this presentation contains preliminary results from an ...roadmap... · benzene from coke oven...

29
ICCA/IEA/DECHEMA Roadmap Catalysis ICCA/IEA/DECHEMA Roadmap Catalysis ICCA/IEA/DECHEMA Roadmap Catalysis ICCA/IEA/DECHEMA Roadmap Catalysis Disclaimer Disclaimer This presentation contains preliminary results from an ongoing project. This data is still subject to revision and correction. The final results will be published in a joint roadmap.

Upload: others

Post on 06-Sep-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ICCA/IEA/DECHEMA Roadmap CatalysisICCA/IEA/DECHEMA Roadmap CatalysisICCA/IEA/DECHEMA Roadmap CatalysisICCA/IEA/DECHEMA Roadmap Catalysis

DisclaimerDisclaimerThis presentation contains preliminary results from an ongoing project. g g p jThis data is still subject to revision and correction. The final results will be published in a joint roadmap.p j p

Page 2: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Petrochemical Industry Energy & GHG Savings via Catalysis –Still a Large OpportunityOpportunityRussel Mills, Dow Chemicals

Catalysis Roadmap Partners:INTERNATIONAL

Catalysis Roadmap Partners:INTERNATIONAL

COUNCIL OF

CHEMICAL

ASSOCIATIONS

COUNCIL OF

CHEMICAL

ASSOCIATIONS

Page 3: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ICCA/IEA/DECHEMA Roadmap CatalysisICCA/IEA/DECHEMA Roadmap CatalysisICCA/IEA/DECHEMA Roadmap CatalysisICCA/IEA/DECHEMA Roadmap Catalysis

High Level ObjectivesHigh Level ObjectivesProvide credible information on the potential of reducing energy & GHG emissions by applying g gy y pp y gcatalysisIdentify key technology breakthroughs, paths to achieve themGive responsible advice for policy makers on how

bl hi ienable this impact

Page 4: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ApproachApproachApproachApproachAssumptions:p

Large processes also have the largest saving potential (even if relative improvement potential seems low)The large number of small/medium-sized processes can be disregarded (even if relative improvement potential seems high)

Page 5: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ApproachApproachApproachApproachIdentify ~40 top energy consuming processesy p gy g pCut-off at top 10-20 for detailed analysis

9 108m

ptio

n

987

65

4

3

yco

nsum

2

1

‐ Total  final  BPT energy use (excl. electricity)(of  56 processes): 26.0 EJ/yr‐ Total  final  BPT energy use (excl. electricity)(corrected by 95% coverage): 27.4 EJ/yr‐ Total final reported energy use

Top 10 Chemicals(1) Steam cracking             (6) Propylene FCC(2) Ammonia                       (7) Ethanol(3) Aromatics  extraction   (8) Butadiene (C4 sep.)(4) Methanol (9) Soda ash

Ene

rgy

Top processes accounting for the majorshare of energy consumption

 Total  final  reported energy use (excl. electricity): 31.5 EJ/yr‐ World‐wide improvement potentials: 13.0%

(4) Methanol                        (9) Soda ash(5) Butylene                         (10) Carbon black

Page 6: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

MethodologyMethodology IIMethodologyMethodology IIBottom up data compilation by surveyIndustrial manufacturers survey

Top energy consuming chemical processesSpecific energy consumption and direct GHG emissionsSpecific energy consumption and direct GHG emissions (1990 – 2020)Catalysis impact, future potential, hurdles

Catalyst manufacturers surveyChemical processes, refinery processes, other catalysis areasareasCatalysis impact, future potential, hurdles

Catalyst expertsy pNew catalytic processesExpected breakthroughs, feedstock change

Catalysis Roadmap Project l 6

Historical examples

Page 7: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

MethodologyMethodology IIIIMethodologyMethodology IIIITop down data compilation p pSRI Consulting and Chemical Manufacturing Associates Inc. (CMAI)

P d ti l ith i l d t di t ib tiProduction volumes with regional and country distributionEnergy Consumptions and allocation to fuels, steam, electricity etc.yGHG estimates

Other sourcesAvailable benchmark studies and technical reportsGHG inventory reportsSpecial literatureSpecial literature

⇒ Synthesis of top down with bottom up data

Catalysis Roadmap Project l 7

Page 8: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Selection of Subset: Top Energy Selection of Subset: Top Energy Consuming ProcessesConsuming ProcessesConsuming ProcessesConsuming Processes

World Total Energy Consumption Chemical & Petrochemical Sector (IEA 2009): 14,9 EJ excl. feedstock (36,2 EJ incl. feedstock) ( )

Preselection: 40 major products manufactured by energy intensive processes (catalytic or with potential to run catalytically)

Selection of 18 top products, p p ,representing:

9 5 EJ (64% of energy consumption9,5 EJ (64% of energy consumption of world total chemical production)

Page 9: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

TopTop energyenergy consumingconsuming processesprocessesTop Top energyenergy consumingconsuming processesprocessesAmmonia AcrylonitrileEthylenePropyleneMethanol

CaprolactamCumeneEthylene Dichloride (EDC)Methanol

BTXTerephthalic Acid (TPA)

Ethylene Dichloride (EDC)EthylbenzenePolyvinyl Chloride (PVC)p ( )

PolyethyleneStyrene

y y ( )Phthalic AnhydrideAcetone

Ethylene OxideVinyl Chloride Monomer (VCM)Polypropylene

ButadieneAcetic AcidVinyl Acetate (VAM)Polypropylene

Propylene OxideEthylene Glycol

Vinyl Acetate (VAM)Methyl tert-Butyl Ether (MTBE)Nitric Acidy y

Phenol Formaldehyde

Page 10: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Top 18Top 18 chemicalschemicals: ~130: ~130 processesprocessesTop 18 Top 18 chemicalschemicals: 130 : 130 processesprocessesEthylene from ethyl alcoholEthylene from gas oilh l f ( /b )

Acrylonitrile from acetyleneAcrylonitrile from propaneA l i il f l

Ethylene from ethyl alcoholEthylene from gas oil

/Ethylene from LPG (propane/butane)Ethylene from mixed feedstocksEthylene from naphthaEthylene from naphtha with BZEthylene from propane

Acrylonitrile from propyleneAmmonia from coal (partial oxidation)Ammonia from heavy fuel oil (partial oxidation)Ammonia from naphtha (steam reforming)Ammonia from natural gas (steam reforming)

y p pyAmmonia from coal (partial oxidation)Ammonia from heavy fuel oil (partial oxidation)Ammonia from naphtha (steam reforming)Ammonia from natural gas (steam reforming)

Ethylene from LPG (propane/butane)Ethylene from mixed feedstocksEthylene from naphthaEthylene from naphtha with BZEthylene from propaneEthylene from refinery off‐gasesEthylene from selected gas streams from coal‐to‐oilEthylene from Superflex technologyEthylene Glycol from ethylene (ethylene glycol)Ethylene Glycol from ethylene oxide (hydration)

Benzene from catalytic reformateBenzene from coal tarBenzene from coke oven light oilBenzene from mixed xylenes via toluene disproportionation (MSTDP)Benzene frommixed xylenes via toluene disproportionation (MTPX)

Ethylene from refinery off‐gases

Ethylene Glycol from ethylene oxide (hydration)Ethylene Glycol from unspecified raw materialsEthylene Oxide from ethylene (chlorohydrin process)Ethylene Oxide from ethylene (direct oxidation)Ethylene Oxide from unspecified raw materialsHDPE G Ph

Benzene from mixed xylenes via toluene disproportionation (MTPX)Benzene from propane/butanes (Cyclar)Benzene from pyrolysis gasolineBenzene from toluene dealkylationBenzene from toluene disproportionationB f t l / l HDPE Gas Phase

HDPE SlurryHDPE SolutionHDPE UnidentifiedLDPE Autoclave

Benzene from toluene/xylenesBenzene from unspecified raw materialsCaprolactam from cyclohexane (via cyclohexanone)Caprolactam from cyclohexanone (phenol or cyclohexane‐based)Caprolactam from phenol (via cyclohexanone)

LDPE TubularLLDPE AutoclaveLLDPE Gas PhaseLLDPE SlurryLLDPE Solution

Caprolactam from tolueneCumene from propylene and benzeneCumene from recoveredEthylene from butaneEthylene from condensateEthylene from butaneEthylene from condensate LLDPE Solution

LLDPE TubularLLDPE UnidentifiedLLDPE/HDPE Gas Phase

Ethylene from condensateEthylene from deep catalytic cracking of VGOEthylene from ethaneEthylene from ethane/propane

Ethylene from condensateEthylene from deep catalytic cracking of VGOEthylene from ethaneEthylene from ethane/propane

Page 11: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

BoundaryBoundary conditionsconditionsBoundaryBoundary conditionsconditionsProcess system boundaries:

fence to fence (e.g. for EO: ethylene as feedstock, ethylene production not included)

Specific Energy Consumption (SEC) includes:Specific Energy Consumption (SEC) includes: direct energy (fuel, steam)Indirect energy (electricity)gy ( y)Energy equivalent of feedstock is not included

GHG emissionsDirect process emissions as CO2 equivalentsDirect utilities emissions (fuel) Indirect emissions (electricity) MWh/t > tCO /t*Indirect emissions (electricity) MWh/t -> tCO2/t

* based on an average energy mix in the U.S (0,584 MT/MWh (electricity) and 0,05598 MT/GJ (heat + fuel))

Page 12: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

EnergyEnergy consumptionconsumption top 18top 18 chemicalchemical productsproducts

Ammonia2,75

EnergyEnergy consumptionconsumption top 18 top 18 chemicalchemical productsproducts

2,25

2,50

Ethylene1,75

2,00

ption  [E

J]

1,25

1,50

y Co

nsum

p

ACN

MeOH

Propylene

0,75

1,00

Energy ACN

CaprolactamEGh l

5,9 EJ = 62%

Total: 9,5 EJ

BTX

C

EO PEPO PPTPAVCM0,25

0,50 PhenolPXStyrene

1,3 EJ = 14%

2,3 EJ = 24%Cumene0,00

‐ 50.000  100.000  150.000  200.000 

Production volume [kt]

Page 13: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Process related GHG emissions Process related GHG emissions top 18 chemical productstop 18 chemical products

Ethylene600 100

top 18 chemical productstop 18 chemical products

ill. t

]

Ethylene

Ammonia500 

80

90

CO

2eq

[M

400 

60

70

[Mill. t]

iaG

HG

as

MeOHPropylene

TPA

300 

40

50

as CO2e

q  

Total 960 Mill t

Am

mon

i

BTX

Capro‐lactam

EO PE

PPPX

TPA200 

20

30GHG a

600 Mill. t = 62%

103 Mill 11%

Total: 960 Mill. t

ACN

Cumene

EG

Phenol

POPPStyrene

VCM100 

10

20 103 Mill. t = 11%

257 Mill. t = 27%Cumene ‐0

‐ 50.000  100.000  150.000 

Production volume[kt]

Page 14: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

PotentialPotential energyenergy reductionreduction optionsoptionsPotential Potential energyenergy reductionreduction optionsoptions

ImpactImpact

Gamechangers

Emerging Technologies

Best Practise Technology Deployment

Emerging Technologies

Incremental improvements

Best Practise Technology Deployment

1-3 4-10 11-15 >15 Time [Years]

Page 15: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ReductionReduction optionsoptionsReductionReduction optionsoptionsIncremental improvements

ll ti t h l i l dsmall, continuous technological advancesretrofits to already existing plants

Best practise technology (BPT) implementationBest practise technology (BPT) implementation Most energy-efficient process configurationsestablished technologies in existing plants or new facilities

Emerging technologiesstep-change advances via application of new technology currently in demonstration or later R&D stagesHere: catalytic olefin technologies, MTO

G hGamechangerssignificant change of process; direct routes, alternative feedstocksfar from commercialization, high economic and technical hurdles, , g ,relatively high riskHere: renewable hydrogen for NH3 and MeOH and biomass

Page 16: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ComparedCompared scenariosscenariosComparedCompared scenariosscenarios

Optimistic scenarioAll new and retrofitted plants with energy efficiency at the new technology levelnew technology level

Conservative scenario50% of new plants at new technology level30% of retrofitted plants at new technology level, 70% at average energy consumptionaverage energy consumption

Page 17: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Potential energyPotential energy reductionreduction optionsoptionsPotential energy Potential energy reductionreduction optionsoptions

25,5Current technology     

level

20 5

23,0

5,5

18,0

20,5

[EJ]

12,2 EJ

13,0

15,5

Total Ene

rgy 

8,0

10,5

T

3,0

5,5

2010 2015 2020 2025 2030 2035 2040 2045 2050

Page 18: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ExpectedExpected productionproduction volumesvolumesExpectedExpected productionproduction volumesvolumes

2.500 CaprolactamPh l

2.000 

2.500  PhenolPOCumeneToluene

1976

2315

1.500 

olum

e [kt] EO

VCMEGStyrene1260

14701637

1.000 

duction  vo Sty e e

BenzenePXMixed XylenesPP

851

60

1048

500 Prod

PPTPAPEMeOHACN

‐2010 2015 2020 2025 2030 2040 2050

ACNPropyleneEthyleneAmmonia

Page 19: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

AvrgAvrg.. EnergyEnergy IntensityIntensityAvrgAvrg. . EnergyEnergy IntensityIntensity

12 00

11,00

12,00uct]

9,00

10,00

[GJ/tprodu

Incremental

8,00

Intensity [

BPT conservative

BPT optimistic

6,00

7,00

Energy 

5,002010 2015 2020 2025 2030

Page 20: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ImpactImpact ofof gamechangersgamechangersImpact Impact ofof gamechangersgamechangers

Discussed optionsDiscussed optionsBiomass as feedstock for olefins (ethylene, propylene)propylene)

Hydrogen as feedstock for chemical processes available from renewable energy sourcesavailable from renewable energy sources

Page 21: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

BiobasedBiobased ethyleneethylene andand propylenepropyleneBiobasedBiobased ethyleneethylene and and propylenepropylene

Biomass and fossil energy use of biomass routes

120

140

]Biomass and fossil energy use of biomass routes

60

80

100

120

137100e 

[GJ/tHVC] bio‐based

fossil

0

20

40

‐6 14 12‐17

16,4

5337

100

Energy use

‐20Lignocell. via FT 

Naphtha

Lignocell. via MeOH

Maize via EtOH

Sugar Cane via EtOH

Napthta cracking

17

Naphtha EtOH

Substantial biomass-derived energy consumptionReduced fossil energy consumptionReduced fossil energy consumption

Page 22: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

BiobasedBiobased ethyleneethylene andand propylenepropyleneBiobasedBiobased ethyleneethylene and and propylenepropyleneGHG emissions of biomass routes

2

0,150,63

0,150,57 0,30,28 0,06 0,7

0

1

2HVC]

CO2 captured in,‐1,6

‐3,5

3

‐2

‐1

G [tCO2eq/tH CO2 captured in 

biomass

HVC production

‐3,5

‐5

‐4

‐3

GHG

2nd feedstock production

Prim. Feedstock production

‐6Lignocell. via 

MeOHSugar Cane via 

EtOHNapthta cracking

production

Reduced GHG emissions due to carbon captured in biomass andReduced GHG emissions due to carbon captured in biomass and sequestered in MeOH/HVCs Process related GHG emissions comparable to fossil routes, in some cases lower*

*depending on process configuration, e.g. co-generation of electricity

cases lower*

Page 23: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

HydrogenHydrogen optionoptionHydrogen Hydrogen optionoption

Syngas/Coal or CO2

MeOH

Electr. watercleavage

H2compression

Syngas/Shift

MeOHsynthesis

cleavage compressionNH3

synthesisN2 from ASU

SEC H2 route [GJ/t] SEC BPT (gas) [GJ/t] GHG reduction

Ammonia 37,3 7,2-9,0 1,2 t/tNH3

MeOH from coal 27,8*9,0-10,0

-0,52 t/tMeOH

M OH f CO 43 7** 1 84 t/tM OHMeOH from CO2 43,7** -1,84 t/tMeOH

Page 24: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

HydrogenHydrogen optionoptionHydrogen Hydrogen optionoptionEnergy impact of hydrogen based ammoniagy p y g

and methanol production2,50

EJ] 

30%Deployment rate Example:

0,46

0,82

1 00

1,50

2,00

sil savings [

Total Energy MeOH

20%

30%Deployment rate Example:

30% deployment in 2050:

0 09 0 190,21 0,46

0,981,57

0,070,18

0 00

0,50

1,00

ons. vs. foss Total Energy 

NH3

Fossil energy M OH

10%5% 1,4 EJ more energy

1,15 EJ less fossil ‐0,09 ‐0,19 ‐0,41 ‐0,66‐0,04 ‐0,11

‐0,28

‐0,50‐1,00

‐0,50

0,00

t. energy

 co MeOH

Fossil energy NH3

energy

‐1,50

2020 2030 2040 2050

Tot

Page 25: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

HydrogenHydrogen optionoptionHydrogen Hydrogen optionoption

GHG impact of hydrogen based ammonia p y gand methanol production

2015 2020 2030 2040 2050

‐40

‐20

0

CO2e

q]

5%10%

2,5% Example:

30% deployment in

‐100

‐80

‐60

gs  [Mill. t C

Methanol

Ammonia

10%

20%

30% deployment in 2050:

GHG reductions of 170 Mill t CO2

‐160

‐140

‐120

GHG saving 20%

30%

170 Mill t CO2eq.

‐180 30%

Page 26: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Potential GHGPotential GHG reductionreduction optionsoptions

2 4

Potential GHG Potential GHG reductionreduction optionsoptions

Incr. improvementCurrent techn. level

BPT conservative2,0

2,4

BPT optimisticHydrogen 

1,6

Gt]

1,2 Gt

optimisticBio optimistic 1,2

otal G

HG [G

0,8

To

0,0

0,4

,2010 2015 2020 2025 2030 2035 2040 2045 2050

Page 27: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Regional Regional impactimpact: : exampleexample ammoniaammoniaEnergy consumption

Other Asia5%

Africa2%

Economies in Transition

12%

Energy consumption

250

Ammonia ProductionEconomies in Transition

China (Coal)40%OECD North 

America7%

OECD Pacific2%

5%

200 

250 

128 

28 29 

e [M

ill. t]

Africa

Other Asia

OECD Pacific

China6%

India7%Latin America

5%

Middle East6%

OECD Europe8%

100 

150 

16 17 18  21 

11 

19 21 

16 

12 12 

14 

9 24 

ction volume

OECD North America

OECD Europe

Middle East6%5%

50 42 

63  69 11 

16 14 

Prod

uc Latin America

India

China

China (Coal)

Africa2%

Economies in Transition

GHG emissions

Primary feedstock for ammonia and methanol in Chi C l

2010 2020 2030 China (Coal)

China (Coal)41%

OECD North America

OECD Pacific2%

Other Asia5%

12%

China: Coal• 1.7 x higher energy consumption compared to gas • 2.3 x higher CO2 emissions compared to gas

IndiaMiddle East

5%

OECD Europe8%

7%

China6%

7%Latin America5%

5%

Page 28: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

Regional Regional impactimpact: : exampleexample methanolmethanol

160

Methanol ProductionEconomies in Transition

Energy consumption

120 

140 

160 

23 10 

14 

[Mill. t] Economies in Transition

OECD Pacific

OECDN h A i

China (Coal)32%

6%

60 

80 

100 

14

22 13 

16 19 

3ction volume  OECD North America

Middle East

Latin America China10%

Middle East25%

20 

40 

10 

41 56 

14 

8 14 3 

Prod

uc China

China (Coal)

Latin America14%

Economies in

GHG emissions

Primary feedstock for ammonia and methanol in

2010 2020 2030

Middl E t

Economies in Transition

3%

China: Coal• 1.7 x higher energy consumption compared to gas • 2.3 x higher CO2 emissions compared to gas China (Coal)

56%Latin America

8%

Middle East14%

China11%

Page 29: This presentation contains preliminary results from an ...Roadmap... · Benzene from coke oven light oil Benzene from mixed xylenes via toluene disproportionation (MSTDP) Benzenefrommixed

ConclusionsConclusionsConclusionsConclusionsPotential energy & emissions savings via catalysis in the gy g ychemical segment vs. a “do nothing” case of 12 EJ/yr and 0.86 Gt CO2/yr by 2050 (incremental + BPT scenarios)Full implementation of Best Practice Technology could improveFull implementation of Best Practice Technology could improve energy intensity per ton of product by as much as 40% by 2050. While these energy savings are sizeable on an absolute scale, expected production increases globally will likely outpace these savings and overall energy and GHGs will likely increase Reducing energy use or GHG emissions by half or more by 2030 or 2050 does not seem realistic even in developed regions with lower growth such as Europeregions with lower growth such as Europe . Gamechangers could yield additional reductions in GHGs, but would increase energy use and require huge investments to

/develop / lower operational costs