1], n + r) = 1,

    Kdn4.2, k

    T (r + 1, n)=n + r

    r + 1

    ([1, 2, ..., r], r + 1)

    ([n, n + 1, ..., n + r 1], n + r)T (r, n)

    =n + r

    r + 1T (r, n).

    y4.1.

    n4.3y: T (r, n)n4.1n4.25yn4.3. kd

    n4.1n4.2, k

    [n, [n + 1, n + 2, , n + r]] = n[n + 1, n + 2, , n + r](n, [n + 1, n + 2, , n + r]) ,

    u

    [n + 1, n + 2, , n + r]

    =[n, [n + 1, n + 2, , n + r]] (n, [n + 1, n + 2, , n + r])

    n

    =[n, n + 1, n + 2, , n + r] (n, [n + 1, n + 2, , n + r])

    n,

    u'uT (r, n + 1)4

    T (r, n + 1)=[n + 1, ..., n + r]

    [1, 2, ..., r]

    =[n, n + 1, ..., n + r](n, [n + 1, ..., n + r])

    n

    1

    [1, 2, ..., r]

    =(n, [n + 1, ..., n + r])

    n[1, 2, ..., r]

    [n, n + 1, ..., n + r 1](n + r)([n, n + 1, ..., n + r 1], n + r)

    =n + r

    n

    (n, [n + 1, ..., n + r])

    ([n, n + 1, ..., n + r 1], n + r)[n, n + 1, ..., n + r 1]

    [1, 2, ..., r]

    =n + r

    n

    (n, [n + 1, ..., n + r])

    ([n, n + 1, ..., n + r 1], n + r)T (r, n).

    n4.3y.

    4.2y. nr < n, [n+1, n+2, , n+ r]7kfnKk

    (n, [n + 1, n + 2, , n + r]) = 1;

    63

  • Smarandache9'K

    , en + r , K7,k

    ([n, n + 1, , n + r 1], n + r) = 1.

    d

    T (r, n + 1) =n + r

    n

    (n, [n + 1, ..., n + r])

    ([n, n + 1, ..., n + r 1], n + r)T (r, n) =n + r

    nT (r, n).

    nr > n, [n + 1, n + 2, , n + r] 7fn, d

    (n, [n + 1, n + 2, , n + r]) = n,

    dun + r , dk

    T (r, n + 1)=n + r

    n

    (n, [n + 1, ..., n + r])

    ([n, n + 1, ..., n + r 1], n + r)T (r, n)

    = (n + r)T (r, n).

    y4.2.

    n4.4y: A^n4.2n4.3 Nn4.4(J, =

    T (r + 1, n + 1)

    =n + r + 1

    r + 1

    ([1, 2, ..., r], r + 1)

    ([n + 1, ..., n + r], n + r + 1)T (r, n + 1)

    =(n + r + 1)(n + r)

    (r + 1)n

    ([1, 2, ..., r], r + 1)

    ([n + 1, ..., n + r], n + r + 1)

    (n, [n + 1, ..., n + r])

    ([n, ..., n + r 1], n + r)T (r, n).

    n4.4y.

    4.3 Smarandache 1

    4.3.1 Smarandache1

    u?n,n n1

    1 2 n 1 n2 3 n 1...

    ......

    ...

    n 1 n n 3 n 2n 1 n 2 n 1

    (4-1)

    nSmarrandache1, PSCND(n).

    64

  • 1o SmarandacheS

    a,dE,n n1

    a a + d a + (n 2)da + (n 1)da + d a + 2d a + (n 1)d a

    ......

    ......

    a + (n 2)da + (n 1)d a + (n 4)da + (n 3)da + (n 1)d a a + (n 3)da + (n 2)d

    (4-2)

    'u(a, d)nSmarrandache?1LSCAD(n; a, d).

    3z[34], Murthyen.

    nnn 4.3 u?n,

    SCND(n) = (1)n2 nn1 (n + 1)2

    . (4-3)

    nnn 4.4 u?n?Ea, d, k

    SCAD(n; a, d) =

    a, n = 1,

    (1)n2 (nd)n1 (a+(n1)d)2 ,n > 1.(4-4)

    3z[35], Le Maohuay'uSCND(n)SCAD(n; a, d). =Le

    Maohua|^1

    a1 a2 an1 anan a1 an2 an1...

    ......

    ...

    a3 a4 a1 a2a2 a3 an a1

    =

    xn=1

    (a1 + a2x + + anxn) (4-5)

    yn4.34.4SO=.

    XO(4-1), l.1n1m, 11\e1, 11,

    SCND(n) =

    1 2 n 1 n1 1 1 1 n...

    ......

    ...

    1 1 1 111 n 1 1

    .

    65

  • Smarandache9'K

    ,121n\1, 2r1m(,=

    SCND(n)=

    n(n 1)/2 2 n 1 n0 1 1 1 n...

    ......

    ...

    0 1 1 10 1 n 1 1

    =n(n + 1)

    2

    1 11 n...

    ......

    1 1 11 n 1 1

    n1

    =(1)n2 nn1 (n + 1)2

    .

    , (4-2)^{O.

    rSCND(n)z, a1, a2, , annE,n n 1

    a1 a2 an1 ana2 a3 an a1...

    ......

    ...

    an1 an an3 an2an a1 an2 an1

    (4-6)

    'ua1, a2, , annSmarandache1LSCD(a1, a2, , an).unSmarandache1SCD(a1, a2, , an), A^(4-5), en.

    nnn 4.5 un?Ea1, a2, , an,

    SCD(a1, a2, , an) = (1)r

    xn=1

    (a1 + a2x + + anxn1), (4-7)

    r =

    n2 1, en,(n 1)/2,en.

    66

  • 1o SmarandacheS

    SCD(a1, a2, , an),A: a, qE, n n1

    a aq aqn2 aqn1

    aq aq2 aqn1 a...

    ......

    ...

    aqn2 aqn1 aqn4 aqn3

    aqn1 a aqn3 aqn2

    (4-8)

    'u(a, q)nSmarandacheA?1LSCGD(n; a, q).

    u, nSmarandacheA?1SCGD(n; a, q), kXen:

    nnn 4.6 u?n?Ea, q,

    SCGD(n; a, q) = (1)ran(1 qn)n1. (4-9)

    n4.6y:l(4-6)!(4-8)k

    SCGD(n; a, q) = SCD(a, aq, aq2, , aqn1),

    2d(4-7),

    SCD(a, aq, aq2, , aqn1)=(1)r

    xn=1

    (a + aqx + aq2x2 + + aqn1xn1)

    =(1)ran

    xn=1

    (1 + qx + q2x2 + + qn1xn1).

    XJxn = 1,K(1 + qx + q2x2 + + qn1xn1)(1 qx) = 1 qn,du

    xn=1

    (1 qx) = qn

    xn=1

    (1

    q x)

    = qn(

    1

    qn x)

    = 1 qn,

    (4-9). n4.6. S, n4.3!n4.4!n4.6n4.5A

    .

    4.3.2 Smarandache V1

    3z[35], u?n, n n1

    1 2 n 1 n2 3 n n 1...

    ......

    ...

    n 1 n 3 2n n 1 2 1

    (4-10)

    nSmarandacheV1LSBND(n).

    67

  • Smarandache9'K

    a,bE,n n1

    a a + d a + (n 2)da + (n 1)da + b a + 2d a + (n 1)da + (n 2)d

    ......

    ......

    a + (n 2)da + (n 1)d a + 2d a + da + (n 1)da + (n 2)d a + d a

    (4-11)

    'u(a, d)nSmarandacheV?1LSBAD(n; a, d).

    'unSmarandachV1SBND(n)SmarandachV?1

    SBAD(n; a, d) , Le Maohuayen4.6,n4.7.

    nnn 4.5 u?n,

    SBND(n) = (1)n(n1)

    2 2n1(n + 1). (4-12)

    nnn 4.6 u?n?Ea, d,

    SBAD(n; a, d) = (1)n(n1)

    2 2n2dn1 (2a + (n 1)d) . (4-13)

    a, dE, n n1

    a aq aqn2 aqn1

    aq aq2 aqn1 aqn2...

    ......

    ...

    aqn2 aqn1 aq2 aqaqn1 aqn2 aq a

    (4-14)

    'u(a, q)nSmarandacheVA?1LSBGD(n; a, q).

    'unSmarandacheVA?1SBGD(n; a, q),ken.

    nnn 4.7 u?nEa, d,

    SCGD(n; a, d) =

    0, n = 2,

    (1)n(n1)2 anqn(n2)(n1)(q2 1)n1,n 6= 2.(4-15)

    n4.7y:O(4-14), IO

    1 q an2 qn1

    q q2 qn1 qn2...

    ......

    ...

    qn2 qn1 q2 qqn1 qn2 q 1

    . (4-16)

    68

  • 1o SmarandacheS

    d(4-14), n = 1n = 2, (4-15). dbn > 2. r(4-16)

    12Jfq,12 1\11, ,U11m,

    1 q an2 qn1

    q q2 qn1 qn2...

    ......

    ...

    qn2 qn1 q2 qqn1 qn2 q 1

    = q(1)n+1(qn1 qn3)

    1 q an2 qn1

    q q3 qn1 qn2...

    ......

    ...

    qn3 qn1 q3 q2

    qn2 qn2 q2 q

    = q(1)n1(qn1 qn3)q2(1)n (qn2 qn4)

    qn2(1)4(q2 1)

    1 qn1

    q qn2

    =(1)n(n1)

    2 q(n2)(n1)(q2 1)n1.

    dd, (4-15). n4.7y.

    2SBND(n)/. a1, a2, , an,n E, n n1

    a1 a2 an1 ana2 a3 an an1...

    ......

    ...

    an1 an a3 a2an an1 a2 a1

    (4-17)

    'ua1, a2, , annSmarandacheV1LSBD(a1, a2, , an).uSBD(a1, a2, , an)O, )K.

    4.4 Smarandache

    N+N8. un,

    S(n) = min{k|k N+, n|k!}. (4-18)

    XdS(n)'unSmarandache. n, XJn

    u2n, Kn. 5,

  • Smarandache9'K

    12. !?0Smarandache, =y:

    nnn 4.8 =kSmarandache12.

    nnn 4.7 XJ

    n = pr11 pr22 prkk (4-20)

    nIO), K

    S(n) = max {S(pr11 ), S(pr22 ), , S(prkk )} . (4-21)

    yyy:z[43].

    nnn 4.8 upr, 7kS(pr) 6 pr.

    yyy:z[43].

    nnn 4.9 un,d(n)n. d,d(n)5;(4-20)nI

    O),K

    d(n) = (r1 + 1)(r2 + 1) (rk + 1). (4-22)

    yyy:z[44]~6.4.2.

    nnn 4.10

    n

    d(n)< 2, n N (4-23)

    =k)n = 1, 2, 3, 4, 6.

    eyn4.8. nn 6= 12Smarandache. z[41](J, n > 106. (4-20)nIO). n4.7

    S(n) = S(pr), (4-24)

    p = pj, r = rj, 1 6 j 6 k. (4-25)

    l(4-24)

    n|S(pr)!, (4-26)

    un?dk

    S(d) 6 S(pr). (4-27)

    70

  • 1o SmarandacheS

    un,

    g(n) =

    d|nS(d). (4-28)

    d, l(4-19)(4-28)n

    g(n) = n + 1 + S(n). (4-29)

    qd(n)n.l(4-27)(4-29)

    d(n)S(pr) > n. (4-30)

    dul(4-20)(4-24)gcd(pr, n/pr) = 1,

    n = prm,m N, gcd(pr, m) = 1. (4-31)

    qln4.9,d(n)5, l(4-31)

    d(n) = d(pr)d(m) = (r + 1)d(m). (4-32)

    (4-31)(4-32)\(4-30)=

    (r + 1)S(pr)

    pr> 3

    m

    d(m). (4-33)

    f(n) = nd(n) , d(4-33)

    (r + 1)S(pr)

    pr> f(m). (4-34)

    u, n4.8n4.10, l(4-34): =kSmarandache12. n4.8y..

    4.5 Smarandache 3n iS

    ?n, Smarandache 3niSan

    an = 13, 26, 39, 412, 515, 618, 721, 824, ....

    Tz, 12113. ~X, a12 =

    1236, a20 = 2060, a41 = 41123, a333 = 333999, ....;[Smarandache

    3z[7]z[46]J,

  • Smarandache9'K

    (b)n, anU;

    (c)XJan,@okn = 22a1 32a2 52a3 112a4 n1,(n1, 330) = 1.

    ((5J, TKg{,

    l,wSmarandache 3niSS35. 'ucn

    Kk, `3a1 + a2 + ... + aN (

    C? L{O, E,O, (JN(/

    k', /n, lU, =UC. u,

    !

    ln a1 + ln a2 + ... ln aN

    C5K, |^{9?5ye(.

    nnn 4.9 ?N , kC

    n6N

    ln an = 2N ln N + O(N).

    eyTn. kan(, nk, =n = bkbk1...b2b1,1 6

    bk 6 9, 0 6 bi 6 9(i = 1, 2, ..., k 1). ud{?{K,

    333...34

    k16 n 6 333...3

    k

    , 3nk;

    333...34

    k

    6 n 6 333...33

    k+1

    , 3nk + 1. dan

    an = n (10k + 3),

    an = n (10k+1 + 3).

    ?N , w,3M , :

    333...33

    M

    < n 6 333...33

    M+1

    . (4-35)

    udc, k

    16n6N

    an =3

    n=1

    an 33

    n=4

    an 13(10M1)

    n= 13(10M11)+1

    an N

    n= 13(10M1)+1

    an =

    N !(10 + 3)3 (100 + 3)30 ... (10M + 3)310M1 (10M+1 + 3)N 13 (10M1). (4-36)

    72

  • 1o SmarandacheS

    5x 0, kOln(1 + x) = x + O(x2),M

    k=1

    ln(10k + 3)310k1

    =M

    k=1

    3 10k1 (

    k ln 10 + 310k

    + O

    (1

    102k

    ))

    =M

    k=1

    k 10k1 3 ln 10 + 910

    M + O(1)

    =1

    3M 10M ln 10 1

    27(10M 1) ln 10 + 9

    10M + O(1)

    =1

    3M 10M ln 10 + O(N). (4-37)

    ln(10M+1 + 3)N13(10

    M1) =

    (

    N 13

    (10M 1

    ))

    ln(10M+1 + 3)

    =

    (

    N 13

    (10M 1

    ))

    (M + 1) ln 10 + O(1)

    =N M ln 10 13 M 10M ln 10 + O(N). (4-38)

    A^Euler5, N

    ln(N !) =

    16n6N

    ln n = N ln N N + O(1). (4-39)

    5(4-35), JO

    10M < N 6 10M+1,

    ln N = M ln 10 + O(1). (4-40)

    ((4-36)9?(4-37)-(4-40), C

    n6N

    ln an

    =

    16n6N

    ln n +M

    k=1

    ln(10k + 3)310k1

    + ln(10M+1 + 3)N13(10M1)

    =2N ln N + O(N).

    un4.9y. w,, C'o, 3(C, k

    u?.

    73

  • Smarandache9'K

    4.6 Smarandache kn iS

    uk N+, Smarandache kn iS{a (k, n)}8, T8z, 11k. ~X!

    Smarandache 3niS

    {a (3, n)} = {13, 26, 39, 412, 515, 618, 721, 824, ...} ,

    =Tz, 113.

    !'u

    ln a (3, n)

    5, yC

    n6N

    ln a (3, n) = 2N ln N + O (N) .

    'u5, 8qvk

  • 1o SmarandacheS

    w,AC(, 3(CE,m

    K, UY8I.

    eyn. yn4.10 k = 293 , aq/

    n4.10 k = 4, 59n4.11. kyn4.10k = 2. a (2, n)(, n

    ?Lk , =

    n = bkbk1 b2b1,

    1 6 bk 6 9, 0 6 bi 6 9, i = 1, 2, , k 1.

    ud{?{K, 10k1 6 n 6 5 10k1 1 , 2n k ; 5 10k1 6n 6 10k 1, 2n k + 1. da (2, n)

    a (2, n) = n (10k + 2

    ),

    a (2, n) = n (10k+1 + 2

    ).

    ?x, w,M N+

    5 10M 6 x < 5 10M+1, (4-41)

    uk

    16n6x

    n

    a (2, n)

    =4

    n=1

    n

    a (2, n)+

    49

    n=5

    n

    a (2, n)+

    499

    n=50

    n

    a (2, n)+

    4999

    n=500

    n

    a (2, n)+

    +510M1

    n=510M1

    n

    a (2, n)+

    510M6n6x

    n

    a (2, n)

    =4

    n=1

    1

    10 + 2+

    49

    n=5

    1

    102 + 2+

    499

    n=50

    1

    103 + 2+

    4999

    n=500

    1

    104 + 2

    +510M1

    n=510M1

    1

    10M+1 + 2+

    510M6n6x

    1

    10M+2 + 2

    =5 110 + 2

    +50 5102 + 2

    +500 50103 + 2

    +5000 500

    104 + 2+

    + 5 10M 5 10M110M+1 + 2

    + O

    (x 5 10M10M+2 + 2

    )

    =9 10

    2 (102+2

    ) +9 102

    2 (103+2

    ) +9 103

    2 (104+2

    ) + + 9 10M

    2 (10M+1+2

    ) + O (1)

    75

  • Smarandache9'K

    =9 (102 + 2 2

    )

    20 (102 + 2

    ) +9 (103 + 2 2

    )

    20 (103 + 2

    ) +9(104 + 2 2

    )

    20(104 + 2

    ) +

    + 9(10M+1 + 2 2

    )

    20(10M+1 + 2

    ) + O (1)

    =9

    20M + O

    (M

    m=1

    1

    10m

    )

    + O (1)

    =9

    20M + O (1) . (4-42)

    5(4-41) , kO

    M ln 10 + ln 5 6 x < ln 5 + (M + 1) ln 10

    M =1

    ln 10ln x + O (1) .

    d( 4-42) C

    16n6x

    n

    a (k, n)=

    9

    20 ln 10 ln x + O (x) .

    uyn4.10k = 2.

    y3yn4.10 k = 3. a (3, n)(, n?L

    k, =

    n = bkbk1 b2b1,

    1 6 bk 6 9, 0 6 bi 6 9, i = 1, 2, k 1.

    ud{?{K,

    333 34

    k16 n 6 333 33

    k

    , 3nk;

    333 34

    k

    6 n 6 333 33

    k+1

    , 3nk + 1. unk, da (3, n)

    a (3, n) = n (10k + 3

    ),

    a (3, n) = n (10k+1 + 3

    ).

    76

  • 1o SmarandacheS

    ?x, w,M N+,

    333 33

    M

    6 x < 333 33

    M+1

    , (4-43)

    uk

    16n6N

    n

    a(3, n)

    =3

    n=1

    n

    a(3, n)+

    33

    n=4

    n

    a(3, n)+

    333

    n=34)

    n

    a(3, n)+

    3333

    n=334

    n

    a(3, n)+

    13(10M1)

    n= 13(10M11)+1

    n

    a(3, n)+

    13(10M1)+16N6x

    n

    a(3, n)

    =3

    n=1

    1

    10 + 3+

    33

    n=4

    1

    102 + 3+

    333

    n=34

    1

    103 + 3+

    3333

    n=334

    1

    104 + 3+

    +13(10M1)

    n= 13(10M11)+1

    1

    10M + 3+

    13(10M1)+16n6x

    1

    10M+1 + 3

    =3

    10 + 3+

    33 3102 + 3

    +333 33103 + 3

    +3333 333

    104 + 3+

    +13 (10M 1) 1

    3(10M1 1)

    10M + 3+ O

    (

    x 13 (10M 1)

    10M+1 + 3

    )

    =3 1

    10 + 3+

    3 10102 + 3

    +3 102103 + 3

    +3 103104 + 3

    +

    + 3 10M1

    10M + 3+ O(1)

    =3 (10 + 3 3)10 (10 + 3) +

    3 (102 + 3 3)10 (102 + 3) +

    3 (103 + 3 3)10 (103 + 3) +

    3 (104 + 3 3)10 (104 + 3) +

    + 3 (10M+1 + 3 3)

    10 (10M + 3) + O(1)

    =3

    10M + O

    (M

    m=1

    1

    10m

    )

    + O(1)

    =3

    10M + O(1). (4-44)

    5(4-43) =

    1

    3(10M 1

    )6 x 0, F0 = 0, F1 = 1, L0 = 2 L1 = 1. S3!

    !OD)+uX4^. d'uFn Ln

    5IS81. R.L.Duncan[76] L.Kuipers[78] O

    31967c1969cylog Fn 1 . Neville Robbins[81] 31988c

    /Xpx2 1, px3 1 (p )Fibonacci. 'uFibonacciSN, k(J. ~X,

    m

    n=0

    Fn = Fm+2 1,

    m1

    n=0

    F2n+1 = F2m,

    m

    n=0

    nFn = mFm+2 Fm+3 + 2,

    m

    n=0

    CnmFcnFnk F

    mnk+1 = Fmk+c,

    Cnm =m!

    n!(mn)! .

    2004c, +[84]Fn Ln A2

    a1+a2++ak+1=nFm(a1+1)Fm(a2+1) . . . Fm(ak+1+1) = (1)mn

    F k+1m2kk!

    U(k)n+k

    (im

    2Lm

    )

    ,

    a1+a2++ak+1=n+k+1Lma1Lma2 . . . Lmak+1

    82

  • 1 K

    = (1)m(n+k+1) 2k!

    k+1

    h=0

    (im+2

    2Lm

    )h(k + 1)!

    h!(k + 1 h)!U(k)n+2k+1h

    (im

    2Lm

    )

    ,

    k, m ?, n, a1, a2, . . . , ak+1 Ki 1 , Uk(x) 1aChebyshev.

    w[90]3d:q'uFibonacciA

    a1+a2++ak=nFa1+1(x) Fa2+1(x) Fak+1(x) =

    [n2]

    m=0

    Cmn+k1m Ck1n+k12m xn2m,

    FibonacciFn(x)d548Fn+2(x) = xFn+1(x) + Fn(x),

    F0(x) = 0,F1(x) = 1; Cnm =

    m!n!(mn)! ,[z]LLz; x = 1,

    Fn(x) = Fn, ddA'uFibonacci,eA?k

    n

    a1+a2++ak=n+kFa1 Fa2 Fak =

    [n2]

    m=0

    Cmn+k1m Ck1n+k12m,

    a1+a2++ak=n+kF2a1 F2a2 F2ak = 3k 5

    nk2

    [n2]

    m=0

    Cmn+k1m Ck1n+k12m 5m,

    a1+a2++ak=n+kF3a1 F3a2 F3ak = 22n+k

    [n2]

    m=0

    Cmn+k1m Ck1n+k12m 16m,

    a1+a2++ak=n+kF4a1 F4a2 F4ak = 3n 7k 5

    nk2

    [n2]

    m=0

    Cmn+k1m Ck1n+k12m 45m,

    a1+a2++ak=n+kF5a1 F5a2 F5ak = 5k 11n

    [n2]

    m=0

    Cmn+k1m Ck1n+k12m 121m.

    !LrxnLChebyshev5FibonacciLucaso

    . , yen.

    nnn 5.1 ?Kn m, k

    L2nm = (1)mn(2n)!

    (n!)2+ (2n)!

    n

    k=1

    (1)m(nk)(n k)!(n + k)!L2km;

    L2n+1m = (2n + 1)!n

    k=0

    (1)m(nk)(n k)!(n + k + 1)!L(2k+1)m.

    83

  • Smarandache9'K

    nnn 5.2 ?Kn m, k

    L2nm =(2n)!

    Fm

    n

    k=0

    (1)m(nk)(2k + 1)(n k)!(n + k + 1)!F(2k+1)m;

    L2n+1m =2(2n + 1)!

    Fm

    n

    k=0

    (1)m(nk)(k + 1)(n k)!(n + k + 2)!F2(k+1)m.

    !3nyI^An. 3nckI1

    aChebyshevTn(x) 1aChebyshevUn(x) (n = 0, 1, ) L

    Tn(x) =1

    2

    [(

    x +

    x2 1)n

    +(

    x

    x2 1)n]

    ,

    Un(x) =1

    2

    x2 1

    [(

    x +

    x2 1)n+1

    (

    x

    x2 1)n+1

    ]

    .

    ,^Xe485:

    Tn+2(x) = 2xTn+1(x) Tn(x),

    Un+2(x) = 2xUn+1(x) Un(x),

    n > 0, T0(x) = 1, T1(x) = x, U0(x) = 1 U1(x) = 2x.

    eXeAn.

    nnn 5.1 ?m n, k

    Tn(Tm(x)) = Tmn(x),

    Un(Tm(x)) =Um(n+1)1(x)

    Um1(x).

    y: z[84].

    nnn 5.2 i 1 , m n ?, Kk

    Un

    (i

    2

    )

    = inFn+1,

    Tn

    (i

    2

    )

    =in

    2Ln,

    Tn

    (

    Tm

    (i

    2

    ))

    =imn

    2Lmn,

    Un

    (

    Tm

    (i

    2

    ))

    = imnFm(n+1)

    Fm.

    y: w,kUn(

    i2

    )= inFn+1, Tn

    (i2

    )= i

    n

    2 Ln, Kn5.1, qN/{e

    . yn5.2.

    84

  • 1 K

    nnn 5.3 ?Kn,

    xn 12an0T0(x) +

    k=1

    ankTk(x) (5-1)

    xn

    k=0

    bnkUk(x), (5-2)

    Kk

    ank =

    2n!(nk)!!(n+k)!! , n > k,n + k;

    0, .(5-3)

    bnk =

    2(k+1)n!(nk)!!(n+k+2)!! , n > k,n + k;

    0, .(5-4)

    y: , Chebyshevk5(z[92]). ~X

    1

    1

    Tm(x)Tn(x)1 x2

    dx =

    0, m 6= n,2 , m = n > 0,

    , m = n = 0;

    (5-5)

    Tn(cos ) = cosn; (5-6)

    1

    1

    1 x2Um(x)Un(x) dx =

    0, m 6= n,2 , m = n > 0,

    , m = n = 0;

    (5-7)

    Un(cos ) =sin(n + 1)

    sin . (5-8)

    ky(5-3). ?Km, k(5-1)> Tm(x)1x2 , 2>

    l1 1 , A^(5-5) 1

    1

    xnTm(x)1 x2

    dx=1

    2an0

    1

    1

    Tm(x)T0(x)1 x2

    dx +

    k=1

    ank

    1

    1

    Tm(x)Tk(x)1 x2

    dx

    =

    2anm, (m = 0, 1, 2, )

    d,

    anm =2

    1

    1

    xnTm(x)1 x2

    dx.

    85

  • Smarandache9'K

    x = cos t, (5-6)k

    anm =2

    0

    cosnt cosmtdt

    =2

    0

    cosnt (cos(m 1)t cos t sin(m 1)t sin t) dt

    =2

    0

    cosn+1t cos(m 1)t dt 2

    0

    cosnt sin(m 1)t sin t dt

    =an+1m1 +2

    1n + 1

    0

    sin(m 1)t d(cosn+1t)

    =an+1m1 +2

    1n + 1

    cosn+1t sin(m 1)t

    0

    2 m 1

    n + 1

    0

    cosn+1t cos(m 1)t dt

    =an+1m1 m 1n + 1

    an+1m1

    =n m + 2

    n + 1 an+1m1

    =n m + 2

    n + 1 n m + 4

    n + 2 an+2m2

    =

    =n m + 2

    n + 1 n m + 4

    n + 2 n m + 2m

    n + m an+m0

    =

    (n+m)!!(nm)!!(n+m)!

    n!

    an+m0.

    eOan+m0, w,

    an+m0 =2

    0

    cosn+m t dt.

    {z, In = 0

    cosn t dt. n , f(x) = cosx 3m[0, ]

    , K

    In =

    0

    cosn t dt = 0; (5-9)

    n , k

    In =

    0

    cosn t dt =

    0

    cosn1 t d sin t

    =sin t cosn1 t

    0 + (n 1)

    0

    sin2 t cosn2 t dt

    =(n 1)

    0

    (1 cos2 t

    )cosn2 t dt

    =(n 1)

    0

    cosn2 t dt (n 1)

    0

    cosn t dt

    86

  • 1 K

    =(n 1)In2 + (n 1)In. (5-10)

    d'uIn4

    In =n 1

    n In2. (5-11)

    Kd(5-11)

    In =n 1

    n In2 =

    n 1n

    n 3n 2 In4

    =

    =n 1

    n n 3n 2

    1

    2 I0, (5-12)

    dIn

    I0 =

    0

    cos0 t dt =

    0

    1 dt = . (5-13)

    d((5-9), (5-12)(5-13),

    In =

    0

    cosn t dt

    =

    (n1)!!n!!

    , n ,

    0, n .

    dd

    an+m0 =2

    0

    cosn+m t dt

    =

    2(n+m1)!!(n+m)!! , n + m ,

    0, n + m .

    d