three essays on multivarite volatility modelling and...

154
Three Essays on Multivariate Volatility Modelling and Estimation Mustafa Hakan Eratalay

Upload: others

Post on 02-Nov-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Three Essays on Multivariate Volatility Modelling and Estimation

Mustafa Hakan Eratalay

Page 2: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Three Essays on Multivariate VolatilityModelling and Estimation

by MUSTAFA HAKAN ERATALAY

Doctoral Dissertation

Supervisor: Prof. M. ANGELES CARNERO FERNANDEZ

Quantitative Economics DoctorateDepartamento de Fundamentos del Análisis Económico

Universidad de Alicante

June 2012

Page 3: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica
Page 4: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Three Essays on Multivariate VolatilityModelling and Estimation

by MUSTAFA HAKAN ERATALAY

Doctoral Dissertation

Supervisor: Prof. M. ANGELES CARNERO FERNANDEZ

Quantitative Economics DoctorateDepartamento de Fundamentos del Análisis Económico

Universidad de Alicante

June 2012

Page 5: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica
Page 6: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

To my family...

Page 7: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica
Page 8: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Estimating VAR-MGARCH Models in Multiple Steps 311.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Econometric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Estimation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3.1 Vector Autoregressive CCC, ECCC, DCC and cDCC GARCH

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.3.2 Vector Autoregressive RSDC-GARCH model . . . . . . . . . . . . 42

1.4 Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.4.1 Innovations Distributed as a Gaussian or Student-t . . . . . . . . 45

1.4.2 Robustness to Error Distribution . . . . . . . . . . . . . . . . . . 48

1.4.3 Robustness to Model . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.4.4 Innovations Distributed as a Skewed Student-t . . . . . . . . . . . 51

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2 Estimation of Multivariate Stochastic Volatility Models: A Compara-tive Monte Carlo Study 772.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.2 Multivariate Stochastic Volatility (MSV) Models . . . . . . . . . . . . . . 81

2.2.1 The Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.2.2 Time Varying Correlation MSV . . . . . . . . . . . . . . . . . . . 82

2.2.3 MSV with Leverage E¤ect . . . . . . . . . . . . . . . . . . . . . . 84

2.2.4 Estimating the MSV Models . . . . . . . . . . . . . . . . . . . . . 86

2.3 Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.4 An Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

1

Page 9: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Do Correlated Markets Have More Volatility Spillovers? 1213.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.2 Econometric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.4 Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.4.1 Performance of the ML Estimator . . . . . . . . . . . . . . . . . . 127

3.4.2 VaR Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.4.3 Robustness to Model . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

2

Page 10: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Acknowledgements

First and foremost, I would like to thank Prof. Angeles Carnero who shared with me her

great knowledge and expertise. It is di¢ cult to overstate my appreciation of her helpful

suggestions and comments, constructive critics, and her support and motivation when

writing my thesis.

I would like to thank also Prof. Esther Ruiz (from Universidad Carlos III de Madrid),

and Prof. Siem Jan Koopman (from V.U. University Amsterdam) for introducing me

to the misterious world of stochastic volatility and for their directive suggestions in

developing the second chapter of my thesis, Prof. Marco van der Leij (from University of

Amsterdam) for his comments and critics on the third chapter of my thesis, Prof. Angel

León for his suggestions which helped me to improve the quality of the �rst chapter

of my thesis, and Prof. Juan Mora for being always available whenever I needed some

advice.

I am sincerely thankful to the members of the Deparment of Fundamentos del Análisis

Económico at the Universidad de Alicante, for being such wonderful people that I will

always remember. I also appreciate the help of Marilo Rufete and the secretarial sta¤

of the department about the administrative issues during my graduate studies. I would

like to thank my colleagues Rocio Alvarez, Carlos Aller, Lorenzo Ductor, Álex Perez,

Gergely Horváth, Jonas Hedlund and Gustavo Cabrera for �lling my PhD life with nice

memories.

I am grateful to my uncle Prof. Kenan Eratalay for suggesting me to build an

academic career. And �nally, this thesis would not have been possible without the

unconditional love and support of my parents Nevzat and Aynur Eratalay, my brothers

Süleyman and Selim Eratalay, and my better half Riia Arukaevu.

3

Page 11: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica
Page 12: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Resumen

Muchas series temporales �nancieras, como los retornos de los activos o los tipos de

cambio, muestran regularidades comúnes como la volatilidad que varía con el tiempo o

comovimientos. Estas regularidades se conocen en la literatura como hechos establecidos

(stylized facts). Un modelo deseable de series temporales es el que explica una o más de

estas regularidades. Algunos de estos hechos establecidos son los siguientes:

� La volatilidad agrupada (volatility clustering)

Se observa que períodos de alta (baja) volatilidad son seguidos por períodos de

baja (alta) volatilidad. Este tipo de comportamiento persistente sugiere que podría

haber una estructura autorregresiva que rige la dinámica de las volatilidades. Los

modelos ARCH introducidos por Engle (1982), los modelos SV introducidos por

Taylor (1986) y sus extensiones, a que se re�ere a lo largo de esta tesis, se han

desarrollado para simular esta propiedad de volatilidad agrupada.

� Las colas pesadas (thick tails)

Está documentado en Mandelbrot (1963) y Fama (1963, 1965) entre otros que

los retornos de los activos tienden a presentar una distribución de cola pesada

o leptocúrtica. Para coincidir con este hecho establecido, se utilizan diferentes

distribuciones en la literatura como la distribución de Student-t (véase, por ejemplo

Fiorentini et al. 2003, Sandmann y Koopman (1998)). El primer capítulo de esta

tesis trabajamos también con la distribución Student-t .

� Los efectos apalancamiento (leverage e¤ects)

El efecto palanca se re�ere a la correlación negativa entre los retornos y volatil-

idades: es decir, un retorno negativo se espera que aumente la volatilidad más

que un retorno positivo. La intuición es que una disminución en los precios de las

acciones implica un mayor apalancamiento de las empresas, lo que aumenta los

riesgos e incertidumbres, y por tanto aumenta la volatilidad. Se pueden encontrar

ejemplos en Nelson (1991) o Jungbacker y Koopman (2005). En el segundo capí-

tulo de esta tesis, proponemos dos modelos multivariantes para captar los efectos

de apalancamiento.

� Los comovimientos

Las transmisiones de volatilidad (volatility spillovers) y las correlaciones entre los

retornos han recibido cada vez más interés en la literatura. Entre otros Jeantheau

5

Page 13: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

(1998), Longin y Solnik (1995), Bae y Karolyi (1994) analizan teórica y/o empíri-

camente los efectos de transmisión de volatilidad. Bollerslev (1990), Engle (2002)

de Mao Tse (2000), Pelletier (2006) son algunos de los trabajos que estudian las

correlaciones entre los retornos de los mercados de valores. El primer capítulo de

esta tesis considera el modelo de Jeantheau (1998) y el tercer capítulo propone

un modelo para captar las transmisiones de volatilidad. En todos los capítulos de

esta tesis los modelos de correlación constante y / o variable con el tiempo son

considerados.

Para explicar la volatilidad variable en el tiempo, Engle (1982) y Bollerslev (1996) pro-

pusieron modelos autoregresivos generalizados de heterocedasticidad condicional (GARCH).

En los modelos GARCH, las volatilidades siguen una función deterministica de los re-

tornos del día anterior al cuadrado y volatilidades. Por lo tanto las observaciones rigen

la dinámica de las volatilidades en estos modelos. Despues, los modelos GARCH se

han extendido a los modelos de GARCH multivariantes (MGARCH) para capturar los

efectos de transmisión de volatilidad y las correlación entre las series, véase, por ejem-

plo, Bauwens et al. (2006) y Silvennoinen y Teräsvirta (2009) para una encuesta de

los modelos multivariantes de GARCH. Entre otras, por ejemplo el modelo exponen-

cial GARCH (EGARCH) propuesto por Nelson (1991) se ha desarrollado para explicar

los efectos de apalancamiento, el modelo correlación condicional constante extendido

(ECCC) GARCH de Jeantheau (1998) ha sido desarrollado para capturar las transmi-

siones de volatilidad, Bollerslev (1990) propone el modelo de la correlación condicional

constante (CCC) GARCH para capturar la correlación entre las series y Engle (2002)

propone el modelo correlación condicional dinamico (DCC) GARCH para permitir que

estas correlaciones entre los retornos varíen con el tiempo.

Por otra parte, la literatura de la volatilidad estocástica (SV) iniciada por Taylor

(1986, 1994) y Hull y White (1987) sugiere modelizar la volatilidad variable en el tiempo

como un componente no observado y permite que su logaritmo siga un proceso autor-

regresivo. En este modelo, los parámetros rigen las volatilidades. Los modelos de SV

son atractivos en el sentido de que están más cerca de los modelos utilizados en la teoría

�nanciera para describir el comportamiento de los precios, véase Shephard y Andersen

(2008). Además, se ha demostrado que los modelos SV explican el comportamiento de las

volatilidades con más precisión en comparación con los modelos GARCH; véase Daniels-

son (1994), Kim et al. (1998) y Carnero et al. (2004). Aunque estadísticamente son más

atractivo que los modelos GARCH, los modelos SV tienen una desventaja en términos

de estimación, ya que las funciones de verosimilitud exacta de estos modelos son difíciles

de evaluar. Se han desarrollado varios modelos multivariantes de SV en la literatura.

Entre otros, Asai y McAleer (2006) propone el modelo MSV con apalancamiento para

6

Page 14: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

explicar los efectos apalancamiento en un conjunto de datos de series temporales, Harvey

et al. (1994) propone el modelo CC-MSV para captar la correlación entre los retornos de

un conjunto de datos de series temporales, mientras que Jungbacker y Koopman (2006)

propone el modelo de MSV con correlaciones variables en el tiempo para permitir que

estas correlaciones entre retornos cambien con el tiempo.

El objetivo principal de la tesis es comparar los modelos GARCH y volatilidad es-

tocástica para explicar uno o más de los hechos establecidos en la literatura de series tem-

porales, y analizar el rendimiento de los métodos de estimación estimando los parámetros

de los modelos para las pequeñas muestras. En particular, uno de los objetivos de la

tesis es analizar el comportamiento de los estimadores de los parámetros de los modelos

GARCH multivariantes en múltiples etapas para muestras pequeñas en el caso de er-

rores Gaussianos y Student-t. Cuando estamos tratando de estimar un modelo GARCH

multivariante con muestras de gran tamaño o elevado número de series, la estimación

de los parámetros de la media, la varianza y correlación en diferentes etapas hace que el

proceso de estimación sea mucho más fácil. Por otro lado, perdemos de e�ciencia cuando

se estiman los parámetros en varios pasos. Por lo tanto la pregunta en este capítulo es

¿podríamos estimar los parámetros en varios pasos? ¿O deberíamos preferir estimar los

parámetros en una sola etapa? Otro objetivo de esta tesis es comparar los rendimien-

tos de la cuasi-máxima verosimilitud (QML) y Monte Carlo verosimilitud (MCL) en

la estimación de varios modelos multivariantes de volatilidad estocástica. El método

QML es relativamente fácil de aplicar y es más �exible para muestras grandes o altos

números de series, sin embargo, se basa en aproximaciones y por lo tanto es ine�ciente.

MCL es asintóticamente e�ciente, pero necesita mucho más tiempo para converger. Si

se considera muestras grandes o altos números de series, se enfrenta a di�cultades en la

aplicación de este método. Por lo tanto, tratamos de responder a la pregunta de si hay

algunos modelos o valores de los parámetros para los cuales el método QML se aproxima

al método MCL. Por otro lado, el efecto apalancamiento, como se ha de�nido anteri-

ormente, se re�ere a la correlación entre el retorno y la volatilidad futura de una serie.

En este trabajo tenemos la intención de desarrollar un modelo MSV con apalancamiento

que permite que los retornos de una serie se correlacionen con la volatilidad futura de la

otra serie. El tercer y último objetivo de la tesis es desarrollar un nuevo modelo GARCH

para capturar las transmisiones de volatilidad con menor número de parámetros. En la

literatura los modelos populares, como los modelos BEKK y ECCC-GARCH, requieren

una estimación de un elevado número de parámetros. Por ello, con estos modelos es

difícil estimar las transmisiones de volatilidad cuando se considera un gran número de

series. El modelo que proponemos en este capítulo utiliza las correlaciones variables en el

tiempo para capturar las transmisiones de volatilidad. Usando este modelo, nuestro ob-

7

Page 15: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

jetivo es responder a la pregunta de si se podría usar la dinámica de las correlaciones para

explicar parcialmente las transmisiones de volatilidad, reduciendo entonces el número de

parámetros para estimar.

En todos los capítulos de la tesis, el plan de estudio consiste en explicar los an-

tecedentes teóricos y econométricos de los modelos y métodos de estimación y realizar

experimentos de simulación para analizar las propiedades de los modelos o métodos de

que se trate en pequeñas muestras. Los resultados de los experimentos de simulación

están presentados en forma de tablas que consiste en las medias, errores estándar y raíz

de error cuadrática media. También incluimos las �guras que presentan las estimaciones

de densidades kernel de las diferencias entre las volatilidades y las correlaciones y sus

valores verdaderos. Además, cada capítulo contiene una estimación empírica para ilus-

trar los resultados usando los datos de los mercados de valores. Toda la programación e

implementación de los modelos y métodos de estimación se llevan a cabo en MATLAB.

Para cumplir los objetivos, esta tesis consta de tres capítulos independientes. La

hipótesis del primer capítulo es que cuando los errores son Gaussianos, se puede estimar

los parámetros de media, varianza y correlación de los modelos de correlación condi-

cional en múltiples etapas y no se pierde mucha e�ciencia en las pequeñas muestras en

comparación con la estimación en una etapa. Cuando los errores siguen la distribución

Student-t, se espera que esta hipótesis sea rechazada. La hipótesis del segundo capí-

tulo es que aunque hay modelos y valores de los parámetros para los que la estimación

cuasi-máxima verosimilitud (QML) se aproxima a la estimación Monte Carlo verosimil-

itud (MCL). La otra hipótesis es que el modelo multivariante de volatilidad estocástica

con apalancamiento entre los retornos de una serie y la volatilidad futura de otra serie,

que proponemos en este capítulo, se estima satisfactoriamente por el método MCL. La

hipótesis del tercer capítulo es que el nuevo modelo GARCH que desarrollamos puede

capturar las transmisiones de volatilidad entre las series, con pocos parámetros y por lo

tanto podría ser preferible para cuando se considera un elevado número de series.

A continuación, se presenta un breve resumen de los tres capítulos:

Capítulo I: Estimating VAR-MGARCH Models in MultipleSteps

En este capítulo analizamos el rendimiento de la estimación en múltiples etapas de los

parámetros de modelos vector autorregresivos GARCH multivariantes (VAR-MGARCH)

para muestras pequeñas. Para ello, consideramos cinco modelos de correlación condi-

cional GARCH dadas por diferentes especi�caciones de la dinámica de la correlación:

correlación condicional constante (CCC) GARCH de Bollerslev (1990), correlación condi-

cional dinámica (DCC) GARCH de Engle (2002), DCC-GARCH consistente (cDCC-

8

Page 16: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

GARCH) de Aielli (2008), correlación condicional constante extendida (ECCC) GARCH

de Jeantheau (1998) y correlación dinámica con cambio de regimen (RSDC) GARCH de

Pelletier (2006). Para la estimación de los modelos de DCC y cDCC-GARCH se utiliza

el método de focalización de la correlación (correlation targeting, véase Engle 2009) que

reduce el número de parámetros a estimar mediante la sustitución de la matriz de covar-

ianza de largo plazo por la matriz de covarianza muestral. Aielli (2008) muestra que la

estimación de modelos DCC-GARCH mediante la focalización de la correlación produce

estimadores inconsistentes y sugiere una versión corregida del modelo DCC-GARCH,

al que nos referiremos como el modelo cDCC-GARCH. Por otro lado, es común encon-

trar una estructura dinámica de la media condicional que puede ser modelizada con un

VARMA (véase, por ejemplo Veiga y McAleer 2008a, 2008b). Por simplicidad suponemos

un VAR (1) para la especi�cación de las medias condicionales.

Una forma de estimar los parámetros de todos estos modelos de VAR-MGARCH es

estimarlos en una etapa maximizando el log-verosimilitud completo. Suponiendo que

la distribución de los errores es correctamente especi�cado, los estimadores obtenidos

son de máxima verosimilitud (ML) y son consistentes y asintóticamente normales. Si

la verdadera distribución no es Gaussiana, pero la estimación se basa en errores de

Gauss, entonces los estimadores son de cuasi-máxima verosimilitud (QML) y también

son consistentes y asintóticamente normales. Véase, por ejemplo Bollerslev y Wooldridge

(1992). Si la estimación se basa en errores Student-t y la distribución verdadera es

simétrica, los estimadores QML serán consistentes y asintóticamente normales. Véase

Newey y Steigerwald (1997).

Una alternativa a la maximización completa de la verosimilitud es utilizar estimadores

en múltiples etapas. Bajo el supuesto de Gaussianidad, podemos estimar los parámetros

en dos etapas, véase, por ejemplo, Engle (2002). En la primera etapa se puede estimar los

parámetros de la media y de la varianza a la vez y condicionando en las estimaciones de

estos parámetros, en una segunda etapa se puede estimar los parámetros de correlación.

Como Engle y Sheppard (2001) sugiere para el modelo DCC-GARCH. Los estimadores

de dos etapas serán consistentes y asintóticamente normales, pero ine�cientes.

Por último, se podría estimar los parámetros de estos modelos en tres etapas: en

primer lugar se estiman los parámetros de la media. A continuación, condicionando

en la estimación de los parámetros de la media, podemos estimar los parámetros de la

varianza y luego, condicionando en las estimaciones de los parámetros de la media y de

la varianza, se estima los parámetros de correlación. Este método de estimación en tres

etapas se menciona en Bauwens et al. (2006) y puede ser visto como una estimación de

dos etapas para una serie con media cero. Por lo tanto, estimadores en tres etapas son

también consistentes y asintóticamente normal, pero ine�cientes.

9

Page 17: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Aunque no tiene antecedentes teóricas, también tenemos en cuenta la estimación

en múltiples etapas suponiendo una distribución Student-t, donde en todas las etapas

se basa la estimación en esta distribución. Bauwens y Laurent (2005) y Jondeau y

Rockinger (2005) también analizan los estimadores de múltiples etapas basadas en la

distribución Student-t, sin embargo, en estos articulos se estiman los parámetros de

varianza suponiendo errores normales, mientras que la estimación de los parámetros de

correlación se basa en Student-t.

En este capítulo se realizan varios experimentos de Monte Carlo para analizar y com-

parar los rendimientos de las estimaciones en una, dos y tres etapas de los cinco modelos

de corelacion condicional GARCH mencionados anteriormente suponiendo errores nor-

males o de Student-t.

Obtenemos que cuando la estimación se basa en la distribución normal, los rendimien-

tos de los estimadores de una etapa y de múltiples etapas son muy similares. Sin em-

bargo, cuando la estimación se basa en la distribución Student-t, para algunos modelos

las diferencias entre los estimadores podría ser relevante. Por lo tanto, la estimación en

múltiples etapas basada en la distribución Student-t no es una buena idea.

También veri�camos la robustez de nuestros resultados con respecto a una incorrecta

especi�cación de la distribución del error o el modelo. Nuestros resultados muestran que

si la distribución verdadera de los errores es una Student-t, pero la estimación se basa en

la distribución normal, las estimaciones de densidad de kernel de las diferencias entre las

estimaciones de la volatilidad y de la correlación, obtenidas a partir de estimadores de una

etapa y de múltiples etapas, y sus valores verdaderos son muy similares. Análogamente,

si la distribución verdadera de los errores es Gaussiana pero la estimación se basa en

la distribución Student-t, obtenemos los mismos resultados que cuando la verdadera y

la supuesta distribución son una Student-t. Cuando el modelo está incorrectamente

especi�cado y la estimación se basa en errores normales, obtenemos que, en promedio,

volatilidades y correlaciones están relativamente bien estimadas incluso cuando se utiliza

un modelo mal especi�cado. Las estimaciones en múltiples etapas de las volatilidades

y correlaciones distan de sus valores verdaderos menos de un 2% de lo que lo hace las

estimaciones en una etapa del modelo correctamente especi�cado.

Cuando los errores siguen una distribución Student-t sesgada, pero la estimación se

hace suponiendo una distribución normal, obtenemos que las estimaciones de la densidad

de kernel de la diferencia entre las estimaciones de una etapa y de múltiples etapas de las

volatilidades y correlaciones y sus verdaderos valores son muy similares. Sin embargo,

esto no es cierto cuando la estimación se basa en errores t de Student no sesgada. En

cualquier caso, cuando la verdadera distribución está sesgada, se debe ser prudente en el

uso de los estimadores de una etapa o múltiples etapas basados en los errores Student-t

10

Page 18: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

ya que ambos son estimadores inconsistentes.

Capítulo II: Estimation of Multivariate Stochastic VolatilityModels: A Comparative Monte Carlo Study

En los modelos de volatilidad estocástica, las volatilidades variables en el tiempo son

consideradas como una componente no observada de tal manera que las log-volatilidades

se las deja a seguir un proceso autorregresivo? Como se mencionó anteriormente, aunque

los modelos de volatilidad estocástica son estadísticamente más atractivos, son más difí-

ciles en términos de estimación debido a que sus funciones de verosimilitud exactas son

difíciles de evaluar.

Harvey et al. (1994) propuso el método de la cuasi-máxima verosimilitud (QML)

para estimar los modelos SV multivariantes. Su método trabaja con la transformación

log-cuadrados de las observaciones. La distribución de los errores log-cuadrados en la

ecuación de observación se aproxima mediante una distribución normal, por lo tanto,

este método se basa en aproximaciones. Si tomamos las log-volatilidades como una

ecuación de estado, entonces obtenemos una ecuación de la forma de un estado de espacio

Gaussiano. Después de esto, se utiliza un �ltro de Kalman para construir la verosimilitud

que se maximiza para obtener los estimadores. Ruiz (1994) muestra que este método

QML es consistente y asintóticamente normal. La estimación QML es muy fácil de

aplicar, sin embargo, es ine�ciente dado que se basa en aproximaciones. Véase Jacquier

et al. (1994), Breidt y Carriquiry (1996) y Sandmann y Koopman (2005) como ejemplos.

La evaluación de la función de verosimilitud exacta requiere una integración de alta

dimensión que se podría obtener por métodos de simulación. Un método que logra esto

es el método de estimación Monte Carlo Verosimilitud (MCL) de Jungbacker y Koopman

(2006). Este método no utiliza una transformación log-cuadrado de las observaciones.

Como Durbin y Koopman (1997) mostró, el logaritmo de la verosimilitud de los modelos

de estado de espacio con los errores Gaussianos se puede escribir como una suma del

logaritmo de la verosimilitud del modelo de aproximación Gaussiano y una corrección

que corresponde a las desviaciones de la asunción Gaussiana con respecto al modelo real.

Lo que hace este método de máxima verosimilitud simulada más atractivo que otros, es

que las simulaciones sólo son necesarios para evaluar la parte de corrección en la log-

verosimilitud. Por lo tanto, este método requiere menos cantidad de simulaciones para

evaluar el logaritmo de la verosimilitud y toma mucho menos tiempo para hacerlo. El

método de MCL de Jungbacker y Koopman (2006) es consistente, asintóticamente nor-

mal y e�ciente. Cabe señalar que el método de MCL podría requerir transformaciones

especí�cas para estimar algunos modelos MSV, pero siempre y cuando estas transfor-

maciones se puedan hacer, el método MCL demuestra ser muy útil en la obtención de

11

Page 19: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

estimadores asintóticamente e�cientes. También el método MCL requiere el cálculo de

los derivados con respecto a las variables de estado, que podrían obtenerse analíticamente

o numéricamente.

En este capítulo se comparan los rendimientos del método QML de Harvey et al.

(1994) y del método de MCL de Jungbacker y Koopman (2006) en la estimación de

los parámetros de los modelos MSV con correlación constante (CC) MSV de Harvey et

al. (1994), MSV con correlación variable en el tiempo (TVC) MSV de Jungbacker y

Koopman (2006) y de dos modelos MSV con el apalancamiento que proponemos para

las muestras pequeñas. Asai y McAleer (2006) también propuso un modelo MSV con

el apalancamiento, donde la matriz de apalancamiento es diagonal. Esto implica que

las innovaciones de volatilidad en el futuro de una serie sólo se correlaciona con las

innovaciones de retorno de esa misma serie. Por otra parte, estas correlaciones en su

artículo son proporcionales a las varianzas de las innovaciones de volatilidad, lo cual es

una restricción impuesta en el modelo. En esta tesis, proponemos un modelo MSV con el

apalancamiento diagonal, donde no hay ninguna restricción de este tipo en la correlación.

Además, para permitir la posible correlación entre los innovaciones de retorno de una

serie y las innovaciones de volatilidad de otra serie, proponemos el modelo MSV con el

apalancamiento no diagonal. Para la estimación de estos dos modelos con el método

de QML, adaptamos las transformaciones dadas en Asai y McAleer (2006). Para la

estimación con el método de MCL, ofrecemos las transformaciones necesarias.

Basándonos en los resultados, concluimos que a pesar de que en el caso de TVCMSV,

el rendimiento del estimador QML se aproxima al del estimador MCL, el segundo siem-

pre es preferible. No recomendamos el uso de los estimadores QML para los modelos

con apalancamiento. Aunque el método QML se puede implementar mucho más fácil-

mente que el MCL y el tiempo de cálculo es mucho menor en la estimación de QML,

sugerimos su uso si se espera que las series tengan una correlación alta y / o que cambie

con el tiempo y los procesos de SV tengan una mayor varianza. Teniendo en cuenta los

resultados en la literatura sobre la ine�ciencia del estimador QML en pequeñas mues-

tras, sería también una ventaja si el tamaño de la muestra es grande cuando se utiliza el

método QML. Por otro lado, la aplicación de la estimación MCL es relativamente más

complicada que la estimación QML. Por lo tanto la estimación MCL requiere mucho más

tiempo para converger. Cuando el numero de series es elevado, las derivadas necesarias

para la estimación de MCL son más difíciles de obtener y si uno desea utilizar derivadas

numéricas, en este caso calcular las derivadas para vectores de estado de gran dimensión

podría resultar muy lento e inestable numéricamente. A la esitmaicón QML no le afecta

en tan gran medida el elevado número de series o el elevado tamaño de la muestra. Por

lo tanto basándonos en nuestra experiencia, sugerimos utilizar el método MCL en la esti-

12

Page 20: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

mación de modelos MSV para varias series, como por ejemplo para modelar los retornos

de los índices bursátiles internacionales, y el método de QML podrían ser utilizados para

la estimación de un número mediano a elevado de series, por ejemplo, para los acciones

que cotizan en un mercado de valores.

Capítulo III: Do Correlated Markets Have More VolatilitySpillovers?

En este capítulo se propone un nuevo modelo GARCH para explicar las interacciones

entre las volatilidades de las series de retorno. La motivación proviene de la literatura

de teoría de redes: si una persona tiene el hábito de fumar, es probable que los amigos

cercanos de esta persona también fuma. Además, si los amigos cercanos de una persona

son fumadores, entonces es probable que esa persona sea un fumador también. De mismo

modo, cuando un activo tiene una alta volatilidad, es probable que otro activo que está

altamente correlaciónado con ese activo importe parte de esta volatilidad. Llamamos

a este nuevo modelo NETWORK (NET) GARCH. En este capítulo se explica cómo

estimar este modelo a través del método de máxima verosimilitud.

En la literatura, modelos como BEKK-GARCH de�nidos en Engle y Kroner (1995)

y ECCC-GARCH en Jeantheau (1998) se han usado frecuentemente para estimar las

transmisiones de volatilidad. El modelo BEKK-GARCH tiene la virtud de ser muy

general, ya que permite las transmisiones entre las volatilidades y las covolatilidades. Sin

embargo, como se explica en Bauwens (2006), los parámetros del modelo BEKK-GARCH

son difíciles de interpretar. El modelo ECCC-GARCH de Jeantheau (1998) tiene una

estructura más sencilla, ya que utiliza la descomposición de la matriz de covarianza a

las varianzas condicionales y la matriz de correlación. En ambos modelos el número

de parámetros para estimar aumenta rápidamente con el número de series. Por tanto,

cuando se tienen en cuenta altos números de series la estimación de estos modelos resulta

muy difícil. El número de parámetros del modelo NET-GARCH incrementa linealmente

con el número de series y por lo tanto con elevado números de series este modelo es todavía

estimable. Dado que el modelo NET-GARCH es similar al modelo ECCC-GARCH,

las restricciones de positividad, estacionaridad e identi�cación se pueden derivar de las

condiciones en Jeantheau (1998). Tomamos la ecuación de la volatilidad del modelo

ECCC-GARCH y suponemos las correlaciones dinámicas a través del modelo cDCC-

GARCH, y nos referimos a este modelo con el nombre EcDCC-GARCH. Finalmente,

comparamos el rendimiento del modelo NET-GARCH con el de los modelos EcDCC-

GARCH y cDCC-GARCH.

En este trabajo comprobamos el rendimiento y la validez empírica del modelo NET-

GARCH. Para ello utilizamos los retornos de las acciones que cotizan en el índice FTSE-

13

Page 21: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

100 para el período 28/06/2006 - 24/01/2012. También incluimos el índice FTSE-100

en estos datos.

En primer lugar, para demostrar que los parámetros, las volatilidades y las correla-

ciones generadas por el modelo NET-GARCH se estiman correctamente por el método de

máxima verosimilitud, llevamos a cabo experimentos de Monte Carlo, donde generamos

y estimamos los datos por este modelo. Los valores de los parámetros para generar los

datos obtenemos mediante el ajuste del modelo NET-GARCH usando las tres primeras

series y también tres vectores trivariados de series seleccionados al azar de los datos.

En estos cuatro experimentos realizados, los parámetros de volatilidad del modelo NET-

GARCH se estiman con pequeños valores de la raíz del error cuadratico medio. Las

volatilidades y correlaciones se estiman también con bastante precisión.

En la siguiente sección, comparamos el rendimiento de los modelos EcDCC, NET

y cDCC-GARCH en la estimación de Valor en Riesgo (VaR). Después de ordenar los

datos obtenidos a partir de FTSE-100 por orden alfabético, ajustamos estos tres mod-

elos a las primeras dos, tres, cuatro etc. series y calculamos la estimación del VaR de

la cartera de mínima varianza. Como nota Engle y Sheppard (2001), con la cartera

de mínima varianza, la incorrecta especi�cación del modelo tiene un mayor impacto en

las estimaciones. Por otra parte, seguimos Engle y Manganelli (2000) y Engle y Shep-

pard (2001) para probar los rendimientos de los modelos en la estimación de los VARs.

Obtenemos que las estimaciones de VaR del modelo NET-GARCH son muy similares

a las de los modelos EcDCC y cDCC-GARCH. De acuerdo con los resultados de las

pruebas, a pesar de que el modelo NET-GARCH funciona peor que EcDCC-GARCH

en la estimación del VaR, supera al modelo cDCC-GARCH. Dado que en el caso del

modelo EcDCC-GARC el número de parámetros aumentan rápidamente con el número

de series, el model NET-GARCH parece ser una alternativa razonable, ya que captura

las transmisiones de volatilidad con menor numero de parámetros.

Una cuestión que surge es cómo se comporta el modelo NET-GARCH en el caso de

una incorrecta especi�cación del modelo. Para responder a esta pregunta generamos

los datos con el modelo BEKK-GARCH y estimamos con los modelos EcDCC, NET y

cDCC-GARCH. Consideramos un número de series de tres, ocho y trece. Los valores de

los parámetros se han tomado de la estimación de las primeras tres, ocho y trece series

con el modelo BEKK-GARCH. Despues nos �jamos en las estimaciones obtenidas de la

volatilidad de carteras de minima varianza (MVP) y de igual ponderación (EWP) por

los tres modelos. En todos los casos considerados, EcDCC-GARCH supera a los otros

dos modelos en la estimación de las volatilidades. Nuestros resultados sugieren que con

el EWP, el modelo NET-GARCH se comporta mejor que cDCC-GARCH y es similar a

EcDCC-GARCH en la estimación de la volatilidad, mientras que se comporta peron con

14

Page 22: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

el MVP. Repetimos el experimento de incorrecta especi�cación mediante la generación

de los datos por el modelo EcDCC-GARCH y la estimación por los modelos EcDCC,

NET y cDCC GARCH. En este caso, para el EWP obtenemos de resultado que NET-

GARCH en realidad funciona aproximadamente como el modelo EcDCC-GARCH, con

lo que no hay errores de especi�cación, mientras que para el MVP tenemos resultados

similares como en el experimento con BEKK-GARCH. Llegamos a la conclusión en esta

sección que, cuando se considera EWP, el modelo NET-GARCH se aproxima al modelo

EcDCC-GARCH y en cambio con el MVP su rendimiento se desvía de el de EcDCC-

GARCH porque el modelo NET-GARCH podría estar sobreestimando la volatilidad de

la serie con una varianza baja.

Teniendo en cuenta que los modelos BEKK-GARCH y EcDCC-GARCH tiene muchos

parámetros, el ajuste de estos modelos en una base de datos de series temporales con

elevado numero de series resulta muy difícil. El modelo NET-GARCH demuestra ser muy

útil en este caso, ya que es capaz de capturar los efectos de transmisiones de volatilidad

con un número relativamente menor de parámetros, lo que implica que, con elevado

número de series este modelo puede ser estimado. Además, como nuestros resultados

sugieren, el rendimiento de este modelo se aproxima al del modelo EcDCC-GARCH. Bajo

la luz de las conclusiones de este capítulo, podemos concluir que el modelo NET-GARCH

es una alternativa razonable al modelo EcDCC-GARCH para capturar los efectos de

transmisiones de volatilidad. A pesar de que con un pequeño número de series, los

modelos BEKK o EcDCC-GARCH son preferidas, ya que ofrecen una estructura de

varianza más ricas, con un elevado número de series, la estimación de estos modelos

podría llegar a ser difícil, cuando sea factible. El modelo NET-GARCH demuestra ser

útil en este caso, ya que requiere la estimación de relativamente un menor número de

parámetros.

En resumen, en esta tesis hemos analizado los rendimientos en pequeñas muestras de

diferentes estimadores de los modelos de volatilidad explicados en este trabajo. Hemos

comparado en el primer capítulo el rendimiento de los estimadores de los parámetros en

una etapa y en múltiples etapas con errores Gaussianas o de Student-t por varios mod-

elos de correlación condicional GARCH y en el segundo capítulo, hemos comparado los

rendimientos de los estimadores cuasi-máxima verosimilitud y verosimilitud de Monte

Carlo en las estimaciones de varios modelos de volatilidad estocástica multivariante.

Además, en esta tesis proponemos modelos multivariantes de volatilitidad para capturar

algunos de los hechos establecidos de los datos de series temporales. En el segundo capí-

tulo, proponemos dos modelos multivariantes de volatilidad estocástica, uno siendo más

general, para capturar el efecto apalancamiento y explicamos cómo estimar estos mode-

los con el método de probabilidad de cuasi-máximo verosimilitud y proporcionamos las

15

Page 23: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

transformaciones necesarias para estimar estos modelos con el método de verosimilitud

de Monte Carlo . En el tercer capítulo, proponemos el modelo Network GARCH que

captura los efectos de transmisiones de volatilidad con relativamente menor número de

parámetros en comparación con los modelos BEKK y EcDCC-GARCH.

Los resultados de esta tesis ayudan a comprender las circunstancias en las que utilizar

un método de estimación o otro sirve mejor para el propósito de ajustar un modelo a

los datos. Por otro lado, los modelos propuestos en esta tesis demuestran ser útiles para

captar las regularidades observadas en los datos de series de tiempo.

16

Page 24: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Introduction

Many �nancial time series, such as asset returns or exchange rates, exhibit common

regularities like time varying volatilities or comovements. These similarities are known

in the literature as stylized facts. A desirable time series model is the one that explains

one or more of these regularities. Some of these stylized facts are the following:

� Volatility clustering

It is observed that periods of high (low) volatility are followed by periods of high

(low) volatility. This kind of persistent behavior suggests that there might be an

autoregressive structure governing the dynamics of the volatilities. The ARCH

models introduced by Engle (1982) and SV models introduced by Taylor (1986)

and their extensions referred to throughout this thesis are developed to mimic this

volatility clustering.

� Thick tails

It is documented in Mandelbrot (1963) and Fama (1963, 1965) among others that

asset returns tend to present a heavy tailed or leptokurtic distribution. To match

this stylized fact di¤erent distributions are used in the literature such as Student-

t distribution (see for example Fiorentini et al. 2003, Sandmann and Koopman

(1998)). The �rst chapter of this thesis works with Student-t distribution as well.

� Leverage e¤ects

Leverage e¤ect refers to the negative correlation between the returns and volatili-

ties: i.e. a negative return is expected to increase volatility more than a positive

return. The intuition is that a decrease in the stock prices implies higher leverage

of the �rms, which increases the risks and uncertainty, hence causes high volatility.

Examples can be found in Nelson (1991) or Jungbacker and Koopman (2005). In

the second chapter of this thesis, two multivariate models are proposed to capture

leverage e¤ects.

� Comovements

The volatility spillovers and correlations between returns have been increasingly

of interest in the literature. Among many others Jeantheau (1998), Longin and

Solnik (1995), Bae and Karolyi (1994) are examples analyzing theoretically or

empirically the volatility spillovers. Bollerslev (1990), Engle (2002), Tse (2000),

Pelletier (2006) are some of the papers studying the correlations between returns

of stock markets. The �rst chapter of this thesis refers to the model of Jeantheau

17

Page 25: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

(1998) and the third chapter proposes a model to capture volatility spillovers. In

all chapters of this thesis constant and/or time varying correlation models are

considered.

To explain the time varying volatilities, Engle (1982) and Bollerslev (1996) pro-

posed generalized autoregressive conditional heteroskedasticity (GARCH) models. In

GARCH set up, the volatilities follow a deterministic equation of the squared previous

day returns and volatilities. Therefore the dynamics of the volatilities in this model

is observation driven. Later, the GARCH models have been extended to multivariate

settings (MGARCH) to capture the volatility spillovers and correlations between series,

see for example, Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009) for a

survey. Among others, for example EGARCH proposed by Nelson (1991) is developed

to explain the leverage e¤ects, ECCC-GARCH of Jeantheau (1998) is developed for

capturing the volatility spillovers, Bollerslev (1990) proposes the constant conditional

correlation GARCH (CCC-GARCH) model capturing the correlation between two series

and Engle (2002) proposes the DCC-GARCH model to allow these correlations between

returns to vary over time.

Alternatively, the stochastic volatility (SV) literature started by Taylor (1986, 1994)

and Hull andWhite (1987) suggests to model the time varying volatility as an unobserved

component and lets its logarithm follow an autoregressive process. In this set up, the

volatilities are parameter driven. Starting with the constant correlations multivariate

stochastic volatility (CC-MSV) of Harvey et al. (1994), the multivariate extensions of

the SV method have been developed. Among others, Asai and McAleer (2006) proposes

the MSV with leverage model to explain the leverage e¤ects in a time series data, Harvey

et al. (1994) proposes the CC-MSV model to capture the correlation between the returns

of a time series data while Jungbacker and Koopman (2006) proposes the time varying

correlations MSV model to allow these correlations between returns to change over time.

The SV approach is attractive in the sense that it is closer to the models used in the

�nancial theory to describe the behavior of prices; see Shephard and Andersen (2008).

Moreover it has been shown that the SV models describe the behavior of volatilities more

accurately compared to GARCH models; see Danielsson (1994), Kim et al. (1998) and

Carnero et al. (2004). Although statistically more attractive than the GARCH models,

SV models have the disadvantage in terms of estimation because the exact likelihood

functions of these models are di¢ cult to evaluate.

In this thesis, we have worked with both multivariate GARCH and SV models. The

objective of this thesis is to study the properties of several methods that estimate volatil-

ity models and to propose new models to explain one or more of the stylized facts men-

tioned above. In particular, the focus of the three chapters have been on the multivariate

18

Page 26: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

modelling and estimation of the time varying volatility. In the �rst chapter we analyze

the small sample performance of the multiple steps estimators in the case of Gaussian

and Student-t errors. For this reason we performed simulation experiments where di¤er-

ent parameter values and settings are considered. Moreover we checked the robustness of

our results with respect to the distribution and model assumptions. Finally we consider

the case where the true distribution is skewed normal or Student-t but the distribution

assumed in the estimation is symmetric. In the second chapter we compare the per-

formances of two method of estimation, namely the quasi-maximum likelihood (QML)

of Harvey et al. (1994) and Monte Carlo likelihood (MCL) of Jungbacker and Koop-

man (2006), of multivariate SV (MSV) models. We also propose two MSV models with

leverage, one being more general in the sense that it allows for the correlation between

the volatility shocks of series i with the return shocks of series j. We analyze the per-

formances of the QML and MCL methods in estimating the constant correlations (CC)

MSV of Harvey et al. (1994), time varying correlations (TVC) MSV of Jungbacker and

Koopman (2006) and the two MSV models with leverage that we propose. In the third

chapter we propose a new multivariate GARCH model, which we refer to as the Network

(NET) GARCH model, which can capture the volatility spillovers with relatively small

number of parameters and we compare its performance with other existing multivari-

ate GARCH models that allow for volatility spillovers. We check if the NET-GARCH

model�s parameters can be estimated well by the maximum likelihood method explained

in the paper. Later we look at the performance of this model and the other models in

estimating the Value at Risk (VaR) in the data. Finally we check how the NET-GARCH

model performs when the model is misspeci�ed. Even though this thesis consists of three

chapters, all throughout the thesis, the focus is on the multivariate modelling and es-

timation of volatility models. In the �rst and second chapters the interest is on the

estimation methods of di¤erent multivariate volatility models while in the second and

third chapters new models are proposed.

In all the chapters of the thesis, the plan of study consisted of explaining theoretical

and econometric backgrounds of the models and estimation methods and performing sim-

ulation experiments to analyze the small sample performance of the models or methods

of question. The results of the simulation experiments are reported in tables via means,

standard errors and root mean squared errors. Moreover, we include some �gures to

plotting the kernel density estimates for the di¤erences between the estimated and the

true values of the volatilities and correlations. Finally in each chapter, an empirical

estimation is included for illustration purposes using the data from stock markets. All

the programming and implementation of the models and estimation methods are done

in MATLAB.

19

Page 27: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Next, a brief summary of the three chapters is presented:

Chapter I: Estimating VAR-MGARCH Models in MultipleSteps

In this chapter we analyze the small sample performance of the multiple steps es-

timation of vector autoregressive multivariate GARCH models (VAR-MGARCH). For

this purpose, we consider �ve conditional correlation GARCH models given by di¤erent

speci�cations of the correlation dynamics: the constant conditional correlation (CCC)

GARCH of Bollerslev (1990), dynamic conditional correlation (DCC) GARCH of Engle

(2002), consistent DCC (cDCC) GARCH of Aielli (2008), extended conditional corre-

lation (ECCC) GARCH of Jeantheau (1998) and regime-switching dynamic correlation

(RSDC) GARCH of Pelletier (2006). For the estimation of DCC and cDCC-GARCH

models we use the correlation targeting approach (see Engle 2009) which reduces the

number of parameters to estimate by replacing the long run covariance matrix by the

sample covariance matrix. Aielli (2008) shows that estimation of DCC-GARCH models

with correlation targeting results in inconsistent estimators and he suggests a corrected

version of DCC-GARCH model we refer to as cDCC-GARCH model. On the other

hand, it is not uncommon to encounter dynamics in the conditional mean which can be

modelled with a VARMA model (see for example Veiga and McAleer 2008a, 2008b). For

simplicity we assume a VAR(1) speci�cation for the conditional means.

One way to estimate the parameters of all these VAR-MGARCH models is to max-

imize the full log-likelihood. Assuming that there is no misspeci�cation of the error

distribution, the resulting estimators are maximum likelihood (ML) estimators and are

consistent and asymptotically normal. If the true distribution is not Gaussian but the

estimation is based on Gaussian errors, then the estimators are quasi-maximum likeli-

hood estimators (QML) and they are also consistent and asymptotically normal. See

for example Bollerslev and Wooldridge (1992). If the estimation is based on Student-t

errors, then as long as the true distribution is symmetric, the QML estimators will be

consistent and asymptotically normal. See Newey and Steigerwald (1997).

An alternative to the full maximization of the likelihood is using multiple steps es-

timators. Under the Gaussianity assumption, we can estimate the parameters in two

steps; see for example Engle (2002). In a �rst step we can estimate the mean and vari-

ance parameters and taking the estimates of these parameters as given in a second step

we estimate the correlation parameters. As Engle and Sheppard (2001) suggests for

the DCC-GARCH model, the two-step estimators will be consistent and asymptotically

normal but ine¢ cient.

20

Page 28: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Finally, we could estimate the parameters of these models in three steps: �rst we

estimate the mean parameters, then taken mean parameter estimates as given, we can

estimate the variance parameters and then taking the mean and variance parameter

estimates as given we can estimate the correlation parameters. This three-step estimation

method is mentioned in Bauwens et al. (2006). This method could be seen as a two step

estimation for a zero mean series. Therefore three-step estimators are also consistent

and asymptotically normal but ine¢ cient.

Although not supported by theory, we also consider multiple steps estimation based

on Student-t distribution, where in all the steps the estimation is based on this distri-

bution. Bauwens and Laurent (2005) and Jondeau and Rockinger (2005) also analyze

multiple steps estimators based on Student-t distribution; however they estimate the

variance parameters assuming Gaussian errors while estimating the correlation parame-

ters assuming Student-t errors.

In this chapter we perform several Monte Carlo experiments to analyze and compare

the small sample performance of one-step, two-steps and three-steps estimators of the

�ve models mentioned above assuming Gaussian or Student-t errors.

We �nd out that when the estimation is based on normal distribution, the perfor-

mance of one-step and multiple steps estimators are very similar. However, when the

estimation is based on Student-t distribution, for some models the di¤erences between

the estimators could be relevant. Therefore multiple steps estimation based on Student-t

distribution may not be a good idea.

We also checked the robustness of our results with respect to misspeci�cation of the

error distribution or the model. Our results show that if the true error distribution is

Student-t but estimation is based on the Gaussian distribution, kernel density estimates

of the estimates of volatility and correlation obtained from one-step and multiple steps

estimators are quite similar. Analogously, if the true error distribution is Gaussian but

estimation is based on the Student-t distribution, we obtain the same results as when

the true and assumed distribution is a Student-t. When the model is misspeci�ed and

the estimation is based on Gaussian errors, we �nd that, on average, volatilities and

correlations are relatively well estimated even when using a misspeci�ed model. The

multiple-steps estimates of volatilities (correlations) deviate from the true values at most

by 2 % more than what one-step estimates of the correctly speci�ed model do.

When errors are distributed as a skewed Student-t but the estimation is performed

assuming non-skewed Gaussian or Student-t errors, we �nd that kernel density estimates

of the di¤erence between one-steps and multiple steps estimates of volatilities and corre-

lations from their true values are very similar when the estimation is based on a Gaussian

distribution. However, this is not true when the estimation is based on Student-t errors.

21

Page 29: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

In any case, when the true distribution is skewed, one should be cautious in using one-

step or multiple-steps estimators based on Student-t errors since both are inconsistent

estimators.

Chapter II: Estimation of Multivariate Stochastic VolatilityModels: A Comparative Monte Carlo Study

In stochastic volatility models the time varying volatilities are considered as an unob-

served component such that the log-volatilities are let to follow an autoregressive process.

As we mentioned above, although stochastic volatility models are statistically more at-

tractive, they are more costly in terms of implementation because their exact likelihood

functions are di¢ cult to evaluate.

Harvey et al. (1994) proposed the quasi-maximum likelihood (QML) method to esti-

mate the multivariate SV models. Their method takes the log-squared transformations of

the observations. The distribution of the log-squared errors in the observation equation

is approximated by a normal distribution, therefore this method is based on approxi-

mations. If we take the log-volatilities as a state equation, then we obtain a Gaussian

state space form equation. After this, a Kalman �lter is used to construct the prediction

error decomposition of the likelihood which is maximized to obtain the estimators. Ruiz

(1994) shows that this QML method is consistent and asymptotically normal. QML

estimation is very easy to implement, however it is ine¢ cient given that it is based on

approximations. See Jacquier et al. (1994), Breidt and Carriquiry (1996) and Sandmann

and Koopman (2005) as examples.

The evaluation of the exact likelihood function requires high dimensional integration

which could be obtained by simulation methods. One method that achieves this is the

Monte Carlo likelihood (MCL) estimation method of Jungbacker and Koopman (2006).

This method does not use a log-squared transformation of the observations. As Durbin

and Koopman (1997) showed, the log-likelihood of the state space models with non-

Gaussian errors can be written as a sum of the log-likelihood of the approximating

Gaussian model and a correction for the departures from the Gaussian assumption with

respect to the true model. What makes this simulated maximum likelihood method more

attractive than others is that the simulations are only needed to evaluate the correction

part in the log-likelihood. Therefore it requires less number of simulations to evaluate

the log-likelihood and takes much less time to do so. MCL method of Jungbacker and

Koopman (2006) is consistent, asymptotically normal and e¢ cient. It should be noted

that MCL method might require speci�c transformations to estimate some MSV models,

but as long as these transformations can be done MCL method proves to be very useful

in obtaining asymptotically e¢ cient estimators. Also MCL method entails calculation

22

Page 30: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

of derivatives with respect to the state variables, which could be obtained analytically

or numerically.

In this chapter we compare the small sample performance of QML method of Harvey

et al. (1994) and MCL method of Jungbacker and Koopman (2006) in estimating the

Constant Correlation (CC) MSV of Harvey et al. (1994), Time Varying Correlation

(TVC) MSV of Jungbacker and Koopman (2006) and for two MSV models with leverage

we propose. Asai and McAleer (2006) also proposed an MSV model with leverage, where

the leverage matrix is diagonal. This implies that the future volatility shocks of series

i is only correlated with the return shocks of series i. Moreover, these correlations are

proportional to the variances of the volatility shocks, which is a restriction imposed on

the model. In this chapter, we propose an MSV model with diagonal leverage where

there is no such restriction on the correlation. Also, to allow for the possible correlation

between the volatility shocks of series i and return shocks of series j, we propose the MSV

model with non-diagonal leverage. For the estimation of these two models with QML

method, we adapt the transformations given in Asai and McAleer (2006). To estimate

them with MCL method, we provide the necessary transformations.

Based on our results, we conclude that even though in the case of TVCMSV, QML

estimator performs close to MCL estimator, the latter is always preferred. We do not

recommend using QML estimators for the models with leverage. Although QML method

can be implemented much easier than MCL and the estimation time is much less in QML

estimation; we suggest its use if it is expected that the series have high and/or time

varying correlation and the SV processes have higher variance. Given the results in the

literature on the ine¢ ciency of QML estimator in small samples, it would be also a plus if

the sample size is large, when using QMLmethod. On the other hand the implementation

of MCL estimation is relatively more complicated than the QML estimation. Therefore

MCL estimation requires much more time to converge. When the cross-section size is

large, the analytical derivatives for the MCL estimation are harder to obtain and if one

would like to use numerical derivatives in this case, then the derivatives calculated for

large state vectors could be very time consuming and numerically unstable. QML is not

as much a¤ected by the large cross-sections or large sample sizes. Therefore based on

our experience, we would suggest using MCL method in the estimation of MSV models

for several series, as for modelling the returns of international stock market indices, and

QML method could be used for the estimation with medium-to-large number of series

from a stock market.

Chapter III: Do Correlated Markets Have More VolatilitySpillovers?

23

Page 31: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

In this chapter we propose a new GARCH model to explain the volatility interaction

between return series. The motivation comes from Network Theory literature: if a person

has smoking habits, it is likely that the close friends of this person also smoke. Also,

if close friends of a person are smokers, then that person is likely to be a smoker as

well. Similarly, when an asset i is experiencing high volatility, an asset j that is highly

correlated with (closely related to) asset i is likely to import some of this volatility. We

name this new model Network (NET) GARCH. We discuss how to estimate this model

via maximum likelihood method.

In the literature, BEKK-GARCH as de�ned in Engle and Kroner (1995) and ECCC-

GARCH model of Jeantheau (1998) have been commonly used to estimate volatility

spillovers. BEKK-GARCH model has the virtue of being very general because it allows

for spillovers between volatilities and covolatilities. However as noted as well noted in

Bauwens (2006), the parameters of BEKK-GARCH model are hard to interpret. ECCC-

GARCH model of Jeantheau (1998) has a simpler structure because it uses the decom-

position of the covariance matrix to conditional variances and the correlation matrix. In

both of these models the number of parameters to estimate increases rapidly with the

number of series. Therefore when high cross-sections are considered, the estimation of

these models become practically very di¢ cult, if feasible. The number of parameters

of NET-GARCH model increases linearly with the number of series therefore with high

cross-sections this model is still estimable. Given that NET-GARCH model is similar to

(but not nested by) the ECCC-GARCH model, the positivity, stationarity and identi�-

cation restrictions can be derived from the conditions in Jeantheau (1998). We take the

volatility equation of ECCC-GARCHmodel and assume dynamic correlations via cDCC-

GARCH model, and we refer to this model as EcDCC-GARCH model. We compare the

performance of NET-GARCH model with that of EcDCC-GARCH and cDCC-GARCH

models.

In this chapter we check the performance and empirical validity of the NET-GARCH

model. For this purpose we use the returns of the stocks listed in FTSE-100 for the

period 28/06/2006 - 24/01/2012. We also include the FTSE-100 index to this data.

First, to show that parameters, volatilities and correlations generated by the NET-

GARCH model is estimated well by the maximum likelihood method, we perform Monte

Carlo experiments where the data is generated and estimated by this model. The true

parameter values are obtained by �tting a NET-GARCH model to the �rst three series

and also to the estimation of three trivariate series randomly selected from the data. In

all four experiments, the volatility parameters of the NET-GARCH model are estimated

with small root mean squared errors. The volatilities and correlations were also estimated

quite accurately.

24

Page 32: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

In the next section, we compare the performance of EcDCC, NET and cDCC-GARCH

models in estimating Value at Risk (VaR). After ordering the data obtained from FTSE-

100 alphabetically, we �t these three models to the �rst two, three, four etc. series

and calculate the VaR estimate for the minimum variance portfolio. As Engle and

Sheppard (2001) note, with minimum variance portfolio the model misspeci�cation has

higher impact on the estimates. Furthermore, we follow Engle and Manganelli (2000)

and Engle and Sheppard (2001) to test the model�s performance in estimating the VaRs.

We �nd out that the NET-GARCH model�s VaR estimates are very similar to those

of the EcDCC and cDCC-GARCH models. According to the test results, although

NET-GARCH model performs worse than EcDCC-GARCH in estimating the VaRs, it is

outperforming the cDCC-GARCH model. Given that the number of parameters increase

rapidly with the number of series in case of EcDCC-GARCHmodel, NET-GARCHmodel

seems to be a reasonable alternative as it captures the volatility spillovers with much

less number of parameters.

One question that could arise is how the NET-GARCH model behaves in case of a

model misspeci�cation. To answer this question we generate data with BEKK-GARCH

model and estimate with EcDCC, NET and cDCC-GARCH models. We consider the

cross-section sizes three, eight and thirteen. The values of the parameters are taken from

estimating the �rst three, eight and thirteen series with BEKK-GARCHmodel. Later we

look at the volatility estimates obtained by the three models for the minimum variance

(MVP) and equally weighted (EWP) portfolios. In all the cases considered, EcDCC-

GARCH outperforms the other two models in estimating the volatilities. Our results

suggest that with EWP, the NET-GARCH model is performing better than cDCC-

GARCH and close to EcDCC-GARCH models in estimating the volatilities while with

MVP it is not doing very well. We repeat the misspeci�cation experiment by generating

the data by EcDCC-GARCH model and estimating with EcDCC, NET and cDCC-

GARCH models. In this case, for the EWP we �nd out that NET-GARCH is actually

performing very closely to the EcDCC-GARCH model, for which there is no misspeci�-

cation, while we have similar results as in the experiment with BEKK-GARCH for the

MVP. We conclude in this section that when EWP is considered NET-GARCH model

is actually performing very closely to the EcDCC-GARCH model even though it could

be overestimating the volatilities of the series with low variance and therefore deviating

from the EcDCC-GARCH estimates with MVP.

Given that BEKK-GARCH and EcDCC-GARCH models have many parameters, �t-

ting these models to a time series data with high cross-section size becomes very di¢ cult.

NET-GARCH model proves to be very useful in this case because it is able to capture

the volatility spillovers with relatively less number of parameters, which imply that with

25

Page 33: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

large cross-sections as well this model can be estimated. Moreover as our results sug-

gest, the performance of this model approaches to the performance of EcDCC-GARCH

model. Under the light of the �ndings in this chapter, we can conclude that NET-

GARCH model is a reasonable alternative to the EcDCC-GARCH model to capture the

volatility spillovers. Even though with small number of series BEKK or EcDCC-GARCH

models should still be preferred because they o¤er a richer variance structure, with high

number of series the estimation of these models could become di¢ cult, when feasible.

NET-GARCH model proves to be useful in this case because it requires estimation of

much less parameters.

To sum up, in this thesis we have analyzed the small sample performance of di¤erent

estimators of the volatility models considered. We compared the small sample perfor-

mance of one-step and multiple steps estimators with Gaussian and Student-t errors in

the �rst chapter for several conditional correlation GARCH models and in the second

chapter we compared the performance of quasi-maximum likelihood and Monte Carlo

likelihood estimators. Moreover we propose multivariate volatility models to capture

some of the stylized facts in the data. In the second chapter, we propose two multi-

variate stochastic volatility models to capture the leverage e¤ects and we discuss how to

estimate these models with quasi-maximum likelihood method and provide the necessary

transformations to estimate these models with the Monte Carlo likelihood method. In

the third chapter, we propose the Network GARCH model which captures the volatility

spillovers with less number of parameters compared to that of the BEKK and ECCC-

GARCH models. The �ndings of this thesis help understand under which circumstances

using one or the other estimation method serves more to the purpose of �tting a model

to the data. On the other hand, the models proposed in this thesis prove to be useful in

capturing the regularities observed in time series data.

26

Page 34: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Bibliography

[1] Aielli, G. P. (2008). Consistent estimation of large scale dynamic conditional cor-

relations. Unpublished paper: Department of Economics, Statistics, Mathematics

and Sociology, University of Messina. Working paper n. 47.

[2] Asai, M, McAleer, M, (2006), Asymmetric Multivariate Stochastic Volatility, Econo-

metric Reviews, 25 (2-3), 453-473

[3] Bae, K.-H., and G. A. Karolyi, (1994), �Good News, Bad News and International

Spillovers of Stock Return Volatility Between Japan and the U.S.,�Paci�c-Basin

Finance Journal, 2, 405�438.

[4] Bauwens, L., Laurent, S. (2005), A New Class of Multivariate Skew Densities, With

Application to Generalized Autoregressive Conditional Heteroskedasticity Models,

Journal of Business and Economics Statistics, 23(3), pp 346-354.

[5] Bauwens, L., Laurent, S. and J.V.K. Rombouts (2006). Multivariate GARCH Mod-

els: A Survey. Journal of Applied Econometrics, 21, 79-109.

[6] Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity,

Journal of Econometrics, 31:307-327

[7] Bollerslev, T. (1990). Modelling the Coherence in Short-Run Nominal Exchange

Rates: A Multivariate Generalized ARCH Model. The Review of Economics and

Statistics, 72, 498-505.

[8] Bollerslev, T. R.Y. Chou, K.F. Kroner, (1992). ARCH modelling in �nance: A

review of the theory and empirical evidence, Journal of Econometrics 52, 5-59

[9] Breidt, FJ., Carriquiry, A. (1996), Improved quasi-maximum likelihood estimation

for stochastic volatility models, In: Zellner, A., Lee, J.S. (Eds.) Modelling and

Prediction: Honouring Seymour Geisel. Springer, New York.

27

Page 35: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[10] Carnero, A. , Peña, D. , Ruiz, E., (2004), Persistence and Kurtosis in GARCH and

Stochastic Volatility Models, Journal of Financial Econometrics, Volume 2, Issue 2,

319-342.

[11] Danielsson, J. (1994), Stochastic volatility in asset prices estimation with simulated

maximum likelihood, Journal of Econometrics, Volume 64, Issues 1-2, 375-400

[12] Durbin, J., Koopman, S.J,. (1997), Monte Carlo maximum likelihood estimation for

non-Gaussian state space models. Biometrika Volume 84, No 3, pp 669 - 684

[13] Engle, RF. (1982), Autoregressive conditional heteroskedasticity with estimates of

the variance of United Kingdom in�ation, Econometrica, Volume 50, No 4.

[14] Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivari-

ate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of

Business and Economic Statistics, 20, 339-350.

[15] Engle,R. (2009) Anticipating Correlations: A New Paradigm for Risk Management.

Princeton University Press

[16] Engle, R., K.F. Kroner, (1995) Multivariate Simultaneous GARCH, Econometric

Theory, 11, 122-150

[17] Engle, R. and K. Sheppard (2001). Theoretical and Empirical Properties of Dynamic

Conditional Correlation Multivariate GARCH. NBER Working Paper, No: W8554.

[18] Engle, R., Manganelli, S. (2000) CAViaR: Conditional Autoregressive Value at Risk

by Regression Quantiles, Econometric Society World Congress 2000 Contributed

Papers

[19] Fama, E.F. (1963), "Mandelbrot and The Stable Paretion Distribution", Journal of

Business 36, 420-429.

[20] Fama, E.F. (1965), "The Behavior of Stock Market Prices", Journal of Business 38,

34-105.

[21] Fiorentini, G., E. Sentana and G. Calzolari (2003). Maximum likelihood estima-

tion and inference in multivariate conditionally heteroskedastic dynamic regression

models with Student-t innovations. Journal of Business and Economic Statistics,

21, 532-546.

[22] Harvey, A., Ruiz, E., Shephard, N., (1994), Multivariate stochastic variance mod-

els.The Review of Economic Studies, Volume 61, pp 247 - 264

28

Page 36: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[23] Hull, J., White, A. (1987), Hedging the Risks from Writing Foreign Currency Op-

tions, Journal of International Money and Finance, 6, 131-152.

[24] Jacquier, E., Polson, N., Rossi, P., (1994), Bayesian Analisis of Stochastic Volatility

Models, Journal of Business and Economic Statistics, 12, 371-389

[25] Jeantheau, T. (1998). Strong Consistency of Estimators For Multivariate ARCH

Models. Econometric Theory, 14, 70-86.

[26] Jondeau, E., Rockinger, M. (2005). Conditional asset allocation under non-

normality: how costly is the mean-variance criterion? EFA 2005 Moscow Meetings,

Discussion Paper.

[27] Jungbacker, B., and Koopman, S. J., (2005), On Importance Sampling for State

Space Models, Tinbergen Institute Discussion Paper No. 05-117. Available at SSRN:

http://ssrn.com/abstract=873472

[28] Jungbacker, B., Koopman, S.J., (2006), Monte Carlo likelihood estimation for three

multivariate stochastic volatility models. Econometric Reviews Volume 25, Issue

2-3, 385 - 408

[29] Kim, S., Shephard, N., Chib, S., (1998), Stochastic Volatility: Likelihood Inference

and Comparison with ARCHModels, Review of Economic Studies, Volume 65, Issue

3, 361-393.

[30] Longin, F. and B. Solnik (1995). Is the correlation in international equity returns

constant: 1960-1990?. Journal of International Money and Finance, 14, 1, 3-26.

[31] Mandelbrot, B.B. (1963), "The Variation of Certain Speculative Prices", Journal of

Business 36, 394-416.

[32] McAleer, M. and B. da Veiga (2008a) Forecasting Value-at-Risk with a Parsimonious

Portfolio Spillover GARCH (PS-GARCH) Model, Journal of Forecasting, 27, 1, 1-19

[33] McAleer, M. and B. da Veiga (2008b), Single Index and Portfolio Models for Fore-

casting Value-at-Risk Thresholds, Journal of Forecasting, 27, 3, 217-235.

[34] Nelson, D.B. (1991), "Conditional Heteroskedasticity in Asset Returns: A New Ap-

proach", Econometrica 59, 347-370.

[35] Newey W.K. and D.G. Steigerwald (1997). Asymptotic bias for quasi maximum like-

lihood estimators in conditional heteroskedasticity models. Econometrica, 3, 587�

599.

29

Page 37: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[36] Pelletier D. (2006). Regime switching for dynamic correlations. Journal of Econo-

metrics, 131, 445-473.

[37] Ruiz, E. (1994), Quasi-maximum likelihood estimation of stochastic volatility mod-

els, Journal of Econometrics, Volume 63, Issue 1, 289-306

[38] Sandmann, G., Koopman, S.J., (1998), Estimation of stochastic volatility models

via Monte Carlo maximum likelihood. Journal of Econometrics, Volume 87, Issue

2, pp 271-301

[39] Shephard, N., Andersen, T.G., (2009), Stochastic Volatility: Origins and Overview,

Handbook of Financial Econometrics, Part 2, 233-254

[40] Silvennoinen, A. and T. Teräsvirta (2009). Multivariate GARCH Models. In T. G.

Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds. Handbook of Financial

Time Series. New York: Springer.

[41] Taylor, S. J, (1982), Financial returns modelled by the product of two stochastic

processes - a study of daily sugar prices 1961-79. In O. D. Anderson (Ed.), Time

Series Analysis: Theory and Practice, 1, pp. 203-226. Amsterdam: North-Holland.

[42] Taylor, S.J., (1986), Modelling Financial Time Series, Chichester; John Wiley.

[43] Taylor, S.J., (1994), Modelling Stochastic Volatility: A Review and Comparat¬ve

Study, Mathematical Finance, 4 (2), 183-204.

[44] Tse, Y.K. (2000). A Test for Constant Correlations in a Multivariate GARCH

Model, Journal of Econometrics, 98: 1, 107-127

30

Page 38: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Chapter 1

Estimating VAR-MGARCH Modelsin Multiple Steps

1.1 Introduction

Understanding how stock market returns and volatilities move over time has been of

interest to researchers into the time series literature. In addition, as the �nancial crisis

has shown, it is also very important to realize that stock markets move together. Evi-

dence of these comovements can be found, for example, in the fall of several international

stock market indices after a very big investment bank in US, Lehman Brothers, declared

bankruptcy in September 2008. Therefore, trying to model stock markets in a univariate

way ignoring their interactions would be insu¢ cient. In this sense, Multivariate General-

ized Autoregressive Conditional Heteroskedasticity (MGARCH) models have been very

popular to capture the volatility and covolatility of assets and markets; see, for example,

Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009) for a survey.

One of the problems with many MGARCH models is the di¢ culty to verify that the

conditional variance-covariance matrix is positive de�nite. Engle et al. (1984) provide

necessary conditions for the positive de�niteness of the variance-covariance matrix in a

bivariate ARCH setting. However, extensions of these results to more general models

are very complicated. Moreover, imposing restrictions on the log-likelihood function, in

order to have the necessary conditions satis�ed, is often di¢ cult.

A model that could avoid these problems is the Constant Conditional Correlation

GARCH (CCC-GARCH) model proposed by Bollerslev (1990). In this model, the

Gaussian maximum likelihood (ML) estimator of the correlation matrix is the sam-

ple correlation matrix which is always positive de�nite. Therefore, the only restrictions

needed are the ones for the conditional variances to be positive. On top of that, since

31

Page 39: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

the correlation matrix can be concentrated out of the log-likelihood function, the opti-

mization problem becomes simpler. Consequently, the CCC-GARCH model has become

very popular in the literature regardless of some limitations such as the constant corre-

lation assumption and the incapability to explain possible volatility interactions. The

extension proposed by Jeantheau (1998), the ECCC-GARCH model, addresses the last

issue by allowing for volatility spillovers. Relaxing the constant correlation assumption

is done by Engle (2002) and Tse and Tsui (2002) who propose the Dynamic Condi-

tional Correlation GARCH (DCC-GARCH) model in which the correlation changes over

time. However, since the correlation dynamics require more parameters, the estimation

of the DCC-GARCH model can be computationally very heavy. One possible solution

is to use the correlation targeting approach, see Engle (2009), in which the intercept in

the correlation equation is replaced by its sample counterpart. This solution is ques-

tioned by Aielli (2008) who suggests a correction to the DCC-GARCH model, denoted

by Consistent DCC-GARCH (cDCC-GARCH) model.

Alternatively, Pelletier (2006) introduces the Regime Switching Dynamic Correlation

GARCH (RSDC-GARCH) model in which the correlation is constant over time but

changing between di¤erent regimes and driven by an unobserved Markov switching chain.

This model can be thought as in between the CCC-GARCHmodel and the DCC-GARCH

model, with the problem that the number of correlation parameters to be estimated

increases rapidly with the number of series considered.

When dealing with stock market returns, it is not unusual to �nd some dynamics in

the conditional mean, that could be well approximated by a Vector Autoregressive Mov-

ing Average (VARMA) model; see, for example, da Veiga and McAleer (2008a, 2008b).

One way to estimate the parameters of the VARMA-MGARCH conditional correlation

model would be solving the optimization problem of the full log-likelihood function and

therefore obtaining the estimates for all the parameters in one step. If a Gaussian

log-likelihood function is speci�ed and the true data generating process (DGP) is also

Gaussian, then it is known that ML estimators are consistent and asymptotically normal.

In the case that the true DGP is not Gaussian, then we would be using quasi-maximum

likelihood (QML) estimators. Bollerslev and Wooldridge (1992) show that, under quite

general conditions, QML estimators are consistent and asymptotically normal. Estimat-

ing all parameters in one step would be the best we could achieve, however when there

are many parameters involved, it is very heavy computationally, when feasible. Boller-

slev (1990), Longin and Solnik (1995) and Nakatani and Teräsvirta (2008) are few of the

papers using one-step estimation.

Under the normality assumption, the parameters could also be estimated in two

steps. First, the mean and variance parameters are estimated assuming no correlation

32

Page 40: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

and then, in a second step, the correlation parameters are estimated given the estimates

from the �rst step; see, for example, Engle (2002). However, as Engle and Sheppard

(2001) suggest for the DCC-GARCH model, these two-step estimators will be consistent

and asymptotically normal but not e¢ cient.

The three-steps estimation method is mentioned in Bauwens et al. (2006). It consists

of estimating the mean parameters in a �rst step, the variance parameters in a second

step, given the �rst step estimates, and �nally, given all other parameter estimates, the

correlation parameters in the last step. The second and third steps of the procedure

will be equivalent to the two-steps estimation method for a zero-mean series. Therefore,

under normal errors, the three-steps estimators are also consistent and asymptotically

normal. Engle and Sheppard (2001) implement the three-steps estimation procedure in

the empirical part of their paper.

Evidence gathered over the past decades shows that stock market returns are often far

from having a normal distribution. Consequently, we also consider estimating the models

assuming a Student-t distribution. The one-step estimator is obtained by maximizing

the log-likelihood function based on the multivariate t-distribution; see, for example,

Harvey et al. (1992) and Fiorentini et al. (2003). Although there is no theoretical

work studying the properties of multiple steps estimation when assuming a Student-t

distribution, we consider two-steps and three-steps estimators. In this line of research,

Bauwens and Laurent (2005) and Jondeau and Rockinger (2005) also analyze two-steps

estimators. However, their approach is di¤erent in the sense that the �rst step of their

estimation is performed assuming Gaussian errors while we maintain the assumption

that the errors are distributed as a Student-t.

In this paper, we present various Monte Carlo experiments to compare the �nite

sample performance of the more e¢ cient one-step estimator with the two-steps and

three-steps estimators for di¤erent Vector Autoregressive Multivariate Conditional Cor-

relation GARCH models. In particular we consider VAR(1) - CCC, ECCC, DCC, cDCC

and RSDC - GARCH(1,1) models. When the data is normally distributed, we �nd that,

for the models considered and for the sample sizes usually encountered in �nancial econo-

metrics, di¤erences between the one-step and multiple steps estimators are negligible.

When we change the assumption on the distribution to a Student-t, we conclude that,

for some models, the di¤erences between the estimators could be relevant and therefore,

estimating the parameters in multiple steps might not be a good idea.

The comparison between one-step and two-steps estimators helps us to measure the

e¢ ciency loss when estimating the correlation parameters separately from the mean and

variance parameters; see Engle (2002) and Engle and Sheppard (2001). As we will see,

when the errors are assumed to be Gaussian, the small sample behavior of one-step and

33

Page 41: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

two-steps estimators is very similar. On the other hand, when the estimation is based

on the Student-t distribution, in some cases two-steps estimators deviate from one-step

estimators.

Comparing two-steps and three-steps estimators helps us to analyze the e¤ects of

separating the estimation of mean and variance parameters; see Bauwens et al. (2006).

Our results show that, when the errors are assumed to be Gaussian or Student-t, the

small sample behavior of two-steps and three-steps estimators is also very similar.

Some robustness checks have been carried out to study how the results change when

the true error distribution is di¤erent from the assumed one. Also, we analyze the

robustness of our �ndings to the model misspeci�cation.

One potential problem of our results is their external validity. For the Monte Carlo

experiments, we considered bivariate models and in some cases three time series. We

assume that what we �nd for two and three time series could be extrapolated for any

number k > 3 of time series.

The rest of the paper is structured as follows. Section 1.2 introduces the econometric

models of interest. One-step and multiple steps estimators for the previous models are

discussed in Section 1.3. Section 1.4 describes the Monte Carlo experiments and presents

a discussion of the results. Finally, Section 1.5 concludes the paper.

1.2 Econometric Models

For simplicity we consider a k-variate Vector Autoregressive (VAR) model of order one

for the mean equation with the following notation:

Yt = �+ �Yt�1 + "t (1.1)

where V ar("t jYt�1; :::Y1) = Ht, Yt is a k � 1 vector of returns, � is a k � 1 vectorof constants, � is a k� k matrix of autoregressive coe¢ cients and "t is a k� 1 vector oferror terms as follows.

Yt =hy1t y2t : : : ykt

i0; � =

h�1 �2 : : : �k

i0

� =

266664�11 �12 : : : �1k�21 �22 : : : �2k...

.... . .

...

�k1 �k2 : : : �kk

377775 ; "t =h"1t "2t : : : "kt

i0

34

Page 42: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

The model is stationary if all values of z solving equation (1.2) are outside of the unit

circle.

jIk � �zj = 0 (1.2)

The number of mean parameters in the coe¢ cient matrices � and � is k(k + 1):

However, sometimes � is assumed to be diagonal. In that case, there will be 2k mean

parameters to estimate.

The error term "t can be written as follows

"t =H1=2t �t

where �t is a k � 1 vector with E(�t) = 0 and V ar(�t) = Ik.

H t = DtRtDt (1.3)

where Dt = diag(h1=21t ; h

1=22t ; :::; h

1=2kt ) and Rt is the conditional correlation matrix such

that

H t = diag(h1=21t ; h

1=22t ; :::; h

1=2kt )

2666641 �12t : : : �1kt�12t 1 : : : �2kt...

.... . .

...

�1kt �2kt : : : 1

377775 diag(h1=21t ; h1=22t ; :::; h1=2kt )

=

266664h1t �12t

ph1th2t : : : �1kt

ph1thkt

�12tph1th2t h2t : : : �2kt

ph2thkt

......

. . ....

�1ktph1thkt �2kt

ph2thkt : : : hkt

377775From previous equations, given that the conditional correlation matrix, Rt, is always

positive de�nite, it is clear that as long as conditional variances, hit, are positive for

any i = 1; 2; : : : ; k, the conditional variance-covariance matrix, Ht, will be also positive

inde�nite. The conditional variances hit are assumed to follow a GARCH(1,1) model.

Then,

ht =W +A"(2)t�1 +Ght�1 (1.4)

where ht =hh1t h2t : : : hkt

i0and "(2)t =

h"21t "22t : : : "2kt

i0are k � 1 vectors of

conditional variances and squared errors respectively and W is a k � 1 and A and

G are k � k matrices of coe¢ cients. If A and G are restricted to be diagonal; see,

for example, Bollerslev (1990) and Engle (2002), then volatility spillovers cannot be

35

Page 43: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

captured. Alternatively, if A and G are non-diagonal; see, for example, Jeantheau

(1998) and Ling and McAleer (2003), then the model allows for volatility spillovers. In

the former case there will be 3k variance parameters to estimate, while in the latter that

number will be k(2k + 1).

Let us denote by !i = [W]i, �ij = [A]i;j and ij = [G]i;j. The following conditions,

in Jeantheau (1998), are su¢ cient for the variances to be always positive.

!i > 0 �ij > 0 ij > 0 for all i and j:

Nakatani and Teräsvirta (2008) provide necessary and su¢ cient conditions for ht to have

positive elements for all t. They show that o¤-diagonal elements in G could be negative

while Ht is still positive de�nite. This allows for negative volatility spillovers; see also

Conrad and Karanasos (2010). The model is stationary in covariance if the roots of

jIk � (A+G)zj = 0 are outside of the unit circle. In the diagonal case, this conditionis equivalent to

�ii + ii < 1 for all i:

This paper considers �ve conditional correlation GARCH models given by di¤erent

speci�cations of Rt in (1.3). The �rst and simplest one is the CCC-GARCH model

where the correlations are restricted to be constant over time. Bollerslev (1990) shows

that, under this restriction, the Gaussian ML estimator of the correlation matrix, Rt =

R, is equal to the matrix of sample correlations of the standardized residuals, i.e.

[bR]ij = b�ij = Pt b�itb�jtq�P

t b�2it� �Pt b�2jt� (1.5)

where �t = D�1t "t are the standardized errors. Notice that, in this case, the number of

correlation parameters to be estimated is only k(k�1)=2. The ECCC-GARCH model

of Jeantheau (1998) extends the CCC-GARCH model by allowing for volatility spillovers

as A and G in (1.4) are non-diagonal.

The third model we consider is the DCC-GARCH in which Rt = PtQtPt with

Pt = diag(Qt)�1=2 and Qt = (1� �1� �2)Q+ �1�t�1� 0t�1+ �2Qt�1 where Qt denotes the

covariance matrix and Q is the long run covariance (correlation) matrix. The correlation

targeting approach suggests replacing Q with the sample covariance matrix of the stan-

dardized errors �t; see Engle (2009). This procedure makes the estimation easier since it

reduces the number of correlation parameters from k(k � 1)=2 + 2 to only 2: �1 and �2.If both are non-negative scalars satisfying �1 + �2 < 1, then the correlation matrix, Rt;

will be positive de�nite. Hafner and Franses (2009) provide a more general de�nition of

the model where they consider coe¢ cient matrices instead of scalar coe¢ cients allow-

ing for di¤erent dynamics on di¤erent correlations. However, this increases the number

36

Page 44: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

of parameters considerably. For simplicity, we will focus on the set up with the scalar

coe¢ cients.

The DCC-GARCH model su¤ers from two problems. First, as Engle and Sheppard

(2001) and later Engle, Shephard and Sheppard (2008) point out, when k is large the

correlation targeting approach used in the DCC-GARCH model causes signi�cant bi-

ases to estimators of the parameters �1 and �2. To �x this problem, Engle, Shephard

and Sheppard (2008) suggest a composite likelihood estimator which is based on the

sum of the likelihoods obtained from smaller number of series and therefore avoid the

trap of high dimensionality. Another solution is proposed by Hafner and Reznikova

(2010), where the authors use shrinkage to target methods to eliminate these biases

asymptotically. The second problem, as Aielli (2008) argues, is that multiple steps es-

timators of DCC-GARCH models with correlation targeting are inconsistent since the

covariance matrix of the standardized residuals is not a consistent estimator of the long

run covariance matrix Q. As Caporin and McAleer (2009) point out as well, Aielli�s

conclusion follows from the fact that the unconditional expectations of Qt could di¤er

from the unconditional expectation of �t�1� 0t�1, the former being a covariance matrix

while the latter is a correlation matrix by construction. Aielli (2008) therefore suggests

a corrected version of the DCC-GARCH model, denoted by cDCC-GARCH, in whichQt = (1 � �1 � �2)Q + �1�

�t�1�

�0t�1 + �2Qt�1 where ��t = diag(Qt)

1=2�t. He argues that

in this model a natural estimator for the long run covariance matrix, Q, would be the

sample covariance matrix of ��t . The number of parameters to be estimated will be then

only 2 as in the DCC-GARCH model of Engle (2002).

The last model we will consider in this paper is the RSDC-GARCH. In this modelthe conditional correlations follow a switching regime driven by an unobserved Markov

chain such that they are �xed in each regime but may change across regimes. For simplic-

ity, we assume a two-states Markov process such thatRt, at any time t, could be equal to

either RL or RH , which stands for low and high state correlation matrices, respectively.

The transition probabilities matrix is given by � = ff�L;L; �H;Lg; f�L;H ; �H;Hgg, where�i;j is the probability of moving from state j to state i. Given that �j;j + �i;j = 1, the

number of correlation parameters is k(k � 1) + 2:In the next section we will discuss how to estimate the parameters of these models.

1.3 Estimation Procedures

Multivariate GARCH models can be estimated using maximum likelihood. However,

how the estimation is implemented in practice is one of the main problems. When the

number of parameters is large, it is common that optimization procedures fail to �nd

37

Page 45: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

the maximum of the likelihood function. In this section we will describe alternative

estimation methods which could be used in practice.

Let us start by introducing some notation. Let � = (�0; vec(�)0)0 be the vector

containing all the mean parameters in equation (1.1). The vector containing all the

variance parameters in (1.4) will be denoted by � = (W0; vec(A)0; vec(G)0)0 and will

be the one with all the correlation parameters, that will change according to the model

considered in each case. For example, = vech(R) for a CCC-GARCH model, while

for a cDCC-GARCH model, it will be = (vech(Q)0; �1; �2)0:1

1.3.1 Vector Autoregressive CCC, ECCC, DCC and cDCCGARCHmodels

In this section we analyze three possible procedures to estimate the parameters in equa-

tions (1.1) and (1.3), denoted by � = (�0; �0; 0)0 when Rt in equation (1.3) is speci�ed

by the CCC-GARCH, ECCC-GARCH, DCC-GARCH or the cDCC-GARCH model.

1.3.1.1 One-step Estimation

One possibility is to estimate all parameters of the model, � = (�0; �0; 0)0 simultane-

ously. If data is assumed to be normally distributed, this one-step estimator will be the

maximum likelihood estimator of � and it can be found by maximizing the multivariate

Gaussian log-likelihood function:

L(�) = �Tk2log(2�)� 1

2

TXt=2

(log jHtj+ "0tH�1t "t)

From equation (1.3) we have that

L(�) = �Tk2log(2�)� 1

2

TXt=2

log jDtRtDtj �1

2

TXt=2

"0t(DtRtDt)�1"t =

= �Tk2log(2�)� 1

2

TXt=2

log jRtj �TXt=2

log jDtj �1

2

TXt=2

� 0tR�1t �t (1.6)

If errors are assumed to follow a Student-t distribution, then the function to be

maximized will be the multivariate Student-t log-likelihood as in Fiorentini et al. (2003):

1Notice that the vec operator stacks the colums of a matrix while the vech operator stacks the

columns of the lower triangular part of a matrix.

38

Page 46: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

L(�; �) = T log

��

��k + 1

2�

��� T log

��

�1

2�

��� Tk

2log

�1� 2��

�� Tk

2log(�)

�TXt=2

�1

2log jHtj+

��k + 1

2�

�log

�1 +

1� 2��0tR

�1t �t

��(1.7)

where � is the inverse of the degrees of freedom as a measure of tail thickness. We assume

0 < � < 0:5 in order to have existence of the second order moments.

As Newey and Steigerwald (1997) pointed out, one concern when maximizing the

log-likelihood function based on a Student-t distribution is that estimators can be in-

consistent if the data does not follow a Student-t distribution. However, this will not be

the case as long as both the true and assumed distributions are symmetric.

Under Gaussianity assumption, one-step estimators of the parameters, �, obtained

by maximizing the corresponding likelihood function in (1.6), are consistent and asymp-

totically normal. In particular,

pn(b�n � �0) �A N(0; A�10 B0A

�10 )

where A0 is the negative expectation of the Hessian matrix evaluated at the true pa-

rameter vector �0 and B0 is the expectation of the outer product of the score vector

evaluated at �0 obtained from the likelihood function in (1.6).

If data is assumed to follow a Student-t distribution, one-step estimators of the

parameters, �, computed by maximizing the likelihood function in (1.7), are consistent

and asymptotically normal; see Fiorentini et al: (2003). It is important to note that

if the true distribution of the data is Student-t, Maximum Likelihood (ML) estimators

(in this case, one-step estimators using (1.7)) are more e¢ cient than Quasi-Maximum

Likelihood (QML) estimators obtained from maximizing the likelihood function under

the normality assumption given in (1.6).

1.3.1.2 Two-steps Estimation

It is possible to estimate the parameters of the model, � = (�0; �0; 0)0 in two steps

following Engle (2002) and Engle and Sheppard (2001). They proposed to use two-steps

when estimating the parameters of the DCC-GARCH model. The idea is to separate the

estimation of the correlation parameters, , from the mean and variance parameters, �

and � respectively.

In the �rst step, the mean and variance parameters, � and �, are estimated by

maximizing the Gaussian log-likelihood function in (1.6) in which the correlation matrix

39

Page 47: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Rt is replaced by the identity matrix. Therefore, in the �rst step, the function to be

maximized is the following:

L1(�; �) = �Tk

2log(2�)�

TXt=2

log jDtj �1

2

TXt=2

� 0t�t

If volatility spillovers are not allowed, i.e. A and G in equation (1.4) are restricted

to be diagonal, the �rst step estimation is equivalent to estimating k univariate models

separately; see Engle and Sheppard (2001) for details.

In the second step, given the estimates from the �rst step, b� and b�, the correlationcoe¢ cients are estimated by maximizing the following function

L2

� jb�; b�� = �1

2

TXt=2

�log jRtj+ b� 0tR�1

t b�t� (1.8)

where b�t are the standardized residuals obtained in the �rst step.Bollerslev (1990) shows that when the correlations are constant over time, i.e. in the

CCC-GARCH model, the correlation coe¢ cients estimator obtained in the second step

is equal to the sample correlation matrix of the standardized residuals given in (1.5).

If data is assumed to follow a normal distribution, two-steps estimators are also con-

sistent. Furthermore, Engle and Sheppard (2001) give conditions for the DCC-GARCH

model under which two-steps estimators are also asymptotically normal.

Next, we also consider two-steps estimation using the log-likelihood function based

on the Student-t distribution. Accordingly, in the �rst step the function to be maximized

is the multivariate Student-t log-likelihood function in (1.7) where the correlation matrix

Rt has been replaced by Ik. That is

L1(�; �; �) = T log

��

��k + 1

2�

��� T log

��

�1

2�

��� Tk

2log

�1� 2��

�� Tk

2log(�)

�TXt=2

�log jDtj+

��k + 1

2�

�log

�1 +

1� 2��0t�t

��Similar to the case of Gaussian innovations, when no volatility spillovers are con-

sidered, we employ univariate estimation for each series while when there are volatility

spillovers, we solve the multivariate problem. In the second step the correlation coe¢ -

cients are estimated by maximizing the following function

L2

� ; �jb�; b�� = � TX

t=2

�1

2log jRtj+

��k + 1

2�

�log

�1 +

1� 2�b� 0tR�1t b�t�� (1.9)

where b�t are the standardized residuals obtained in the �rst step.40

Page 48: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

1.3.1.3 Three-steps Estimation

An alternative procedure that we will analyze in this paper is the estimation of � =

(�0; �0; 0)0 in three steps. In the �rst step, the parameters of the mean equation, �,

are estimated assuming constant variance, i.e. hit = hi 8 t, and assuming that the

correlation matrix Rt is equal to the identity matrix for all t. Therefore, the function to

be maximized is the following

L1(�; hi) = �Tk

2log(2�)�

TXt=2

log jDj � 12

TXt=2

� 0t�t

where D = diag(h1=21 ; h

1=22 ; :::; h

1=2k ) contains the conditional standard deviations. This is

equivalent to OLS estimation for the univariate mean equations, given that the variance-

covariance matrix is block diagonal.

In the second step, the parameters of the variance equation, �, are estimated given

the estimates of the parameters of the mean equation, b�, and substituting the correlationmatrix Rt by Ik. This leads to the maximization of the following function:

L2

��jb�� = �Tk

2log(2�)�

TXt=2

log jDtj �1

2

TXt=2

~� 0t~�t

where ~�t = D�1t b"t and b"t are the residuals obtained in the �rst step. After obtainingb� and b� from the two previous steps, in the last step, the correlation coe¢ cients are

estimated by maximizing the following function

L3

� jb�; b�� = �1

2

TXt=2

�log jRtj+ b� 0tR�1

t b�t� (1.10)

where b�t are the standardized residuals obtained from the second step. When the cor-

relations are constant over time, the correlation coe¢ cients estimator obtained in the

third step is, as in the two steps estimation procedure, equal to the sample correlation

matrix of the standardized residuals given in (1.5).

Under the Gaussianity assumption, three-step estimators are also consistent and their

asymptotic distribution is very similar to that of the two-step estimators; see Engle and

Sheppard (2001).

When using the log-likelihood function based on the Student-t distribution, the three

steps estimation is performed in a similar manner. In the �rst step, the mean parameters,

�, are estimated along with the inverse of the degrees of freedom assuming homoskedastic

innovations, i.e. hit = hi 8 t. The function to be maximized in the �rst step is thefollowing

L1(�; �; hi) = T log

��

��k + 1

2�

��� T log

��

�1

2�

��� Tk

2log

�1� 2��

�� Tk

2log(�)

41

Page 49: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

�TXt=2

�log jDj+

��k + 1

2�

�log

�1 +

1� 2��0t�t

��In the second step, the variance parameters, �, and the inverse of the degrees of freedom,

�, are estimated conditional on the mean parameter estimates, b�. The function to bemaximized is the following

L2

��; �jb�� = T log

��

��k + 1

2�

��� T log

��

�1

2�

��� Tk

2log

�1� 2��

�� Tk

2log(�)

�TXt=2

�log jDtj+

��k + 1

2�

�log

�1 +

1� 2� ~�0t~�t

��Finally, in the third step, the correlation coe¢ cients and the inverse of the degrees of

freedom are estimated by maximizing the following function

L3

� ; �jb�; b�� = � TX

t=2

�1

2log jRtj+

��k + 1

2�

�log

�1 +

1� 2�b� 0tR�1t b�t�� (1.11)

where b�t are the standardized residuals obtained in the second step.1.3.2 Vector Autoregressive RSDC-GARCH model

The mean, variance and correlation parameters � = (�0; �0; 0)0 when Rt in equation

(1.3) is speci�ed by the RSDC-GARCH model can also be estimated in multiple steps.

Let us denote by t�1 all previous information up to t�1 and let f(�) be the likelihoodfunction obtained under the assumption of either a Gaussian or a Student-t distribution.

The one-step estimator of � would be obtained by maximizing the following log-likelihood

function:

L(�) =TXt=2

log f(Ytjt�1) (1.12)

where

f (Ytjt�1) = f (YtjSt = L;t�1)�Pr (St = Ljt�1)+f (YtjSt = H;t�1)�Pr (St = Hjt�1)

The function f (YtjSt;t�1) is the likelihood function of Yt conditional on the state St,that can be L or H, and all previous information. The function f (Ytjt�1) is thelikelihood when the state is marginalized out. On the other hand, Pr (Stjt�1) denotesthe probability of being in a certain state, St, conditional on previous information. This

probability can be computed using Hamilton �lter (Hamilton, 1994, Chapter 22). In the

case of a model with only two states, as the one analyzed in this section, Pr(Stjt�1) isgiven by:

42

Page 50: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Pr�St= Ljt�1

�=(1� �H;H)+ (�L;L+�H;H�1)�

� f(Y t�1jSt�1=L;t�2)�Pr (St�1=Ljt�2)f(Y t�1jSt�1=L;t�2)�Pr (St�1=Ljt�2)+f(Y t�1jSt�1=H;t�2)�(1�Pr(St�1=Ljt�2))

and consequently, Pr (St = Hjt�1) = 1 � Pr (St = Ljt�1). The long run probabilitiesfor each state are used as initial conditions for the iterative process.

Alternatively, the estimation of � = (�0; �0; 0)0 can be done in two steps. In the

�rst step, estimates of the mean and variance parameters are obtained from maximizing

the function in (1.12) where the correlation matrix Rt is substituted by the identity

matrix. In the second step, the estimation of the correlation parameters will be done by

maximizing the log-likelihood function taking the mean and variance parameter estimates

from previous step as given.

Another alternative is the estimation of � = (�0; �0; 0)0 in three steps. In the �rst

step, estimates of the mean parameters are obtained from maximizing the function in

(1.12) where the variance and correlation matrix Rt are assumed to be constant. In

the second step, variance parameters are estimated conditional on the mean parameters

obtained in the previous step, and �nally, the estimation of the correlation parameters

will be done by maximizing the log-likelihood function taking the mean and variance

parameter estimates from the two previous steps as given.

Pelletier (2006) estimates a RSDC-GARCH model by using data on four exchange

rate series. After demeaning the data, the correlation parameters are separately es-

timated from the variance parameters. This corresponds to what we have called the

three-steps estimation procedure without paying much attention to the mean parame-

ters or a two-steps estimation method for a zero mean series.

Finally, the asymptotic properties of the one-step and multiple steps estimators of the

RSDC-GARCH model under the Gaussianity assumption are similar and can be found

in Pelletier (2006).

A summary of the well-known theoretical results about ML estimation is shown in

the following table

Distribution EstimatorTrue Assumed One-step Two-steps Three-steps

Gaussian Gaussian Consistent Consistent Consistent

Student-t Student-t Consistent . .

Student-t Gaussian Consistent Consistent Consistent

Gaussian Student-t Consistent . .

43

Page 51: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

In the next section we will con�rm the previous theoretical results in �nite samples

and study the cases for which no theory is provided, more speci�cally, what the be-

havior of multiple steps estimators is when a Student-t distribution is assumed for the

innovations.

1.4 Monte Carlo Experiments

In this section we analyze the �nite sample performance of one-step, two-steps and

three-steps estimators when they are used to estimate the parameters of �rst order Vec-

tor Autoregressive CCC, ECCC, DCC, cDCC and RSDC-GARCH models. To compare

di¤erent estimators, true parameter values are reported together with the Monte Carlo

mean and standard deviation of the parameter estimates. In addition, kernel density

estimates of di¤erent estimators of each parameter are plotted to compare the perfor-

mance of multiple steps estimators for each sample size. Since the main interest of

practitioners in this area is not only the estimation of the parameters but more impor-

tantly, the estimation of the underlying conditional variances and covariances, we will

also look at the estimates of volatilities and correlations to compare di¤erent estima-

tors. For RSDC-GARCH models the correlations are driven by an unobservable Markov

chain and therefore, estimates of the correlation parameters will be analyzed instead of

correlation estimates.

We have carried out Monte Carlo experiments in which 1000 time series vectors of

dimension 2 or 3 for sample sizes T = 200; 500; 1000 and 5000 are generated according to

the relevant model and distribution function for the innovations. Then, the parameters

of the model are estimated using one-step, two-steps and three-steps estimators assuming

either a Gaussian or a Student-t distribution for the errors. All simulations are performed

by MATLAB computer language.

Next, we describe in detail the four di¤erent experiments we have carried out. In

the �rst one, we simulate time series vectors following the �ve vector autoregressive

multivariate GARCH models considered assuming �rst a Gaussian distribution for the

innovations and then, a Student-t distribution. Parameters, volatilities and correlations

are then estimated assuming the true data generating process and di¤erences between

one-step and multiple steps estimators are analyzed. In a second experiment we study

how robust the results obtained in the previous experiment are to the error distribu-

tion. With this objective, we simulate data from the �ve models considered assuming

a Gaussian distribution for the innovations and estimate the true model under the as-

sumption that errors follow a Student-t distribution. In addition, time series vectors are

generated using a Student-t distribution for the errors and then, true models are esti-

44

Page 52: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

mated under the Gaussianity assumption. In a third experiment we analyze how good

or bad volatilities and correlations generated from a given model can be estimated using

a di¤erent model. Finally, in the fourth and last experiment we use a skewed Student-t

distribution to generate the data and estimate the true model under the assumption that

errors follow a symmetric distribution, Gaussian or Student-t.

1.4.1 Innovations Distributed as a Gaussian or Student-t

We start by considering the case in which data is generated and estimated assuming

a normal distribution. Let us consider a bivariate model given by equations (1.1) to

(1.3) with a diagonal matrix � and Rt = R as given by the CCC-GARCH model. The

unconditional mean and variance are �xed to 1. The mean and variance persistences

are set to be di¤erent from each other but quite high. Therefore, in this basic bivariate

model, we have 11 parameters to estimate. The true parameter values as well as Monte

Carlo means and standard deviations of one-step and multiple steps estimators are given

in Table 1.1. Two main patterns, as expected for consistent estimators, emerge from this

table. First, the di¤erences between the Monte Carlo means and true parameter values

go to zero as the sample size increases. Second, the Monte Carlo standard deviations of

the three estimators considered decrease as the sample size increases. It is remarkable the

similarities of the Monte Carlo means and standard deviations of the three estimators. In

general, it seems that the one-step estimator provides estimates with Monte Carlo means

slightly closer to the parameter values and Monte Carlo standard deviations slightly

smaller than the ones obtained for multiple-steps. However, the di¤erences among the

three estimators are practically negligible. On the other hand, we cannot conclude that

in �nite samples, multiple steps estimators over/under estimate the parameters in a

systematic manner. In order to graphically illustrate the distribution, in �nite samples,

of the di¤erent estimators, Figure 1.1 plots kernel density estimates obtained from one-

step, two-steps and three-steps estimators for the parameter values considered in Table

1.1 and sample size T = 500. As the �gure shows, the three estimators give very similar

results, even for relatively small sample sizes.

In order to check the robustness of the results, we consider di¤erent scenarios by

changing the parameter values in Table 1.1 and repeat the Monte Carlo experiment.

Table 1.2 contains the new parameter values and experiments considered. First, we

consider the case in which the unconditional variance of one of the series is more than

six times the other (Experiment 2). In addition, we repeat the experiment with the

unconditional mean of one series being larger than the other (Experiment 3). We also

consider the case in which the coe¢ cients of the �rst variance equation are changed

45

Page 53: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

(Experiment 4). The other case we analyze is when interactions among the series are

allowed (Experiment 5). Finally, we consider a trivariate model (Experiment 6). The

results obtained from all these experiments can be summarized in tables and graphs

similar to Table 1.1 and Figure 1.1. All the results are similar to the ones discussed

before and summarized in Table 1.1 and they are not included in the paper to save space

but they are available from the authors upon request.

Since, as mentioned before, the main interest of practitioners in this area is not only

the estimation of the parameters but more importantly, the estimation of the underlying

conditional variances and covariances, we have also calculated the estimated volatilities

and correlations obtained from one-step, two-steps and three-steps estimators. For a

sample size T , let us denote by bhsi;t the estimated volatilities of series i at time t obtainedfrom estimator s (one-step, two-steps or three-steps) and denote by hi;t the true volatility

of series i at time t. Then, the di¤erence between the estimated and the true volatility

of series i could be summarized for each estimator s by

�bhsi = 1

T

TXt=1

�bhsi;t � hi;t

�(1.13)

Similarly, the di¤erence between the estimated and the true correlation of series i and j

could be summarized for each estimator s by

�bpsij = 1

T

TXt=1

�bpsij;t � pij;t�

(1.14)

Figure 1.2 plots kernel density estimates of the di¤erences between the estimated and

the true volatilities and correlations measured as in (1.13) and (1.14) for a VAR(1)-CCC-

GARCH(1,1) model with parameter values as in Experiment 1 (see Table 1.1) and sample

sizes T = 200, T = 500 and T = 1000. As the graph illustrates, one-step, two-steps and

three-steps estimators provide very similar estimated volatilities and correlations. As the

sample size increases, di¤erences between estimated and true volatilities and correlations

are becoming closer to zero. Alternatively, we have also computed the relative deviations

of the estimated volatilities and correlations from their true values, i.e.bhsi;t�hi;thi;t

;bpsij;t�pij;tpij;t

and the corresponding plots are very similar to the ones in Figure 1.2.

We have repeated the Monte Carlo experiments simulating the data from di¤erent

models. Kernel density estimates of the di¤erences between the estimated and the true

volatilities and correlations in VAR(1)-DCC, cDCC, ECCC and RSDC-GARCH(1,1)

models were computed. The parameter values used in this case for the mean equation

(1.1), i.e. �;� are the same as the ones in Table 1.1. The variance parameters in equation

46

Page 54: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

(1.4) are also the same as the ones in Table 1.1 for VAR(1)-DCC, cDCC and RSDC-

GARCH(1,1) models. For the VAR(1)-ECCC-GARCH(1,1) model they are !1 = 0:2,

!2 = 0:3, �11 = 0:25, �12 = 0:05, �21 = 0:10, �22 = 0:20, 11 = 0:50, 12 = 0:10,

21 = 0:05 and 22 = 0:40. Finally, the correlation parameter is the same as the one

in Table 1.1 for the VAR(1)-ECCC-GARCH(1,1) model. Other correlation parameters

are �Q12 = 0:20, �1 = 0:04 and �2 = 0:94 for the VAR(1)-DCC and cDCC-GARCH(1,1)

models, and �LL = 0:80, �HH = 0:90, RL12 = 0:20 and RH12 = 0:80 for the VAR(1)-RSDC-

GARCH(1,1) model. Since the graphs are very similar to Figure 1.2 they are not included

in the paper. Consequently, our results suggest that under normal innovations, using

multiple step estimators is a reasonable strategy to estimate volatilities and correlations

in all the models considered. This �nding supports, for �nite samples, the theoretical

asymptotic results summarized in Section 1.3.

Next, we consider the case in which data is generated and estimated assuming a

Student-t distribution and we repeat the simulations for all the models. The num-

ber of degrees of freedom used in the simulations is 1�= 5. For DCC-GARCH and

cDCC-GARCH models the results are similar to the ones obtained under the normal

assumption. Figure 1.3 contains, as an example, kernel density estimates of the dif-

ferences between the estimated and the true volatilities and correlations in a VAR(1)-

DCC-GARCH(1,1) model. As we can see, one-step, two-steps and three-steps estimators

provide volatilities and correlations estimates which are very close to each other. These

�ndings are in line with the results in Bauwens and Laurent (2005) and Jondeau and

Rockinger (2005) who show that, for the DCC-GARCH model, estimating mean and

variance parameters separately from the correlation parameters provides similar out-

comes to one-step estimation. In the case of the cDCC-GARCH model, results are very

similar and the graphs are not included to save space.

However, for three of the models considered, namely the VAR(1)-CCC-GARCH(1,1),

VAR(1)-ECCC-GARCH(1,1) and VAR(1)-RSDC-GARCH(1,1) models, important dif-

ferences appear when estimating the correlations (or correlation parameters and tran-

sition probabilities for the RSDC-GARCH model) with di¤erent estimators. In this

case, one-step estimator provides the best estimates. Figure 1.4 plots kernel density

estimates of the di¤erences between the estimated and the true volatilities and corre-

lations in the VAR(1)-CCC-GARCH(1,1) model. Volatilities and correlations seem to

be underestimated when using multiple steps estimators. The �gure corresponding to

the VAR(1)-ECCC-GARCH model is very similar to Figure 1.4 and it is not included in

the paper. For the RSDC-GARCH model, Figure 1.5 contains kernel density estimates

of the di¤erences between the estimated and the true volatilities and of the correlation

parameters and the transition probabilities, instead of di¤erences from estimated to true

47

Page 55: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

correlations. As we can see, estimates obtained with multiple steps estimators seem to be

far from the ones obtained with the one-step estimator. Therefore, our results suggest

that when innovations are distributed as a Student-t, using multiple steps estimators

under the correct error distribution might not be a good idea.

1.4.2 Robustness to Error Distribution

We are also interested in analyzing how robust the di¤erent models and estimators are

to the distribution of innovations. In that sense, we have carried out an experiment

which consists of generating data from the models considered with errors following a

Gaussian distribution and estimating the true model assuming a Student-t distribution

for the innovations. In another experiment, we simulate data in which innovations follow

a Student-t distribution and estimate the true model assuming Gaussian errors.

Figure 1.6 contains kernel density estimates of the di¤erences between the estimated

and the true volatilities and correlations in a VAR(1)-ECCC-GARCH(1,1) model when

the data is generated using a Student-t distribution for the errors and estimated assuming

Gaussian errors. Di¤erences between one-step and multiple steps seem to be, again,

negligible. Compared to the case in which the true and assumed error distributions are

both normal, the estimated densities in Figure 1.6 have fatter tails. Finally, the results

illustrate how the density estimates of the di¤erences between the estimated and the

true volatilities and correlations tend to zero as the sample size increases. Similar �gures

are obtained for the other four models.

When we simulate the data with Gaussian errors and estimate the model under the

Student-t distribution assumption, for the models considered2, i.e. VAR(1)-DCC and

cDCC-GARCH(1,1) models, �gures look very similar to the case when the true and the

assumed distribution are both normal. Figure 1.7 shows the results for the VAR(1)-DCC-

GARCH(1,1) model in this case. This similarity makes sense since Student-t distribution

has an extra parameter, namely the degrees of freedom, such that this distribution could

approximate Gaussian distribution when this parameter is su¢ ciently large. In fact, in

the experiments for this last case, we obtained very large estimates for the degrees of

freedom of the Student-t distribution.2Models VAR(1)-CCC, ECCC and RSDC-GARCH(1,1) have been excluded since, as we have pre-

viously seen, multiple steps estimators do not perform well when the estimation is done under the

assumption of Student-t innovations.

48

Page 56: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

1.4.3 Robustness to Model

The next question we address is how bad (or well) volatilities and correlations can be

estimated when the model is misspeci�ed. We analyze the di¤erences between true

conditional volatilities and correlations and the estimated ones when the model used to

generate the data is di¤erent from the estimated model. To perform this experiment,

we take the parameter values from real data. We have considered daily returns of three

European stock market indices, BEL-20 (Brussels), DAX (Frankfurt) and FTSE-100

(London) for the period January 8, 2002 - April 30, 2009. The table below contains

some descriptive statistics of the returns series, computed as 100� log�

ptpt�1

�, of sample

size 1774.

Mean SD Skewness Kurtosis

BEL-20 -0.02 1.45 -0.05 9.12

DAX -0.01 1.74 0.15 7.80

FTSE-100 -0.01 1.41 -0.03 10.30

Using the returns series, we estimate all the �ve models considered, i.e. VAR(1)- CCC,

ECCC, DCC, cDCC and RSDC-GARCH models with no mean transmissions assuming

Gaussian errors. The results are given in Table 1.3 in which series 1, 2 and 3 correspond

to BEL-20, DAX and FTSE-100, respectively.

As we can see in the table, three-steps estimates of the mean parameters are the same,

as expected, since the mean equation is the same for all the models. Two-steps mean

parameter estimates are also very similar, with the exception of the ECCC-GARCH

model, since the variance equation is the same across the other 4 models. Correlation

estimates for the CCC and ECCC-GARCH models are also very similar. The correlation

parameter estimates of the dynamic correlation models are signi�cantly di¤erent from

zero, suggesting that correlations are not constant during this period. When looking at

the other parameters, as expected, the di¤erences between one-step, two-steps and three-

steps estimates are not very large. Figures 8 and 9 plot the volatilities and correlations

estimates respectively. We can see that estimates obtained using di¤erent estimators

are very similar. The graphs containing the correlation estimates obtained from DCC

and cDCC models show that the correlation between the returns of these markets in the

period analyzed has been changing over time.

For the Monte Carlo experiments, we take the one-step estimates obtained in this

empirical exercise as the true parameter values to generate the data sets. Given that

there are �ve models, it adds up to 25 di¤erent experiments. For each model, we gen-

erate 1000 trivariate time series vectors of sample size 1000 and given each of the time

series vectors, we estimate the �ve models considered. We perform the experiments as-

49

Page 57: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

suming a Gaussian error distribution for generating the data and also for estimating the

parameters.

The results are reported in Table 1.4, in which the models used to generate the

data appear in the �rst column and the estimated models are in the second row. For

each series, each replication and at each time t, the relative di¤erence between estimated

volatility (correlation) and true volatility (correlation) is calculated and then the average

is computed across the number of series k, replicationsR and sample size T . For example,

for the volatilities, the relative di¤erence between the estimated and the true ones is given

by the ratio

ratiotrueh;est =1

TRk

TXt=1

RXr=1

kXi=1

bhri;t � hi;t

hi;t

!(1.15)

where in our case, k = 3, R = 1000 and T = 1000. The ratios corresponding to

the one-step estimation of a model that is correctly speci�ed is set to be equal to 0.

Therefore, the ratios reported in Table 1.4 are relative ratios and they should be read

as the performance of the corresponding estimator in a certain model when estimating

the volatility (correlation), relative to the one-step estimator in the correctly speci�ed

model. The results are reported in three parts: volatilities, correlations and covariances.

In general, we can see that the ratios are all very close to zero, indicating that, on average,

volatilities and correlations are relatively well estimated even when using a misspeci�ed

model.

More speci�cally, looking at the results for the volatilities, we can see that the largest

ratio is 0:0165 and it appears when the true volatilities are generated by the VAR(1)-

cDCC-GARCH model and estimated by the VAR(1)-ECCC-GARCH in one step. Other

large ratios correspond to three-steps estimators of all the models considered when the

data have been generated by the VAR(1)-ECCC-GARCH model. For example, when the

true volatilities are generated by the VAR(1)-ECCC-GARCH model and estimated by

the VAR(1)-CCC-GARCH in three steps, the ratio is 0:0137, when they are estimated

by the VAR(1)-DCC-GARCH, the ratio is 0:0154 and when using the VAR(1)-cDCC-

GARCH and the VAR(1)-RSDC-GARCH models to estimate the volatilities, the ratio

is 0:0141 and 0:0136 respectively. The reason could be that with the exception of the

correlation structure, all the models considered are nested in the VAR(1)-ECCC-GARCH

model, being this one more general and therefore, the rest of the models have problems

in explaining the volatilities generated by the VAR(1)-ECCC-GARCH model. On the

other hand, the true volatilities generated by the VAR(1)-CCC-GARCH model can be

well estimated by the other models since CCC-GARCH is nested within all of them.

When looking at the results for the correlations, we can see that the largest ratio

50

Page 58: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

is 0:0071 and it appears when the true correlations are generated by the VAR(1)-DCC-

GARCH model and estimated by the VAR(1)-ECCC-GARCH in one step. As expected,

when the correlations are generated by a dynamic correlation model, their estimation is

better when assuming another dynamic correlation model than when a constant corre-

lation model is used. Also expected is the fact that the VAR(1)-ECCC-GARCH model

produces better estimates of the correlations generated by the VAR(1)-CCC-GARCH

model than the estimates produced by the VAR(1)-CCC-GARCH model when estimat-

ing the correlations generated by the VAR(1)-ECCC-GARCH model. The reason could

be that the VAR(1)-CCC-GARCH model can not capture the volatility spillovers which

indirectly can a¤ect correlations.

In general terms, when volatilities and correlations which have been generated by a

particular model are estimated by another model, their estimation seem to get worse as

the number of steps used in the estimation increase. On the other hand, the average

ratios do not deviate from zero more than 2 % in most of the cases. An interpretation of

this result could be that, on average, multiple steps estimates of volatilities (correlations)

deviate from the corresponding true volatilities (correlations) at most 2 % more than

the amount that one-step estimates of the correctly speci�ed model do.

1.4.4 Innovations Distributed as a Skewed Student-t

In this section, we analyze the case in which innovations follow a skewed Student-t

distribution. For this purpose, we generate random vectors from a skewed multivari-

ate Student-t distribution following Bauwens and Laurent (2005). At each time t; a k

dimensional random vector ��t is given by:

��t = �(�)jxtjjxtj = (jx1tj; jx2tj; :::; jxktj)0

where xt follows a multivariate Student-t distribution with zero mean and unit vari-

ance and �(�) is a k � k diagonal matrix such that:

�(�) = ��� (Ik � �)��1

� = diag(�)

� = (�1; �2; :::; �k); with �i > 0

� = diag(� 1; � 2; :::; � k); with � i 2 f0; 1g

� i v Ber

��2i

1 + �2i

51

Page 59: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

where Ber�

�2i1+�2i

�is a Bernoulli distribution with probability of success �2i

1+�2iand the

elements of � are mutually independent. Given that in the GARCH set up, the elements

of �t are zero mean random numbers with unit variance, ��t should be standardized such

that �it =��it�mi

siwhere:

mi =��v�12

�pv � 2

p���v2

� ��i �

1

�i

�s2i =

��2i �

1

�2i� 1��m2

i

We �rst generate bivariate series with skewness parameters �1 = �2 = exp(0:4) for

both series, which implies a skewness of 1:5. Later we take �1 = exp(0:4) and �2 =

exp(�0:7) (implying a skewness of �2 for the second series) to see how the results

change. Notice that when �1 = �2 = 1, we have a symmetric multivariate Student-t

distribution.

For the Monte Carlo experiments we use the estimates reported in Table 1.53 as the

true parameter values. We generate 1000 bivariate time series vectors of sample size

equal to 1000. Innovations are generated from a skewed Student-t distribution with

skewness 1:5 for both series or with skewness f1:5;�2g for the �rst and second seriesrespectively and with degrees of freedom 5. Then we estimate the true model assuming

Gaussian or Student-t errors but ignoring skewness.

Figure 1.10 plots the results of the Monte Carlo experiment when data has been gen-

erated using a positively skewed Student-t distribution with the same skewness for both

series and estimated assuming Gaussian innovations. In this �gure, the rows correspond

to a di¤erent model and the columns represent the kernel densities estimates of the rel-

ative deviations of estimated volatilities and correlations from the true ones calculated

respectively as:4

�bhsi = 1

T

TXt=1

(bhsi;t � hi;t

hi;t

)(1.16)

�bpsi = 1

T

TXt=1

�bpsi;t � pi;t

pi;t

�(1.17)

As we can see, for all the models, the kernel densities of the relative deviations of

one-step and multiple steps estimates of volatilities (correlations) from the true ones

3Table 5 contains parameter estimates for the 5 models considered using daily returns of the BEL-20

and DAX stock market indices under the assumption that innovations are distributed as a Student-t.4Relative deviations are prefered to absolute ones, although conclusions do not change if absolute

deviations are plotted.

52

Page 60: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

follow each other closely. It seems that the large positive skewness assumed in the data

generating process results in overestimation of the conditional correlations by around

2-3 % in each model while the conditional volatility estimates don�t seem to be a¤ected

much.

Figure 1.11 plots the same estimates as Figure 1.10 but now the estimation has been

done assuming a Student-t distribution for the innovations. Similar conclusions can be

made about the one step correlation estimates for all models. We notice that in the

CCC and ECCC-GARCH models, the di¤erences between one step and multiple steps

estimates of the correlations are very large.

On the other hand, when the series have di¤erent skewness and the estimation is

performed assuming Gaussian errors, volatilities and correlations seem to be underesti-

mated in all the �ve models considered. The �gures corresponding to di¤erent skewness

are not included in the paper to save space. One-step correlation estimates seem to be

slightly less a¤ected by the skewness than the multiple step estimates. As well when

the estimation is based on Student-t errors, the one-step estimators underestimate the

volatilities and correlations. In general, one-step estimators are less a¤ected by the

skewness than multiple steps estimators, except for the volatility estimates of ECCC-

GARCH model. In the case of DCC and cDCC-GARCH models, the multiple steps

estimates deviate slightly from the one step estimates. It should be noted that one of

the series have higher skewness when � = fexp(0:4); exp(�0:7)g compared to the casewhen � = fexp(0:4); exp(0:4)g and this could be the reason behind the underestimationof volatilities and correlations with both Gaussian and Student-t errors.

Newey and Steigerwald (1997) suggest that when the data is not symmetrically dis-

tributed, the one-step QML method based on Student-t errors do not produce consistent

estimators in general. Therefore in this case what is expected is that even though the

estimation is performed in one-step, the estimates could be far from the true values and

the di¤erences might not disappear in larger samples. In our experiments with a data

of length T = 1000, we see that one-step QML estimators based on Student-t errors are

over/underestimating the volatilities and correlations. We would expect that this result

holds for larger datasets produced with the same parameter values and skewness.

For the RSDC-GARCH model, multiple steps estimators of conditional volatilities

behave similar to the one-step estimators as illustrated in Figure 1.5 and this does not

seem to depend on the skewness. In this model, the conditional correlations follow

an unobserved Markov Chain, therefore instead of reporting correlation estimates, we

report the correlation parameter estimates, RL, RH , �LL, �HH together with their true

values. Figure 1.12 plots kernel density estimates of estimated correlation parameters

when the series have the same skewness and errors are assumed to follow a Gaussian or

53

Page 61: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Student-t distribution. As we can see, when the estimations are based on Gaussian errors,

the one-step and multiple steps estimators of the correlation parameters are behaving

similarly when the series have the same skewness. Although the corresponding �gure is

not included in the paper, when the skewness of both series is di¤erent, the multiple steps

estimates of RL and �LL deviate slightly from the one step estimates. When Student-t

errors are used in the estimation, the di¤erences between the behavior of one-step and

multiple steps estimators become more apparent.

Finally, when the data generating process is symmetric and the estimation is based

on Gaussian errors, the kernel density estimates of relative di¤erences between one-step

and multiple steps estimates of the volatilities and correlations from the true values are

very close to each other for all the models as was illustrated in Figure 1.6. Also when

the estimation is based on Student-t errors, the multiple steps correlation estimates of

CCC and ECCC-GARCH models are far from the true ones as was shown in Figure

1.4. The multiple steps estimates of DCC and cDCC-GARCH models of volatilities and

correlations follow closely the one-step estimates and are not far from the true values as

in Figure 1.3. These results are also not reported in the paper, but are available from

the authors upon request.

To sum up, we have seen that even though the data generating process is skewed,

when the estimation is based on Gaussian errors, multiple-steps estimators could still be

preferred to one-step estimators given that their performances are very similar. Given

that the estimation based on Gaussian errors is a Quasi-maximum Likelihood estimation,

as Bollerslev and Wooldridge (1992) show, it produces consistent estimators. Therefore

our results from Section 1.4.1 and 1.4.2 still prevail in the existence of skewness. On the

other hand, as noted by Newey and Steigerwald (1997), if the data generating process is

skewed, the one-step QML estimator based on Student-t errors do not produce consistent

estimators. In conformance with this, we have found in this section that the correlations

are over-estimated in all models with one-step and also with multiple steps estimators.

Hence, when the true distribution is skewed, one should be cautious in using one-step or

multiple-steps estimators based on Student-t errors.

1.5 Conclusions

In this paper we have carried out several Monte Carlo experiments to study the perfor-

mance in �nite samples of one-step and multiple steps estimators of Vector Autoregressive

Multivariate Conditional Correlation GARCH models. Although one-step estimators

are preferable because of their theoretical properties, they are not always feasible and

therefore, estimating the parameters of a model in multiple steps could be a reasonable

54

Page 62: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

alternative. Our results indicate that, when the distribution of the errors is Gaussian,

multiple steps estimators have a very good performance even in small samples. However,

when the estimation is based on Student-t errors, we �nd that multiple steps estimators

do not always perform well even when the data follows a Student-t distribution.

Our results also show that if the true error distribution is Student-t but estima-

tion is based on the Gaussian distribution, kernel density estimates of the estimates of

volatility and correlation obtained from one-step and multiple steps estimators are quite

similar. Analogously, if the true error distribution is Gaussian but estimation is based

on the Student-t distribution, we obtain the same results as when the true and assumed

distribution is a Student-t.

We also analyze the robustness of our results to the misspeci�cation of the model

when the estimation is based on Gaussian errors. We �nd that, on average, volatilities

and correlations are relatively well estimated even when using a misspeci�ed model. The

multiple-steps estimates of volatilities (correlations) deviate from the true values at most

by 2 % more than what one-step estimates of the correctly speci�ed model do.

Finally, when errors are distributed as a skewed Student-t but the estimation is

performed assuming non-skewed Gaussian or Student-t errors, we �nd that kernel density

estimates of the di¤erence between one-steps and multiple steps estimates of volatilities

and correlations from their true values are very similar when the estimation is based

on a Gaussian distribution. However, this is not true when the estimation is based

on Student-t errors. In any case, when the true distribution is skewed, one should be

cautious in using one-step or multiple-steps estimators based on Student-t errors since

both are inconsistent estimators.

55

Page 63: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Bibliography

[1] Aielli, G. P. (2008). Consistent estimation of large scale dynamic conditional corre-

lations. Unpublished paper: Department of Economics, Statistics, Mathematics and

Sociology, University of Messina. Working paper n. 47.

[2] Bauwens, L., Laurent, S. (2005), A New Class of Multivariate Skew Densities, With

Application to Generalized Autoregressive Conditional Heteroskedasticity Models,

Journal of Business and Economics Statistics, 23(3), pp 346-354.

[3] Bauwens, L., Laurent, S. and J.V.K. Rombouts (2006). Multivariate GARCHModels:

A Survey. Journal of Applied Econometrics, 21, 79-109.

[4] Bollerslev, T. (1990). Modelling the Coherence in Short-Run Nominal Exchange

Rates: A Multivariate Generalized ARCH Model. The Review of Economics and Sta-

tistics, 72, 498-505.

[5] Bollerslev, T. and J. M. Wooldridge (1992). Quasi Maximum Likelihood Estima-

tion and Inference in Dynamic Models with time Varying Covariances. Econometric

Reviews, 11, 143-172.

[6] Caporin, M. and M. McAleer (2009). Do we really need both BEKK and DCC? A

tale of two covariance models. Department of Economics, University of Padova.

[7] Conrad, C. and M. Karanasos (2010). Negative volatility spillovers in the unrestricted

ECCC-GARCH model. Econometric Theory, 26, pp 838-862

[8] Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate

Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Busi-

ness and Economic Statistics, 20, 339-350.

[9] Engle,R. (2009) Anticipating Correlations: A New Paradigm for Risk Management.

Princeton University Press

56

Page 64: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[10] Engle, R., C.W.J. Granger and D. Kraft (1984). Combining competing forecasts of

in�ation using a bivariate ARCHmodel. Journal of Economics Dynamics and Control,

8, 151-165.

[11] Engle, R. and K. Sheppard (2001). Theoretical and Empirical Properties of Dynamic

Conditional Correlation Multivariate GARCH. NBER Working Paper, No: W8554.

[12] Engle, R., N. Shephard and K. Sheppard (2008). Fitting and Testing Vast Dimen-

sional Time-Varying Covariance Models. NYU Working Paper No. FIN-07-046.

[13] Fiorentini, G., E. Sentana and G. Calzolari (2003). Maximum likelihood estimation

and inference in multivariate conditionally heteroskedastic dynamic regression models

with Student-t innovations. Journal of Business and Economic Statistics, 21, 532-546.

[14] Hafner, C.M. and P.H. Franses (2009). A Generalized Dynamic Conditional Corre-

lation Model: Simulation and Application to Many Assets. Econometrics Reviews, 28,

6.

[15] Hafner C.M. and Reznikova, O. (2010) On the estimatiion of dynamic conditional

correlation models, Computational Statistics and Data Analysis, forthcoming.

[16] Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.

[17] Harvey A., E. Ruiz and N. Shephard (1992). Unobservable component time series

models with ARCH disturbances. Journal of Econometrics, 52: 129�158.

[18] Jeantheau, T. (1998). Strong Consistency of Estimators For Multivariate ARCH

Models. Econometric Theory, 14, 70-86.

[19] Jondeau, E., Rockinger, M. (2005). Conditional asset allocation under non-

normality: how costly is the mean-variance criterion? EFA 2005 Moscow Meetings,

Discussion Paper.

[20] Ling, S. and M. McAleer (2003). Asymptotic Theory for a Vector ARMA-GARCH

Model. Econometric Theory, 19, 280-310.

[21] Longin, F. and B. Solnik (1995). Is the correlation in international equity returns

constant: 1960-1990?. Journal of International Money and Finance, 14, 1, 3-26.

[22] McAleer, M. and B. da Veiga (2008a) Forecasting Value-at-Risk with a Parsimonious

Portfolio Spillover GARCH (PS-GARCH) Model, Journal of Forecasting, 27, 1, 1-19

57

Page 65: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[23] McAleer, M. and B. da Veiga (2008b), Single Index and Portfolio Models for Fore-

casting Value-at-Risk Thresholds, Journal of Forecasting, 27, 3, 217-235.

[24] Nakatani, T. and T. Teräsvirta (2008). Positivity constraints on the conditional

variances in the family of Conditional Correlation GARCH Model. Finance Research

Letters, 5, 88-95.

[25] Newey W.K. and D.G. Steigerwald (1997). Asymptotic bias for quasi maximum

likelihood estimators in conditional heteroskedasticity models. Econometrica, 3, 587�

599.

[26] Pelletier D. (2006). Regime switching for dynamic correlations. Journal of Econo-

metrics, 131, 445-473.

[27] Silvennoinen, A. and T. Teräsvirta (2009). Multivariate GARCH Models. In T. G.

Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds. Handbook of Financial Time

Series. New York: Springer.

[28] Tse, Y.K. and A.K.C. Tsui (2002). A Multivariate Generalized Autoregressive Con-

ditional Heteroskedasticity Model with Time-Varying Correlations. Journal of Busi-

ness and Economic Statistics, 20, 351-362.

58

Page 66: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.1: Kernel density estimates for estimated parameters of a VAR(1)-CCC-

GARCH(1,1) model with T = 500

0 0.2 0.4 0.6 0.8 10

5

10

15µ1

0 0.2 0.4 0.6 0.8 10

5

10

15β1

0 0.2 0.4 0.6 0.8 10

5

10

15µ2

0 0.2 0.4 0.6 0.8 105

1015

ω1

0 0.2 0.4 0.6 0.8 10

5

10

15β2

0 0.2 0.4 0.6 0.8 10

5

10

15α1

0 0.2 0.4 0.6 0.8 10

5

10

15γ1

0 0.2 0.4 0.6 0.8 10

5

10

15ω2

0 0.2 0.4 0.6 0.8 10

5

10

15α2

0 0.2 0.4 0.6 0.8 10

5

10

15γ2

0 0.2 0.4 0.6 0.8 10

5

10

15α1+γ1

0 0.2 0.4 0.6 0.8 10

5

10

15α2+γ2

0 0.2 0.4 0.6 0.8 10

5

10

15ρ

1s2s3strue value

CCCn­CCCn

Sample size: 500

59

Page 67: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.2: Kernel density estimates of deviations from estimated to true volatility in a

VAR(1)-CCC-GARCH(1,1) model with Gaussian innovations

­0.5 0 0.50

2

4

6

8

10∆ h1

s

­0.5 0 0.50

2

4

6

8

10∆ h1

s

­0.5 0 0.50

2

4

6

8

10∆ h2

s

­0.5 0 0.50

2

4

6

8

10∆ h1

s

­0.5 0 0.50

2

4

6

8

10∆ h2

s

­0.5 0 0.50

2

4

6

8

10∆ h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

1s2s3szero line

Sample size:500 Sample size:1000Sample size:200

60

Page 68: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.3: Kernel density estimates of deviations from estimated to true volatility in a

VAR(1)-DCC-GARCH(1,1) model with Student-t innovations

­0.5 0 0.50

2

4

6

8

10∆h1

s

1s2s3szero line

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

Sample size:200 Sample size:500 Sample size:1000

61

Page 69: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.4: Kernel density estimates of deviations from estimated to true volatility in a

VAR(1)-CCC-GARCH(1,1) model with Student-t innovations

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

1s2s3szero line

Sample size:200 Sample size:500 Sample size:1000

62

Page 70: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.5: Kernel density estimates of deviations from estimated to true volatility, of

estimated correlation parameters and of estimated transition probabilities in a VAR(1)-

RSDC-GARCH(1,1) model with Student-t innovations

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­1 0 10

2

4

6

8

10RL

­1 0 10

2

4

6

8

10RH

0 0.5 10

2

4

6

8

10πLL

0 0.5 10

2

4

6

8

10πHH

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­1 0 10

2

4

6

8

10RL

­1 0 10

2

4

6

8

10RH

0 0.5 10

2

4

6

8

10πLL

0 0.5 10

2

4

6

8

10πHH

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­1 0 10

2

4

6

8

10RL

­1 0 10

2

4

6

8

10RH

0 0.5 10

2

4

6

8

10πLL

0 0.5 10

2

4

6

8

10πHH

1s2s3s

Sample size:200 Sample size:500 Sample size:1000

63

Page 71: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.6: Kernel density estimates of deviations from estimated to true volatility in a

VAR(1)-ECCC-GARCH(1,1) model generated with Student-t innovations and estimated

assuming Gaussian errors

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

1s2s3szero line

Sample size:200 Sample size:500 Sample size:1000

64

Page 72: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.7: Kernel density estimates of deviations from estimated to true volatility in a

VAR(1)-DCC-GARCH(1,1) model generated with Gaussian innovations and estimated

assuming Student-t errors

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

­0.5 0 0.50

2

4

6

8

10∆h1

s

­0.5 0 0.50

2

4

6

8

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

5

10

15

20∆ps

1s2s3szero line

Sample size:200 Sample size:500 Sample size:1000

65

Page 73: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.8: One-step, two-steps and three-steps estimates of the volatilities of BEL-20,

DAX and FTSE-100 observed from January 8, 2002 to April 30, 2009, asuming Gaussian

innovations.

0 500 1000 15000

10

20

30BEL­20

CC

C

0 500 1000 15000

10

20

30DAX

0 500 1000 15000

10

20

30FTSE­100

0 500 1000 15000

10

20

30

EC

CC

0 500 1000 15000

10

20

30

0 500 1000 15000

10

20

30

0 500 1000 15000

10

20

30

DC

C

0 500 1000 15000

10

20

30

0 500 1000 15000

10

20

30

0 500 1000 15000

10

20

30

cDC

C

0 500 1000 15000

10

20

30

0 500 1000 15000

10

20

30

0 500 1000 15000

10

20

30

RS

DC

0 500 1000 15000

10

20

30

0 500 1000 15000

10

20

30

1s2s3s

66

Page 74: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.9: One-step, two-steps and three-steps estimates of the correlations between

BEL-20, DAX and FTSE-100 indices observed from January 8, 2002 to April 30, 2009,

asuming Gaussian innovations.

0 500 1000 15000.4

0.6

0.8

1BEL­20&DAX

CC

C

0 500 1000 15000.4

0.6

0.8

1BEL­20&FTSE­100

0 500 1000 15000.4

0.6

0.8

1DAX&FTSE­100

0 500 1000 15000.4

0.6

0.8

1

EC

CC

0 500 1000 15000.4

0.6

0.8

1

0 500 1000 15000.4

0.6

0.8

1

0 500 1000 15000.4

0.6

0.8

1

DC

C

0 500 1000 15000.4

0.6

0.8

1

0 500 1000 15000.4

0.6

0.8

1

0 500 1000 15000.4

0.6

0.8

1

cDC

C

0 500 1000 15000.4

0.6

0.8

1

0 500 1000 15000.4

0.6

0.8

1

1s2s3s

67

Page 75: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.10: Kernel density estimates of deviations from estimated to true volatility and

correlation for all the models considered. The series in the data are generated using

Student-t innovations with same skewness parameter and estimated assuming Gaussian

innovations.

­0.5 0 0.50

5

10∆h1

s

CC

C

­0.5 0 0.50

5

10∆h2

s1s2s3szero line

­0.2 ­0.1 0 0.1 0.20

10

20∆ps

­0.5 0 0.50

5

10

EC

CC

­0.5 0 0.50

5

10

­0.2 ­0.1 0 0.1 0.20

10

20

­0.5 0 0.50

5

10

DC

C

­0.5 0 0.50

5

10

­0.2 ­0.1 0 0.1 0.20

10

20

­0.5 0 0.50

5

10

cDC

C

­0.5 0 0.50

5

10

­0.2 ­0.1 0 0.1 0.20

10

20

­0.5 0 0.50

5

10

RS

DC

­0.5 0 0.50

5

10

68

Page 76: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.11: Kernel density estimates of deviations from estimated to true volatility and

correlation for all the models considered. The series in the data are generated using

Student-t innovations with same skewness parameter and estimated assuming Student-t

innovations.

­0.5 0 0.50

5

10∆h1

s

CC

C

­0.5 0 0.50

5

10∆h2

s

­0.2 ­0.1 0 0.1 0.20

10

20∆ps

­0.5 0 0.50

5

10

EC

CC

­0.5 0 0.50

5

10

­0.2 ­0.1 0 0.1 0.20

10

20

­0.5 0 0.50

5

10

DC

C

1s2s3szero line

­0.5 0 0.50

5

10

­0.2 ­0.1 0 0.1 0.20

10

20

­0.5 0 0.50

5

10

­0.5 0 0.50

5

10

cDC

C

­0.2 ­0.1 0 0.1 0.20

10

20

­0.5 0 0.50

5

10

RS

DC

­0.5 0 0.50

5

10

69

Page 77: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 1.12: Kernel density estimates of estimated correlation parameters for the RSDC-

GARCHmodel. The series in the data are generated with Student-t innovations and with

same skewness, and estimated assuming Gaussian and Student-t errors, respectively.

­1 ­0.5 0 0.5 10

5

10

15RL

1s2s3strue value

­1 ­0.5 0 0.5 10

5

10

15RH

0 0.5 10

5

10

15πLL

0 0.5 10

5

10

15πHH

­1 ­0.5 0 0.5 10

5

10

15RL

­1 ­0.5 0 0.5 10

5

10

15RH

0 0.5 10

5

10

15πLL

0 0.5 10

5

10

15πHH

Gaussian Student­t

70

Page 78: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table1.1:MonteCarlomeanandstandarddeviationsofone-step,two-stepsandthree-stepsestimatorsofabivariateGaussian

VAR(1)-CCC-GARCHmodel

One-step

Two-steps

Three-steps

Parameter

Value

T=500

T=1000

T=5000

T=500

T=1000

T=5000

T=500

T=1000

T=5000

�1

0:20

0:207

(0:050)

0:204

(0:036)

0:201

(0:016)

0:207

(0:050)

0:204

(0:037)

0:201

(0:017)

0:208

(0:053)

0:204

(0:039)

0:201

(0:017)

�2

0:40

0:403

(0:060)

0:403

(0:043)

0:400

(0:017)

0:403

(0:061)

0:403

(0:044)

0:400

(0:018)

0:403

(0:062)

0:404

(0:044)

0:400

(0:018)

�1

0:80

0:793

(0:028)

0:796

(0:020)

0:799

(0:009)

0:793

(0:029)

0:796

(0:020)

0:799

(0:009)

0:792

(0:030)

0:796

(0:022)

0:799

(0:010)

�2

0:60

0:596

(0:038)

0:598

(0:026)

0:600

(0:011)

0:597

(0:039)

0:598

(0:027)

0:600

(0:012)

0:596

(0:039)

0:597

(0:027)

0:600

(0:012)

!1

0:10

0:180

(0:179)

0:124

(0:079)

0:103

(0:019)

0:182

(0:183)

0:123

(0:072)

0:103

(0:019)

0:183

(0:184)

0:124

(0:075)

0:103

(0:019)

!2

0:05

0:270

(0:308)

0:120

(0:177)

0:053

(0:015)

0:273

(0:311)

0:132

(0:198)

0:053

(0:015)

0:290

(0:339)

0:146

(0:231)

0:054

(0:031)

�1

0:10

0:108

(0:044)

0:103

(0:030)

0:099

(0:012)

0:109

(0:044)

0:103

(0:030)

0:099

(0:013)

0:106

(0:043)

0:102

(0:030)

0:099

(0:013)

�2

0:05

0:061

(0:036)

0:054

(0:023)

0:050

(0:009)

0:061

(0:037)

0:054

(0:024)

0:050

(0:009)

0:061

(0:035)

0:054

(0:023)

0:050

(0:009)

1

0:80

0:706

(0:203)

0:772

(0:096)

0:796

(0:027)

0:705

(0:206)

0:773

(0:089)

0:796

(0:027)

0:705

(0:208)

0:772

(0:093)

0:797

(0:027)

2

0:90

0:660

(0:322)

0:822

(0:192)

0:897

(0:021)

0:656

(0:325)

0:810

(0:212)

0:897

(0:021)

0:637

(0:355)

0:796

(0:243)

0:896

(0:035)

�0:20

0:199

(0:044)

0:201

(0:031)

0:200

(0:014)

0:198

(0:043)

0:199

(0:031)

0:200

(0:014)

0:198

(0:043)

0:199

(0:031)

0:200

(0:014)

71

Page 79: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 1.2: Parameter values of the VAR(1)-CCC-GARCH model for di¤erent Monte

Carlo experiments

Parameter Basic (Table 1) Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

�1 0:20 0:20 0:30 0:20 0:10 0:20

�2 0:40 0:40 0:40 0:40 0:40 0:40

�3 - - - - - 0:30

�11 0:80 0:80 0:80 0:80 0:80 0:80

�12 0:00 0:00 0:00 0:00 0:10 0:00

�21 0:00 0:00 0:00 0:00 0:10 0:00

�22 0:60 0:60 0:60 0:60 0:60 0:60

�33 - - - - - 0:70

!1 0:10 0:10 0:10 0:10 0:10 0:10

!2 0:05 1:00 0:05 0:05 0:05 0:05

!3 - - - - - 0:05

�1 0:10 0:10 0:10 0:35 0:10 0:10

�2 0:05 0:15 0:05 0:05 0:05 0:05

�3 - - - - - 0:15

1 0:80 0:80 0:80 0:55 0:80 0:80

2 0:90 0:70 0:90 0:90 0:90 0:90

3 - - - - - 0:80

�12 0:20 0:20 0:20 0:20 0:20 0:10

�13 - - - - - 0:20

�23 - - - - - 0:30

72

Page 80: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table1.3:ParameterestimatesforthreerealtimeseriesunderGaussianinnovations

VAR(1)-CCC-GARCH

VAR(1)-ECCC-GARCH

VAR(1)-DCC-GARCH

VAR(1)-cDCC-GARCH

VAR(1)-RSDC-GARCH

1-step

2-steps

3-steps

1-step

2-steps

3-steps

1-step

2-steps

3-steps

1-step

2-steps

3-steps

1-step

2-steps

3-steps

�1

0:1017

0:0937

�0:0167

0:0997

0:0969

�0:0167

0:0982

0:0937

�0:0167

0:1008

0:0936

�0:0166

0:0851

0:0936

�0:0166

�2

0:1110

0:0843

�0:0061

0:1097

0:0707

�0:0061

0:1041

0:0843

�0:0061

0:1065

0:0843

�0:0062

0:0927

0:0843

�0:0061

�3

0:0690

0:0465

�0:0128

0:0683

0:0503

�0:0128

0:0646

0:0463

�0:0128

0:0669

0:0465

�0:0128

0:0611

0:0465

�0:0128

�1

�0:0297

�0:0055

0:0641

�0:0267

�0:0112

0:0641

�0:0277

�0:0055

0:0640

�0:0278

�0:0055

0:0641

�0:0245

�0:0055

0:0640

�2

�0:0934

�0:0549

�0:0465

�0:0903

�0:0455

�0:0465

�0:0748

�0:0549

�0:0466

�0:0738

�0:0549

�0:0465

�0:0743

�0:0549

�0:0466

�3

�0:0991

�0:1033

�0:0821

�0:0956

�0:1020

�0:0820

�0:0938

�0:1027

�0:0821

�0:0935

�0:1034

�0:0820

�0:0888

�0:1034

�0:0820

!1

0:0288

0:0218

0:0210

0:0322

0:0101

0:0170

0:0248

0:0218

0:0209

0:0240

0:0218

0:0210

0:0233

0:0218

0:0210

!2

0:0259

0:0210

0:0201

0:0245

0:0183

0:0172

0:0226

0:0210

0:0201

0:0213

0:0210

0:0201

0:0212

0:0210

0:0201

!3

0:0171

0:0102

0:0097

0:0168

0:0162

0:0000

0:0143

0:0094

0:0098

0:0131

0:0102

0:0097

0:0173

0:0102

0:0098

�11

0:0940

0:1331

0:1231

0:0772

0:0402

0:0489

0:1118

0:1331

0:1231

0:1183

0:1331

0:1231

0:0874

0:1331

0:1231

�21

0:0032

0:0328

0:0249

�31

0:0224

0:0684

0:0373

�12

0:0000

0:0000

0:0000

�22

0:0774

0:0955

0:0927

0:0794

0:0678

0:0676

0:0887

0:0955

0:0927

0:0933

0:0955

0:0927

0:0687

0:0955

0:0927

�32

0:0038

0:0000

0:0000

�13

0:0476

0:0907

0:0973

�23

0:0000

0:0000

0:0051

�33

0:0777

0:1045

0:1041

0:0599

0:0605

0:0343

0:0935

0:0938

0:1041

0:0985

0:1045

0:1041

0:0779

0:1045

0:1041

11

0:8819

0:8573

0:8673

0:8399

0:0000

0:8577

0:8705

0:8573

0:8673

0:8695

0:8573

0:8673

0:8956

0:8573

0:8673

21

0:0000

0:0000

0:0000

31

0:0000

0:2938

0:6074

12

0:0083

0:0000

0:0000

22

0:9095

0:8977

0:9011

0:9065

0:9023

0:9054

0:9005

0:8977

0:9011

0:9004

0:8977

0:9011

0:9217

0:8977

0:9011

32

0:0029

0:0000

0:0000

13

0:0000

0:9680

0:0000

23

0:0000

0:0000

0:0000

33

0:9063

0:8921

0:8936

0:8883

0:5322

0:2512

0:8948

0:9015

0:8936

0:8948

0:8921

0:8936

0:9088

0:8921

0:8936

�12

0:7911

0:7865

0:7866

0:7921

0:7853

0:7866

�L 12

0:6571

0:6674

0:6455

�H 12

0:8782

0:8802

0:8773

�13

0:7751

0:7642

0:7644

0:7770

0:7662

0:7654

�L 13

0:6286

0:6286

0:6060

�H 13

0:8695

0:8702

0:8658

�23

0:8050

0:8013

0:8016

0:8054

0:7983

0:8000

�L 23

0:6477

0:6633

0:6371

�H 23

0:9054

0:9087

0:9063

�1

0:0411

0:0459

0:0494

0:0405

0:0439

0:0449

�2

0:9215

0:9172

0:9116

0:9272

0:9226

0:9217

�LL

0:8718

0:8934

0:8681

�HH

0:9272

0:9213

0:9207

73

Page 81: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table1.4:Volatility,covarianceandcorrelationratios

Simulatedmodel

Estimatedmodel

VAR(1)-CCC-GARCH

VAR(1)-ECCC-GARCH

VAR(1)-DCC-GARCH

VAR(1)-cDCC-GARCH

VAR(1)-RSDC-GARCH

1-step

2-steps

3-steps

1-step

2-steps

3-steps

1-step

2-steps

3-steps

1-step

2-steps

3-steps

1-step

2-steps3-steps

VAR(1)-CCC-GARCH

0:0000�0:0034

0:0041

0:0021�0:0025

0:0029�0:0032�0:0030

0:0049�0:0023�0:0033

0:0039�0:0023�0:0035

0:0046

VAR(1)-ECCC-GARCH

0:0095

0:0064

0:0137

0:0000�0:0001

0:0023

0:0078

0:0065

0:0154

0:0080

0:0065

0:0141

0:0089

0:0064

0:0136

VAR(1)-DCC-GARCH

Volatility

0:0083

0:0035

0:0120

0:0143

0:0042

0:0059

0:0000

0:0035

0:0104

0:0044

0:0037

0:0099

0:0050

0:0032

0:0107

VAR(1)-cDCC-GARCH

0:0014

0:0005

0:0092

0:0165

0:0015

0:0068�0:0031

0:0010

0:0080

0:0000

0:0005

0:0102

0:0024�0:0002

0:0086

VAR(1)-RSDC-GARCH

�0:0010�0:0008

0:0080

0:0067

0:0005

0:0013�0:0027�0:0009

0:0068�0:0027�0:0009

0:0068

0:0000�0:0007

0:0080

VAR(1)-CCC-GARCH

0:0000�0:0022�0:0039

0:0007�0:0027�0:0034�0:0003�0:0023�0:0042�0:0004�0:0022�0:0040

VAR(1)-ECCC-GARCH

�0:0024�0:0045�0:0062

0:0000�0:0031�0:0034�0:0026�0:0045�0:0064�0:0025�0:0044�0:0062

VAR(1)-DCC-GARCH

Correlation

0:0056

0:0022

0:0007

0:0071

0:0013

0:0010

0:0000�0:0021�0:0036

0:0019�0:0004�0:0021

VAR(1)-cDCC-GARCH

0:0033

0:0005�0:0012

0:0059�0:0003�0:0012�0:0015�0:0039�0:0052

0:0000�0:0023�0:0045

VAR(1)-RSDC-GARCH

VAR(1)-CCC-GARCH

0:0000�0:0035�0:0025�0:0003�0:0034�0:0037�0:0026�0:0039�0:0022�0:0019�0:0036�0:0017

VAR(1)-ECCC-GARCH

0:0135

0:0025

0:0035

0:0000�0:0051�0:0048

0:0108

0:0025

0:0044

0:0124

0:0029

0:0038

VAR(1)-DCC-GARCH

Covariance

0:0255�0:0003�0:0034

0:0232�0:0024�0:0015

0:0000�0:0057�0:0051

0:0066

0:0010

0:0000

VAR(1)-cDCC-GARCH

0:0198�0:0050�0:0070

0:0210�0:0063�0:0086�0:0048�0:0155�0:0132

0:0000�0:0069�0:0130

VAR(1)-RSDC-GARCH

74

Page 82: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table1.5:One-stepparameterestimatesfortworealtimeseriesunderStudent-tinnovations

VAR(1)-CCC-GARCH

VAR(1)-ECCC-GARCH

VAR(1)-DCC-GARCH

VAR(1)-cDCC-GARCH

VAR(1)-RSDC-GARCH

�1

0:0936

0:0937

0:0956

0:0963

0:0920

�2

0:1090

0:1093

0:1143

0:1136

0:1100

�1

0:0087

0:0088

0:0002

0:0006

0:0030

�2

�0:0503

�0:0498

�0:0488

�0:0469

�0:0485

!1

0:0185

0:0177

0:0156

0:0149

0:0160

!2

0:0191

0:0162

0:0152

0:0141

0:0156

�11

0:0877

0:0947

0:0963

0:0978

0:0894

�21

0:0001

�12

0:0034

�22

0:0732

0:0692

0:0775

0:0790

0:0717

11

0:8987

0:8789

0:8938

0:8950

0:8998

21

0:0086

12

0:0001

22

0:9195

0:9225

0:9170

0:9181

0:9218

�12

0:7950

0:7949

�L 12

0:7298

�H 12

0:8924

�1

0:0376

0:0390

�2

0:9453

0:9465

�LL

0:9816

�HH

0:9682

75

Page 83: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica
Page 84: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Chapter 2

Estimation of MultivariateStochastic Volatility Models: AComparative Monte Carlo Study

2.1 Introduction

In �nancial time series literature, it is already established that the volatilities of asset

returns are changing over time. Moreover, they are likely to be serially correlated.

To illustrate this stylized fact with an example, in Figure 2.1 we present the indices

and returns (100 x log(Pt=Pt�1)) of FTSE-100 and DAX stock markets between dates

4/1/2005 and 4/11/2011. We also plot the squared returns, as a proxy of volatilities, and

a rolling window estimate of correlations, with a window of 60 days. It is observed that

the volatilities are changing over time. Moreover, the volatilities are clustered; i.e. higher

(lower) values of volatilities are followed by higher (lower) values, which implies that the

volatilities are serially correlated. To capture this kind of a dynamic volatility e¤ect, the

generalized autoregressive conditional heteroskedasticity (GARCH) models have been

proposed by Engle (1982) and Bollerslev (1986). In GARCH models the time varying

volatility is modelled as a deterministic function of squared previous day returns and

previous day volatilities; therefore in GARCH approach the volatilities are observation

driven. Currently a wide range of GARCH models are available in the literature and are

well documented in the surveys: see Bollerslev et al. (1992) for univariate and Bauwens

et al. (2006), Silvennoinen et al. (2009) for multivariate models.

An alternative approach to modelling time varying volatility is to consider it as

an unobserved component and let the logarithm of it follow an autoregressive process.

Therefore in this approach, the volatilities are parameter driven. Models of this kind

77

Page 85: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

are named as stochastic volatility (SV) models in the literature. The SV approach is

attractive because of its similarity to the models used in �nancial theory to describe the

behavior of prices; see Hull and White (1987), Taylor (1986, 1994), and Shephard and

Andersen (2008) for the origins of SV models. Moreover it has been shown that the SV

models describe the behavior of volatilities more accurately compared to GARCHmodels

(see for example Danielsson (1994), Kim et al. (1998), and Carnero et al. (2004)). Given

the way the SV models are set up, their statistical properties are easy to derive from

the process that the volatilities follow. However, although statistically more attractive

than GARCH models, SV models have the disadvantage in terms of estimation because

their exact likelihoods are di¢ cult to evaluate. The following survey papers are available

about the univariate and multivariate SV models and estimation methods: Broto and

Ruiz (2004), Asai et al. (2006), Chib et al. (2009), Ghysels et al. (1996), Yu and Meyer

(2004), Maasoumi and McAleer (2006).

Several methods have been proposed for estimating SV models. A relatively easy

approach is the quasi-maximum likelihood estimation (QML) proposed independently

by Nelson (1988) and Harvey et al. (1994). In this approach, the log-squared returns are

modelled as a linear state space form where the transformed innovations are assumed

to follow a Gaussian distribution although in fact the true distribution is based on ln�21(see Sandman and Koopman (1998) for the univariate and Asai and McAleer (2006) for

the multivariate case). Ruiz (1994) showed that the QML estimators are consistent and

asymptotically normal. However due to the Gaussianity assumption, QML approach

is an estimation based on approximations and therefore, as noted by several papers

as Jacquier et al. (1994), Breidt and Carriquiry (1996) and Sandmann and Koopman

(1998), QML estimator is ine¢ cient.

The evaluation of exact likelihood requires high dimensional integration which could

be based on evaluating these integrals with simulation methods and then maximizing

the resulting likelihood function. This class of estimation approaches include the acceler-

ated importance sampling (AGIS) approach developed in Danielsson and Richard (1993)

and e¢ cient importance sampling (EIS) approach proposed by Liesenfeld and Richard

(2003, 2006), and the Monte Carlo likelihood (MCL) approach proposed by Sandman

and Koopman (1998). Di¤erent from the QML estimation, the MCL method of Sandman

and Koopman (1998) used log-squared transformation of returns taking into account the

true distribution of the errors and therefore modelling the log-squared returns via a lin-

ear non-Gaussian state space model. A review of these importance sampling methods

could be found again in Asai et al. (2006).

The MCL method considered in this paper is the one proposed by Jungbacker and

Koopman (2006) that extended the theoretical results of Shephard and Pitt (1997),

78

Page 86: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Durbin and Koopman (1997), and Jungbacker and Koopman (2005). In this method,

the returns are modelled without the log-squared transformation. Durbin and Koopman

(1997) showed that the loglikelihood of the state space models with non-Gaussian errors

can be written as a sum of the loglikelihood of the approximating Gaussian model and

a correction for the departures from the Gaussian assumptions with respect to the true

model. This form of likelihood has the advantage that the simulations are only required

for the departures of the likelihood of the true model from the Gaussian likelihood,

rather than for the likelihood itself. Jungbacker and Koopman (2006) used this approach

to estimate three multivariate stochastic volatility (MSV) models: the stochastic time

varying scaling factor model, where the variance matrix of the returns are scaled by

the log-volatilities, the constant correlation MSV model of Harvey et al. (1994) and a

time varying correlation MSV model based on Cholesky decomposition. In the latter set

up, the correlation dynamics is driven by the volatilities and a correlation parameter.

Tsay (2005) adopted a Cholesky decomposition based approach to ensure the positive

de�niteness of the covariance matrix. The MSV model he proposed is basically the same

time varying correlation MSV model as considered in Jungbacker and Koopman (2006)

with the correlation parameter following a stochastic autoregressive process.

Finally, the Monte Carlo Markov Chain (MCMC) methods are receiving much atten-

tion since they provide the most e¢ cient estimation tools (see Andersen et al. (1999)).

For a survey on MCMC methods and MCMC estimation of several MSV models, see

Asai et al. (2006), Meyer and Yu (2000), Chib et al. (2009). MCMC method will be

outside the scope of this paper.

When �tting an MSV model to a �nancial time series, researchers are ultimately

interested in estimating the underlying volatilities and correlations. Therefore, when

making a comparison of performances between di¤erent estimators, one should also con-

sider looking at their relative performances in estimating the in-sample volatilities and

correlations. In this respect, we employ several Monte Carlo (MC) experiments where

the performances of QML and MCL methods in estimating the parameters, volatilities

and correlations are compared. It is already known that MCL methods have better small

sample properties compared to QML methods in parameter estimation. However, in the

literature there is a need for Monte Carlo simulation studies comparing QML and MCL

methods in terms of in-sample volatility and correlation estimations in a multivariate

setup and for di¤erent parameter sets. In this paper, we attempt to �ll this gap with a

number of MC experiments for several models.

For our MC experiments, we �rst consider the Constant Correlation MSV model

of Harvey et al. (1994). As pointed out by Tsui and Yu (1999), the correlations do

not have to be constant for certain assets. This is also observed in Figure 2.1 that the

79

Page 87: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

estimated correlations are changing over time. For this reason, we also consider the

Time Varying Correlation MSV model discussed in Jungbacker and Koopman (2006).

Another stylized fact is the so called leverage e¤ect which refers to the negative re-

lation between the current returns and future volatilities; i.e. negative returns imply

an increased leverage of the �rms which is believed to increase uncertainty and hence

volatility. As an example, in Figure 2.1, we see that on average the volatilities between

t = 800 and t = 1100, where the indices are in general falling, are much higher than the

volatilities of the period between t = 1100 and t = 1600, where the indices are in general

rising. Jungbacker and Koopman (2005) proposed a univariate SV model with leverage

and discussed how to estimate it via MCL method. In our paper we propose a direct

multivariate generalization of this model and refer to it as MSV with diagonal leverage,

where the correlations between the innovations of returns and volatilities are diagonal. A

similar but more restrictive model has been proposed, but not estimated, by Danielsson

(1998), where these correlations are modelled as a function of the variances of the inno-

vations in the volatility equations. Asai and McAleer (2006) estimated the MSV with

leverage model of Danielsson (1998) via MCL method of Sandman and Koopman (1998)

and they provided the log-squared transformation of the model necessary to implement

this estimation. Using the transformations they provided, it is also possible to esti-

mate MSV with leverage model of Danielsson (1998) with QML method. Furthermore,

we propose the MSV with non-diagonal leverage model where the correlations between

the innovations of returns and volatilities are non-diagonal; i.e. the innovations of the

volatility of series i is correlated with the innovations of the returns of series j. We also

provide the necessary transformations to estimate these two MSV with leverage models

via MCL method which are derived based on the univariate estimation in Jungbacker

and Koopman (2006). We adapt the transformations of Asai and McAleer (2006) for

estimating our two MSV models with leverages via QML method.

The results obtained in this paper con�rm that QML estimator has lower small

sample performance than MCL estimator. When the correlations are constant, the

QML estimator is performing closer to the MCL estimator especially when the true

value of the underlying correlation is high and/or if the variances of the SV processes are

high. Also, when the correlations are let to vary over time, the performance of the QML

estimator approaches to that of the MCL estimator even with lower correlations. On

the other hand, with low constant correlations and low variances of the SV processes,

the e¢ ciency of the QML estimator is relatively lower. When leverage is allowed in

the model, the performance of QML estimator is worse in estimating the underlying

correlations compared to its performance in the model without leverage. Higher values in

the true leverage matrix decreased the performance of QML estimator of the correlations

80

Page 88: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

even more. From our results, we conclude that the QML estimator could be used when

the series are expected to have high correlations (whether constant or time varying)

and when the variances of the SV processes are high. Particularly in the case of MSV

models with leverage we do not recommend the use of QML estimator. On the other

hand, it could be of interest to estimate models with high number of series. In these

cases, the implementation of QML estimator is easier and more feasible than that of

MCL estimator. Moreover, the analytical derivatives needed for the MCL estimation are

harder to obtain with large cross-sections. One could choose to use numerical derivatives,

but the derivatives obtained by numerical approximation for large state vectors could

be very time consuming and numerically unstable. Therefore we come to the conclusion

that when estimating MSV models for several series, such as modelling the returns

of international stock markets, MCL method should be preferred for all the models

considered in this paper. The QML method could be used for the estimation of models

with medium-to-large number of series, such as the returns of a high number of assets

in a stock market, especially when the series are expected to be highly correlated with

high variances in the SV processes.

The paper is organized as follows: in Section 2.2 we discuss brie�y the Constant

Correlation MSVmodel, Time Varying Correlation MSVmodel and the two MSVmodels

with leverage we propose and later provide information on how these models can be

estimated via Quasi Maximum Likelihood and Monte Carlo Likelihood methods. In

Section 2.3 we explain the set up of our Monte Carlo experiments and discuss the results.

In section 2.4, we estimate a trivariate MSV model with leverage for the returns on

three major European stock markets. Finally in section 2.5, we discuss further topics

for research and conclude.

2.2 Multivariate Stochastic Volatility (MSV) Mod-

els

2.2.1 The Basic Model

The univariate SV model was proposed by, among others, Taylor (1982, 1986). Harvey

et al. (1994) extended this univariate SV model to a multivariate context, proposing

the �rst multivariate SV (MSV) model. If we let yt = (y1t; y2t; :::; ykt)0 be a kx1 vector

of observations at time t and ht = (h1t; h2t; :::; hkt)0 be the corresponding log-volatilities,

then this model is de�ned as:

81

Page 89: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

yt = H1=2t "t (2.1)

Ht = diag fexp(h1t); exp(h2t); :::; exp(hkt)g = diag fexp(ht)g

ht+1 = � + �ht + �t (2.2)

h1 v N ((Ik � �)�1�;�0)

"t

�t

!v N

0;

"P" 0

0 Q�

#!(2.3)

where � is a kx1 vector of, and � is a kxk matrix of parameters. Ik denotes a kxk

identity matrix. The covariance matrices P" and Q� are of the corresponding errors "tand �t. The diagonal elements of P" are restricted to be equal to one for identi�cation

purposes, therefore P" is a correlation matrix. For simplicity, we do not consider volatil-

ity spillovers, i.e. � is a diagonal matrix. However, the volatilities ht are still dependent

on each other via Q� matrix. Finally, the (i; j) element of �0 is the (i; j) element of

Q� divided by (1��ii�jj).1 By construction, this model assumes constant correlations,therefore following Yu and Meyer (2006), we will refer to this model as Constant Cor-

relation MSV (CCMSV) model. In our analysis, we focus on the parameters, in order:

= (vecl(P")0;�0; diag(�)0; vech(Q�)

0)0.2 In this model there are k2 + 2k parameters to

estimate.

2.2.2 Time Varying Correlation MSV

The Time Varying Correlation MSV model considered in our paper is the one mentioned

in Jungbacker and Koopman (2006). We will refer to this model as TVCMSV. Following

the notation above, the observation equation (2.1) is modi�ed as:

yt = DH1=2t "t (2.4)

"t v N(0; Ik)

1That is, �0 satis�es the stationarity condition: �0 = ��0�+Q�. Therefore the elements of �0 can

be obtained by: vec(�0) = (Ik2 � � �)�1vec(Q�); where vec is the operator that stacks the columnsof a matrix and is a Kronecker product.

2The operator vec stacks all columns of a matrix, while vech stacks the columns of the lower triangular

part of a matrix and vecl stacks the columns of the strict lower triangular (exluding the leading diagonal

from the lower triangular matrix) part of a matrix.

82

Page 90: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

where D is a lower unity triangular matrix. The idea is to decompose the conditional

variance of yt, V ar(ytjht) = Vt = DHtD0, and therefore having a stochastic dynamics

behind the variances and correlations implied by Vt. If we would call gii;t = exp(hi;t) and

D = fqij 6= 0 when i > j; 0 otherwiseg, then the implied correlations by the model aregiven by:

�ii;t =

iXs=1

q2isgss;t; i = 1; 2; :::; k

�ij;t =

jXs=1

qisqjsgss;t; i > j; i = 2; 3; :::; k

pij;t =�ij;tp�ii;t�jj;t

=

jXs=1

qisqjsgss;tvuut iXs=1

q2isgss;t

jXs=1

q2jsgss;t

This model is also a special case of factor MSV models proposed by Shephard (1996)

and further studied in Aguilar and West (2000) and Chib et.al. (2006) with the number

of factors being equal to the number of series. A shortcoming of this model is that the

driving forces underlying the volatility and correlation dynamics are the same; gii;t and

qij. The model parameters are = (vecl(D)0;�0; diag(�)0; vech(Q�)0)0. The number of

parameters to be estimated in this model is also given by k2 + 2k.

Tsay (2005) let the correlation parameters to be dynamic in the sense that the unity

lower triangular matrix D becomes Dt = fqijt 6= 0 when i > j; 0 otherwiseg whereqijt follows a Gaussian AR(1) process. Then the equation (2.4) becomes:

yt = DtH1=2t "t; (2.5)

where the kx1 vector qt evolves with the equation:

qt+1 = � +qt + vt

q1 v N ((Ik �)�1�;�0)

such that:

83

Page 91: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

0B@ "t

�tvt

1CA v N

0B@0;264 Ik 0 0

0 Q� 0

0 0 �v

3751CA

where �0 is de�ned similar to �0. We can put this model to a state space form as

follows: let �t = (h0t; qt0)0; !t = ((�t)

0; (vt)0)0; �� = (�0; �0)0 such that:

�t+1 = �� +

� 0

0

!�t + !t;where !t v N

0;

"Q� 0

0 �v

#!(2.6)

�1 v N

(Ik � �)�1�(Ik �)�1�

!;

"�0 0

0 �0

#!

How to estimate the TVCMSV model de�ned via (2.5) and (2.6) via QML and MCL

method is left for future research. The model parameters are = (�0; diag()0;�0; diag(�)0;

vech(Q�)0)0 and the number of parameters to estimate in this model is k2 + 5k: In our

MC experiments we only consider the TVCMSV model of Jungbacker and Koopman

(2006).

2.2.3 MSV with Leverage E¤ect

The �rst MSV model with diagonal leverage we propose here is a direct generalization

of the univariate model considered in Jungbacker and Koopman (2005). Changing the

de�nition of the errors slightly, we could rewrite the equations (2.1), (2.2) and (2.3) of

CCMSV model as follows:

yt = H1=2t P �" "t (2.7)

ht+1 = � + �ht +Q���t

with the following modi�cation is made the CCMSV model:

"t

�t

!v N

0;

"Ik L

L Ik

#!(2.8)

84

Page 92: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

where L = f�ii; i = 1:::k : �ii � [�1; 1]g is assumed to be a diagonal matrix. Thereforeby construction, the MSV with diagonal leverage model de�ned by equations (2.7) and

(2.8) implies constant correlations. A transformation similar to the one in Jungbacker

and Koopman (2005) could be then adapted to write this model in a state space form:

yt = H1=2t P �" f "�t + S�2tg (2.9)

ht+1 = � + �ht +Q�� f�1t + �2tg0B@ "�t�1t�2t

1CA v N

0B@0;264 Ik � jLj 0 0

0 Ik � jLj 0

0 0 jLj

3751CA

where S matrix is a diagonal matrix of the signs of each element of L while jLj isthe absolute value of (the elements of) L matrix. (Therefore SjLj = L). P �" and Q

��

are obtained via Cholesky defactorization of P" and Q�, respectively. The errors are

all mutually and serially independent. It can be shown that the transformed model in

equation (2.9) is consistent with the MSV model with leverage de�ned by equations (2.7)

and (2.8).

De�ning the state and signal vectors as �t = (h0t; (Q���2;t)

0)0, �t = ((Q���1;t)

0; (Q���2;t+1)0)0

and �� = (�0; 0k)0, we have the transformed model ready for MCL estimation:

yt = H1=2t P �" f "�t + S�2tg (2.10)

�t+1 = �� +

� Ik

0 0

!�t + �t; where �t v N

0;

"Q��(Ik � jLj)Q�0� 0

0 Q��jLjQ�0�

#!(2.11)

�1 v N

(Ik � �)�1��0

!;0

!

vec(0) =

"I4k2 �

� Ik

0 0

! � Ik

0 0

!#�1vec

"Q��(Ik � jLj)Q�0� 0

0 Q��jLjQ�0�

#

The parameter vector to be estimated is therefore = (vecl(P");�0; diag(�)0; vech(Q�)0;

diag(L)0)0 and the number of parameters to estimate in this model is k2 + 3k. A similar

but more restricted model is considered in Danielsson (1998) and estimated in Asai and

McAleer (2006) where �L = diag(�1�1=211 ; �2�

1=222 ; :::; �k�

1=2kk ) and Q� = f��;ijg. It should

be noted that in relation to our model, �L = Q��LP�" :

85

Page 93: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

It could also be the case that the L matrix is non-diagonal in the sense that the errors

in the observation equation of series i are correlated with the errors in the volatility

equation of series j. Then the transformation above should be modi�ed. Assuming that

L matrix is symmetric and (positive or negative) semi-de�nite, we can de�ne a scalar s

which takes a value 1 (�1) if the L matrix is positive (negative) semi-de�nite. Thereforereplacing the S matrix with the scalar s and jLj with sL in the equations above wouldprovide us with the necessary transformation.

yt = H1=2t P �" f "�t + s�2tg

�t+1 = �� +

� Ik

0k 0k

!�t + �t; where �t v N

0;

"Q��(Ik � sL)Q�0� 0

0 Q��(sL)Q�0�

#!

�1 v N

(Ik � �)�1��0

!;0

!

vec(0)=

"I4k2 �

� Ik

0k 0k

! � Ik

0k 0k

!#�1vec

"Q��(Ik � sL)Q�0� 0

0 Q��(sL)Q�0�

#

where �� is de�ned as above. The parameter vector in this case is = (vecl(P");�0;

diag(�)0; vech(Q�)0; vec(L)0)0 which has k2 + 3k + k(k � 1)=2 parameters to estimate.

The estimation of these MSV with leverage models via QML could be done by adopt-

ing the transformations in Asai and McAleer (2006) and is discussed in section 2:4:1.

We assume throughout the paper for simplicity that whenever the true L matrix is non-

diagonal, it is symmetric. In reality, this is not necessarily the case. Moreover, the

symmetricity assumption is not needed for QML estimation but is required for MCL

estimation along with the assumption that L is positive or negative semi-de�nite.

2.2.4 Estimating the MSV Models

The estimation methods considered in this paper are the Quasi-maximum Likelihood

(QML) method of Harvey et al. (1994) and Monte Carlo Likelihood (MCL) method

of Jungbacker and Koopman (2006). These estimation methods are brie�y explained

below. Originally the CCMSV model proposed in Harvey et al. (1994) was estimated by

Quasi-maximum Likelihood approach while Jungbacker and Koopman (2006) estimated

this model by Monte Carlo Likelihood approach. The TVCMSV model with determin-

istic correlation parameter in Jungbacker and Koopman (2006) was estimated via MCL

approach. The univariate MSV model with leverage in Jungbacker and Koopman (2005)

86

Page 94: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

was estimated using MCL method while Asai and McAleer (2006) estimated the re-

stricted model of Danielsson (1998) by the MCL approach of Sandman and Koopman

(1998). In this paper, we estimate all the models mentioned by both QML approach of

Harvey et al. (1994) and MCL approach of Jungbacker and Koopman (2006).

2.2.4.1 Quasi-maximum Likelihood (QML) Estimation

In this estimation method, the multivariate return vector yt is put through a log-squared

transformation in order to obtain a state space formation (SSF) of the model. For the

CCMSV model; the observation equation and the state equation are given as:

log(y2t ) = ht + log("2t ) = �1:2703�+ ht + �t

ht+1 = � + �ht + �t

where � is a vector of ones and the mean of log("2it) is known to be �1:2703, and itsvariance is �2=2. In fact, the distribution of log("2it) is based on a ln�

21 distribution. (See

for Sandman and Koopman (1998) for the univariate and Asai and McAleer (2006) for the

multivariate model). We can replace log("2t )+ 1:2703� with �t whose mean is therefore a

vector of zeros and covariance matrix is given by P�; which is de�ned below. QMLmethod

approximates the distribution of �t with N(0; P�). The estimation procedure is relatively

easy: Kalman �lter is applied to the log-squared returns and afterwards, the one-step

ahead prediction errors and their variances are used to obtain the likelihood function.

However, this estimation only yields minimum mean square linear estimators because

Kalman �lter is a linear �lter. How to improve the performance of QML estimators in

a multivariate setting using a nonlinear �lter is an interesting topic for future research.3

Taking into account the non-Gaussian distribution of �t, the asymptotic standard errors

can be obtained following Dunsmuir (1979). Harvey (1989, pp 212-3) notes that these

asymptotic standard errors can not be used for testing if the parameters in the matrix Q�are signi�cantly di¤erent from zero. On the other hand usual quasi-maximum likelihood

theory applies and the Bollerslev-Wooldridge robust standard errors can be used. To

estimate the in-sample estimates of volatilities and correlations, a Kalman smoothing

algorithm is employed.

Although, the QML method provides consistent estimators, because of the Gaussian

approximation, it is likely to have poor small sample properties. Breidt and Carriquiry

3Watanabe (1999) used a nonlinear �ltering to improve the performance of QML estimators in a

univariate setting.

87

Page 95: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

(1996) and Sandman and Koopman (1998) are some of the papers that document the

ine¢ ciency of QML estimation.

It was shown in Harvey et al. (1994) that the ij-th element of the covariance matrix

P� is given by (�2=2)p�ij, where p�ii = 1 and:

p�ij =2

�2

1Xs=1

(s� 1)!(1=2)ss

p2sij

where (x)s = x(x+1):::(x+s�1). After obtaining jpijj, the sign of it can be recoveredfrom the sign of the product of corresponding pair of observations, i.e. yiyj. If more

than half of the multiplications yiyj is positive, then the sign of pij is positive.

One problem with the QML estimation is the existence of inliers, i.e. due to missing

data or simply by chance some returns will be zero or very close to zero. Therefore

a log-squared transformation of this return will explode. To take care of this, several

methods are used in the literature. Kim et al. (1996) considered a transformation such

as log(y2t +c) where c = 0:001, while Fuller (1996) assumed a data driven transformation.

We follow here the transformation discussed in Sandman and Koopman (1998) where

the values of log(y2t ) which are less than �20 is set equal to �20.Ruiz (1994) and Harvey et al. (1994) suggest that the intercept of the SV process

could be obtained directly from the observations via a moment estimator, and the log-

likelihood is optimized for the rest of the parameters. This could prove useful when the

cross section is large. In fact, this approach could also be used for the MCL estimation

when the errors are assumed to be Gaussian as in QML estimation. However, in this

paper we preferred to estimate all parameters by maximizing the loglikelihood.

The estimation of TVCMSV model via QML method is very similar the estimation of

CCMSVmodel. It is only required that in the estimation, the log-squared transformation

should be applied toD�1yt and the resulting loglikelihood function contains an additional

term: �0:5T log(det(D)): Given that in TVCMSV set up in our paper the D matrix is

lower unity triangular, its determinant is one and therefore this additional term is equal to

zero. Alternatively the D matrix could have been de�ned as a lower triangular matrix,

with nonzero values in the leading diagonal and the intercept term in the volatility

equation, � is a vector of zeros. Then the additional term in the loglikelihood would be

di¤erent than zero. See Jungbacker and Koopman (2006) for details.

For estimating the MSV model with (diagonal or nondiagonal) leverage via QML

method, the log-squared transformation as discussed in Asai and McAleer (2006) can be

applied to the model:

88

Page 96: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

log(y2t ) = ht + log("2t ) = ht + �t

ht+1 = � + ��t + �ht + ��t ; �

�t v N

�0;���;t

�E(��t �

0t) = �L�t

���;t = ��;t � �LP�1" �L+ �LP�1"��Pj"j � 2

���0� (sts0t)

�P�1" �L

��t =q

2��LP�1" st

�L�t =�LP�1"

hnRj"j � c

q2�

o� (st�0)

iwhere st is a vector constructed from the signs of the returns in yt vector, c =

�1:2703; and the expressions for Pj"j and Rj"j can be found in the appendix of Asai

and McAleer (2006). It should be noted once again that �L = Q��LP�0" in relation to the

construction of our leverage model. As expected, when the parameter values in L matrix

are equal to zero, the state space form representation in CCMSV is obtained. Using this

transformation, it is straightforward to estimate the MSV models with leverage by QML

method by using a properly constructed Kalman �ltering.

2.2.4.2 Monte Carlo Likelihood (MCL) Estimation

Proposed by Durbin and Koopman (1997) and Shephard and Pitt (1997), this estimation

method is based on constructing the likelihood function for general state space models

using Monte Carlo techniques. Sandman and Koopman (1998) put the log-squared

transformed returns to a linear non-Gaussian state space form and proceeds with the es-

timation taking into account the true distribution of the log-squared transformed errors.

What we refer to as the MCL method in this paper is the one proposed by Jungbacker

and Koopman (2006), which extended the method in Durbin and Koopman (1997) for

the observation vector without the log-squared transformation. Other simulated max-

imum likelihood methods are considered by Danielsson and Richard (1993), Liesenfeld

and Richard (2003). In MCL method, the loglikelihood function is approximated as a

sum of a Gaussian part, constructed via Kalman �lter, and a minor remainder part which

is evaluated using simulations. Therefore it only needs a small number of simulations to

achieve the desirable accuracy for empirical analysis.

After some manipulations Durbin and Koopman (1997) showed that the likelihood

function for the non-Gaussian model based on importance sampling can be written by:

p(y) = pG(y)

Zp(yjh)p(h)pG(yjh)pG(h)

pG(hjy)dh

89

Page 97: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

where pG(y) represents the Gaussian likelihood function of the approximating model

which is de�ned by:

~yt = ht + vt where vt s N(0; Gt) for t = 1:::N

and ht is de�ned as before. If we would de�ne _p(ytjht) = @ log p(ytjht)@ht

and �p(ytjht) =@2 log p(ytjht)

@ht@h0t, then Gt = ��p(ytjht)�1 for t=1...N and h is the mode of p(hjy). In this paper,

the models considered have p(h) = pG(h), therefore further simpli�cation can be done

on the likelihood.

By de�ning ~yt = ht+Gt _p(ytjht), it can be shown that the �rst and second derivativesof log p(hjy) and log pG(hj~y) agree in the mode h. Using the algorithm in Jungbacker

and Koopman (2006) based on Kalman �ltering and smoothing, one can compute this

mode. (See Jungbacker and Koopman (2006) for an illustration with a univariate SV

model) Later the Monte Carlo estimator of the likelihood is then given by:

p(y) = pG(~y)M�1

MXm=1

w(�m) where w(�m) =p(yjh)pG(~yjh)

and �m s pG(hj~y)

whereM is the number of samples to be generated from pG(hj~y) using the simulationsmoother algorithm of Jong and Shephard (1995) or Durbin and Koopman (2002). How-

ever, it was noted in Jungbacker and Koopman (2005) that, when Gt = ��p(ytjht)�1 isnot positive de�nite, the simulation smoothing method of Durbin and Koopman (2002)

cannot be used. In our estimations we take the number of draws M = 200.

In the case of CCMSV model, �rst and second derivatives _p(ytjht) and �p(ytjht) canbe obtained from the conditional density:

log p(ytjht) = �0:5k log(2�)� 0:5kXi=1

hit � 0:5 log(det(P"))� 0:5d0tP�1" dt for t = 1:::T

where dt = H�1=2t yt. The possible existence of an inde�nite matrix for �p(ytjht) re-

quires the approach of Jungbacker and Koopman (2005). As Jungbacker and Koopman

(2006) suggested, when the model gets too complicated or when explicit expressions for

_p(ytjht) and �p(ytjht) can not be obtained analytically, as a last resort numerical approx-imations can be used. For the CCMSV model the analytical derivatives are provided by

Jungbacker and Koopman (2006) and these can also be used to obtain the derivatives

for TVCMSV. In our estimations, we used analytical derivatives also for the MSV with

leverage models and we provide them in the appendix.

90

Page 98: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Finally, the in-sample estimates of the underlying volatilities can be obtained from

the smoothed estimate of the state vector � (which is just volatilities in case of CCMSV

and TVCMSV models but a larger vector in MSV models with leverage) which can be

computed from:

� =

PMi=1 �

iw(�i)PMi=1 �

i

where �i is a draw from the conditional density pG(�jy) for the approximatingGaussian linear model. When making these draws, the simulation device mentioned

in Jungbacker and Koopman (2005) is used to increase the computational e¢ ciency.

This device is based on an unconditional draw from p(�) and on a conditional mean

adjustment. (See Jungbacker and Koopman (2005) for details.)

In our experience, the computational time required for MCL estimation turned out

to be very high compared to that of the QML estimation. Especially when the sample

size or the cross-section size is increased, it takes our code much more time to converge

than it does for QML estimation. Also, when the cross-section size is large, it is not

that obvious to write the analytical derivatives and if instead one considers numerical

derivatives in this case, then the derivatives calculated with respect to large state vectors

could be very time consuming and numerically unstable. The QML method on the other

hand is much more �exible. High cross-section size or a large sample wouldn�t be a

problem for QML estimation as it would for MCL estimation. Therefore, based on our

experience, MCL estimation would be a good method for estimating MSV models for

small number of series, like returns of international stock market indices, while QML

estimation could be used for the returns of medium-to-large number of assets in a stock

market.

2.3 Monte Carlo Experiments

In this section, we report the results of our MC experiments in order to compare the

performance of QML and MCL methods when estimating the models considered in the

paper for several di¤erent parameter sets. For each model and parameter set, we gen-

erated B = 100 time series vectors of dimension k = 2 with sample size T = 500. For

comparison purposes, we look at the performances in parameter estimation as well as in

in-sample smoothed volatility and correlation estimations. The results are reported in

terms of MC means of parameter estimates, corresponding MC standard deviations and

91

Page 99: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

root mean squared error (RMSE) for each parameter estimate as a measure of e¢ ciency.4

On the other hand, the kernel density estimates of the average deviations of estimated

volatilities, bhit, and correlations, bpt, from their true values are provided. These average

deviations are calculated for each series over the number of simulations B; i:e: for each

t:

�chit = 1B

PBb=1

�bhit;b � hit;b

��bpt = 1

B

PBb=1 (bpt;b � pt;b)

Given that in the case of Constant Correlation MSV (CCMSV) and MSVmodels with

leverage the correlations are constant (the correlation estimate is actually a parameter

estimate), the kernel density estimate of the deviations of B di¤erent estimates of the

correlation parameter from the true correlation parameter will be plotted. However, for

the Time Varying Correlation MSV (TVCMSV), as in the case of volatilities, the kernel

density estimate of �bpt is plotted.For the CCMSVmodel, the true values of the parameters = (vecl(P")0;�0; diag(�)0;

vech(Q�)0)0 and parameter estimation results are given in Table 2.1 and 2.2. These results

for the CCMSVmodel con�rm the previous results in the literature that the small sample

performance of MCL is better than that of QML; the QML method is less e¢ cient. The

e¢ ciency of QML estimator of the correlation parameter increases as the two series

become more correlated. When the series are less correlated, the QML doesn�t estimate

the correlation parameter very accurately: even though the mean is more or less around

the true value, we observe a relatively high variance. Also when the variance of the SV

processes are higher (comparing Exp 1 and Exp 3) the QML estimator gains e¢ ciency

in estimating the autoregressive coe¢ cients �: The same can be said also for the MCL

estimator of � that the RMSE is smaller when the SV processes have more variance.

Comparing Exp 1 and Exp 4, we can say that when the true value of p is high, QML and

MCL estimates of this parameter have less MC standard deviation. It is also noticed that

overall the performance of MCL estimator improves consistently for all the parameters

when p increases. When the variance of SV process is higher, it is seen that the estimation

performance of both QML and MCL estimators for autoregressive parameters increase

while there are slight changes in the RMSE of the correlation estimates. (Comparing

Exp 2 and Exp 5, Exp 6 and Exp 8)

Figure 2.2-2.3 shows the kernel density estimates of the deviations of volatility and

correlation estimates from the true values. From these �gures we could visually con�rm4For comparison purposes, in case of MSV with leverage models as well we report the results for

the parameters in P" and Q� matrices, instead of reporting the results for the Cholesky factors in their

formulation (see section 2:3).

92

Page 100: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

that MCL estimators of the volatilities are more e¢ cient compared to QML estimators.

The high variance of the QML correlation estimates can be noticed in the third column;

especially in the experiments where the true correlation parameter value is 0:2. In fact, it

is observed that the QML correlation estimate in Exp 1 is hitting to 0 most of the time.

While higher variance of the SV process errors brings with it an increase in the variance

of the estimated volatilities for both QML and MCL estimators (comparing Exp 1 with

Exp 3 and Exp 6 with Exp 8), when the series are highly correlated both estimators seem

to perform better in estimating the underlying volatilities and correlations (comparing

Exp 1, 2, 3 with Exp 4) . In Table 2.3, the RMSE of the volatility and correlation

estimates of QML and MCL estimators are given. From this table the ine¢ ciency of

QML estimation in estimating the correlation parameter when the true value is low can

be seen clearly: when the correlation parameter value is increased from 0:2 to 0:8, the

relative RMSE of QML correlation estimates improves twofolds. Looking at this table,

it can be said that QML performs closest to MCL estimator in the experiments where

the second autoregressive parameter and the variance of the SV processes are high (Exp

5 and Exp 6). On the other hand, QML estimator of the correlation parameter performs

closer to MCL estimator when the correlation parameter is high. (Exp 6) Our conclusion

from these experiments is that MCL estimation should be preferred to QML estimation.

QML estimation could be used when the series are expected to be highly correlated, the

SV processes behind the series are strong and the sample size is large.

For the experiments with TVCMSV model, the values for the parameters (except the

correlation parameter) is chosen from the experiment 1 of CCMSV model. The corre-

lation parameter values 0:2041 and 1:3333 are chosen such that the correlation between

the volatility adjusted series are 0:2 and 0:8, respectively. The parameter estimation

results in Table 2.4 suggest that QML estimator performs better in estimating the corre-

lation parameter as well as the underlying correlations with TVCMSV model than with

CCMSV model. Also, it is observed that when the correlations are higher (in Exp 2 rel-

ative to Exp 1), the MC standard deviations and RMSE of all QML estimates are less;

while the performance of MCL estimator seems to be similar in these two experiments.

Figure 2.4 shows the kernel density estimates of the deviations of QML and MCL volatil-

ity and correlation estimates from the true values for TVCMSV model. The underlying

correlations are estimated with less variance by both QML and MCL methods when the

correlations between the series are high. Looking at Table 2.5, we can see that while the

performance of QML and MCL in estimating the underlying volatilities is more or less

the same as in corresponding CCMSV experiments (Exp 1 and Exp 4), the performance

QML estimator in estimating the underlying correlations increased relative to the MCL

correlation estimator. Therefore compared to the CCMSV model, we have less concerns

93

Page 101: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

in estimating the TVCMSV model with QML estimator rather than MCL estimator,

while we still suggest that MCL estimator should be used.

For the MSV with diagonal leverage model, all the parameter values are taken from

experiment 1 of CCMSV model. For the additional parameters that control for the

leverage, we chose L = diagf�0:2000;�0:2500g and L = diagf�0:5500;�0:6000g. InTable 2.6, we report these true values of the parameters as well as the results of the QML

and MCL estimations when the data was generated by an MSV model with diagonal

leverage. It is observed that compared with the Exp 1 of CCMSVmodel, the performance

of QML estimator has decreased when two more parameters were included to control for

the leverage while the performance of MCL estimator seems to remain similar. When the

leverage e¤ect is higher the QML estimates of the autoregressive parameters have less

standard deviation and RMSE. It is also observed that among all the experiments done,

the performance of QML estimator in estimating the correlations of this model is lower

compared to the experiments with the models without leverage. On the other hand MCL

estimator of the leverage parameters, although having less standard deviation, seems to

be deviating from the true values relatively more compared to QML estimator. Some of

these results can be con�rmed visually from Figure 2.5 where the kernel density estimates

of the deviations of QML and MCL volatility and correlation estimates from the true

values are plotted. For instance in the third column the kernel density estimate for the

QML correlation estimates have very high variance. In practice this means that for a

given data, the QML estimate of the correlation parameter could possibly have a value

far from the true value. Finally the RMSE of the volatility and correlation estimates are

reported in Table 2.7. It is observed that for both estimators, the volatility estimates

have higher variation and RMSE compared to the Exp 1 of CCMSV model and they

increase with the strength of leverage. The correlation estimates obtained via QML

estimator have 5 to 7 times higher RMSE than the MCL estimator. Including leverage

e¤ects to the model doesn�t seem to have an e¤ect on the performance of the MCL

correlation estimator.

In two other MC experiments we consider the MSVmodel with non-diagonal leverage.

The MCL estimation of this model requires that the assumption that the leverage matrix

is symmetric and positive or negative semi-de�nite. In the �rst experiment (Exp 1) we

consider a leverage matrix that is symmetric but inde�nite, therefore the restriction of

the MCL estimation is binding. In the second experiment (Exp 2), we consider a leverage

matrix that is symmetric negative de�nite. The true values of the parameters, except the

o¤-diagonal parameter of the leverage matrix, are taken from Exp 1 of the MSV model

with diagonal leverage. The QML estimation does not require symmetricity or positive

or negative semi-de�niteness assumptions although we assume that the leverage matrix is

94

Page 102: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

symmetric. For comparison purposes, in the �rst experiment, we also estimate the same

data with QML method imposing the restrictions on the leverage matrix. The parameter

estimation results are given in Table 2.8. In the �rst experiment comparing unrestricted

and restricted QML estimation results, we see that restricted QML estimate of the o¤-

diagonal parameter of the leverage matrix is lower and the restricted QML estimates of

the leading diagonal of the leverage matrix are higher compared to the corresponding

unrestricted QML estimates. This result con�rms that the restriction was binding. Both

unrestricted and restricted QML estimates of the correlation parameter are far from the

true value. While having uniformly less bias than the unrestricted QML estimates, MCL

estimator does its best to capture the o¤-diagonal element of the leverage matrix while

the MCL estimates for the leading diagonal of the leverage matrix have more or less the

same value as the corresponding unrestricted QML ones.

It is observed that MCL correlation estimator has similar performance in this experi-

ment compared to Exp 1 of the CCMSV model while the unrestricted or restricted QML

estimates of the correlation parameter are far from the true value with higher RMSE

compared to Exp 1 of the CCMSV model. In the second experiment (Exp 2) only the

unrestricted QML estimation results are reported along with the MCL estimation re-

sults. When the o¤-diagonal element of the leverage matrix was decreased (from Exp

1 to Exp 2), in general less bias and RMSE were obtained for the MCL estimates. As

it was in the �rst experiment, the QML estimate of the correlation parameter has very

high standard deviation. Figure 2.6 reports the kernel density estimates of the devia-

tions of unrestricted QML, restricted QML (for Exp. 1 only) and MCL volatility and

correlation estimates from the true values. Whether for volatilities or correlations, the

kernel densities corresponding to unrestricted and restricted QML estimators seem to

be very close. For both series the mode of the kernel density estimate corresponding

to the MCL volatility estimates slightly deviate from zero in the �rst experiment while

this deviation is very small or non-existent in the second experiment. This could be the

result of the restriction imposed or simply due to randomness because in the �rst exper-

iment both unrestricted and restricted QML estimates of the volatility of second series

also seem to be underestimating the true volatility. In the third column we see that the

QML correlation estimates have very high variance as in Exp. 1 of CCMSV model, while

the MCL correlation estimates have much less variance and are concentrated around the

true value of the correlation parameter. When the o¤-diagonal element of the leverage

matrix has less magnitude, the MCL correlation estimates are more dense around the

true value, while the QML correlation estimates seem to have a similar distribution as in

the �rst experiment. In Table 2.9, we provide the RMSE of the volatility and correlation

estimates.

95

Page 103: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Compared to the Exp. 1 of the MSV model with diagonal leverage, in the �rst

experiment the RMSE of the QML volatility estimates are higher while the RMSE of the

MCL volatility estimates are slightly lower. In the second experiment, the RMSE of the

MCL volatility and correlation estimates are lower relative to the corresponding RMSE in

Exp 1 of the MSV model with diagonal leverage. Overall, the restricted QML estimator

seems to perform closer to the MCL estimator given that the same restriction is imposed.

It is also observed that the relative RMSE of the correlation estimates increased from the

�rst experiment to second experiment. Finally, it should be noted that both QML and

MCL estimators are more e¢ cient in estimating the volatilities and correlations when

the true value of the o¤-diagonal of the leverage matrix is lower, while the improvement

is larger for the MCL estimator. Also, MCL estimator of the volatilities and correlations

in the �rst experiment with non-diagonal inde�nite leverage matrix perform similar to

the �rst experiment with diagonal leverage matrix in Table 2.7. Therefore although the

restriction imposed in the MCL method could cause underestimation of the o¤-diagonal

element of the leverage matrix as seen in Table 2.8, the volatilities and correlations are

estimated by MCL with less RMSE compared to the corresponding QML estimator.

Looking at the results of the experiments with MSV models with (diagonal and non-

diagonal) leverage and considering the high RMSE of the QML correlation estimates,

we suggest using the MCL method for estimating these models rather than using QML

estimation. It could be that the performance of QML estimator improves with higher

correlation in the data or stronger SV processes but it is not expected to be better than

the cases considered in the experiments with CCMSV model.

2.4 An Empirical Application

In this section our aim is to �nd empirical evidence supporting the MSV with non-

diagonal leverage model, i.e. the return shocks of one series is correlated with the

volatility shocks of another series. For this estimation, a trivariate series of length 1717 is

obtained from the returns of IBEX 35, FTSE 100 and DAX stock markets for the period

between 4/1/2005 and 4/11/2011. The returns are calculated as: 100 x log(Pt=Pt�1). The

descriptive statistics of the data is provided in Table 2.10. It is observed that the IBEX

35 and DAX returns are skewed right while FTSE-100 is skewed left. On the other hand,

as expected, all series have high kurtosis. We also report the Box-Ljung statistics for the

returns and its squared and log-squared transformations. The 5% critical value with ten

degrees of freedom in a chi-square distribution corresponds to 18.3. Box-Ljung statistic

for the return series, yt, suggests that the data may not be random walks, more likely

in the case of FTSE-100. On the other hand, there is strong evidence of nonlinearity in

96

Page 104: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

the squared returns and log-squared returns; suggesting that there is autocorrelation in

these series.

A univariate SV model with leverage is �t for each of the series. The QML and MCL

estimation results for the univariate model is given for each series in Table 2.11. From

the results of the univariate estimation, we see that the MCL estimates imply more

persistent SV processes compared to QML estimates. MCL estimates of the autoregres-

sive parameter suggest that these SV processes are even close to random walk. This is

also con�rmed by the Box-Ljung statistic for the return series, in Table 2.10 Also it is

noted that MCL estimates of the leverage coe¢ cients, L; are higher compared to QML

estimates.

The estimation of the MSV model with leverage requires the restriction that the

L matrix is symmetric and (positive or negative) semide�nite. This latter restriction

is not required by the QML estimation. However for comparison purposes, we also

estimated the model via QML assuming this restriction. The estimation results for the

MSV model with leverage are given in Table 2.12. If we compare the results of the

multivariate estimation with the results of the univariate estimation in Table 2.11, we

see that the QML estimates of the intercept, of the autoregressive parameter and of the

variance of the SV process are more or less the same in both cases while the self-leverage

of each series, that is the diagonal of L matrix, is estimated to be less in magnitude for

FTSE-100 and DAX indices compared to the univariate results.

The MCL estimates of the autoregressive parameters are higher in the univariate es-

timation compared to the multivariate estimation while the estimates of the self-leverage

of each series are lower in the multivariate estimation. When comparing the unrestricted

QML and MCL estimation results, we see that the correlation estimates obtained by

these two methods are more or less the same. While the MCL estimates of the autore-

gressive parameters are higher, the MCL estimates of elements of the variance matrix of

the SV process are lower; this is due to the fact that the estimation tries to match the

unconditional variance in the data and when the estimates of the autoregressive parame-

ters are high, the variance matrix of the SV process is pushed downwards. When we look

at the leverage matrix estimates, we see that MCL estimates of the diagonal elements

of L matrix are higher compared to the QML estimates. The MCL leverage parameter

estimates are statistically signi�cant. Moreover, the likelihood ratio test to compare the

MCL estimation results of CCMSV and MSV-NDL models suggest that the data is ex-

plained better by the latter model.5 Figure 2.7 shows for each series the absolute values

of the returns plotted along with the QML and MCL smooth estimates of the standard

5The likelihood ratio test can�t be used with the QML estimation because it is based on approxima-

tions.

97

Page 105: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

deviations. It is observed that QML overestimated the volatilities of the period after

the big volatility shocks. (for example around t = 1000) Finally, the MCL estimates

of the standard deviations follow the absolute values of the returns closely while QML

estimates are experiencing some jumps when volatility of the data is increasing.

2.5 Conclusions

In this paper, via Monte Carlo (MC) experiments, we compare the performance of Quasi

Maximum Likelihood estimation method of Harvey et al. (1994) and Monte Carlo Like-

lihood estimation method of Jungbacker and Koopman (2006) in estimating the para-

meters as well as in estimating the underlying volatilities and correlations. With these

methods, we estimate the Constant Correlation MSV model of Harvey et al. (1994), the

Time Varying Correlation MSV model of Jungbacker and Koopman (2006). Moreover,

we propose two MSVmodels with leverage which are new to the literature. The �rst MSV

model with leverage is a direct generalization of the univariate model in Jungbacker and

Koopman (2005). In this model, each series has its own leverage e¤ect: i.e. the return

shocks of series i is correlated with the volatility shocks of series i while the correlation of

the return shocks of series i and the volatility shocks of series j is zero. Therefore in this

model the leverage matrix is diagonal, hence we refer to it as MSV model with diagonal

leverage. In the second MSV model with leverage, we relax this assumption and let the

o¤-diagonals of the leverage matrix to be non-zero. We refer this model as MSV with

non-diagonal leverage.

The estimation of CCMSV model via QML and MCL are discussed in Harvey et al.

(1994) and Jungbacker and Koopman (2006), respectively. Jungbacker and Koopman

(2006) also provides the estimation procedure for the TVCMSVmodel which follows from

a small modi�cation of the estimation procedure of CCMSV model. This modi�cation

can be applied to the QML method in order to estimate the TVCMSV model. For

the estimation of MSV models with (diagonal and non-diagonal) leverage, we adopt

the transformations discussed in Asai and McAleer (2006). On the other hand, the

transformations of the MSV models with leverage given in this paper are new to the

literature and are based on the univariate transformation in Jungbacker and Koopman

(2006).

We considered eight di¤erent parameter sets for the CCMSV model in our MC exper-

iments. The results con�rm the previous �ndings in the literature that QML estimator

is ine¢ cient in terms of parameter estimation. It is observed that when the true value

of the correlation parameter is low, the QML estimator of this parameter has very high

variance. Therefore, when estimating a model with real data, if the underlying correla-

98

Page 106: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

tion parameter is low, the QML estimate will not be very informative. We also observed

that the performance of the QML estimator increases as the series become more cor-

related and when the SV processes have higher variance. In estimating the underlying

volatilities and correlations, the performance of MCL estimator was superior to that

of QML estimator in all parameter sets, although the QML estimator was performing

closely in the experiments where the correlations were higher or SV processes had higher

variance.

For the TVCMSV model, we considered two experiments; one with low correlation

and another one with high correlation. It appeared that the performance of the QML

estimator relative to the MCL estimator was much better compared to the experiments

of CCMSV model. With time varying correlations, the QML estimator was able to

perform close to the MCL estimator even when the correlations were low.

For the MSV models with diagonal leverage we considered two experiments, one with

low leverage and another one with high leverage. Our results showed that relative to

the experiments with CCMSV, the ine¢ ciency of the QML estimator increased while

the performance of MCL stayed the same when leverage is introduced. Increasing the

true values of the leverage parameters further decreases the performance of the QML

estimator. The correlation estimates of the QML model had very high root mean squared

error (�ve to seven times the ones of MCL estimator). For the MSV model with non-

diagonal leverage, we also considered two experiments; one where the leverage matrix

was inde�nite and another one where it was negative de�nite. In the �rst experiment,

the restriction that "the leverage matrix should be symmetric and positive or negative

semi-de�nite" was binding, while in the latter it was not. Our results con�rm that in the

�rst experiment, even though the MCL method underestimated the o¤-diagonal leverage

parameter, it was able to capture the underlying volatilities and correlations almost as

good as in the case of CCMSV model. On the other hand in both MSV models with

leverage, QML correlation estimates had high bias and high standard deviation such

that its performance was worse than in the corresponding case of CCMSV model.

Based on our results, we conclude that even though in the case of TVCMSV, QML

estimator performs close to MCL estimator, the latter is always preferred. We do not

recommend using QML estimators for the models with leverage. Although QML method

can be implemented much easier than MCL and the estimation time is much less in QML

estimation; we suggest its use if it is expected that the series have high and/or time

varying correlation and the SV processes have higher variance. Given the results in the

literature on the ine¢ ciency of QML estimator in small samples, it would be also a plus if

the sample size is large, when using QMLmethod. On the other hand the implementation

of MCL estimation is relatively more complicated than the QML estimation. Therefore

99

Page 107: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

MCL estimation requires much more time to converge. When the cross-section size is

large, the analytical derivatives for the MCL estimation are harder to obtain and if one

would like to use numerical derivatives in this case, then the derivatives calculated for

large state vectors could be very time consuming and numerically unstable. QML is not

as much a¤ected by the large cross-sections or large sample sizes. Therefore based on

our experience, we would suggest using MCL method in the estimation of MSV models

for several series, as for modelling the returns of international stock market indices, and

QML method could be used for the estimation with medium-to-large number of series

from a stock market.

The ine¢ ciency of QMLmethod could be improved partially by employing a nonlinear

�lter instead of Kalman �lter. The latter is a linear �lter and therefore leads to minimum

mean square linear estimators rather than minimummean squared estimators. Watanabe

(1999) provides a nonlinear �lter for QML estimation for the univariate SV model and

extending it to a multivariate setup would be an interesting topic.

Another point to consider would be to introduce a correlation between the SV process

errors and the stochastic correlation parameter errors in the Tsay (2005) model. The

intuition behind this extra parameter would be that the volatility shocks are correlated

with the correlation shocks, meaning that when the series are more volatile, they are

expected to be more correlated. As we have seen in the recent crisis, the markets tend

to move more closely when there are bad news, while their recoveries from these falls

might not be as correlated.

2.6 Appendix

Following Jungbacker and Koopman (2006) and Lutkepohl (1996), we obtained the deriv-

atives for the bivariate MSV model with diagonal leverage needed for deriving the ap-

proximating linear model. For the nondiagonal leverage model, it can be easily modi�ed.

On the other hand, these derivatives are extendable to cases with more than k = 2 series;

in the empirical estimation part these derivatives are used for k = 3 case.

yt = H1=2t P �" "t =) "t = P �

�1" H

�1=2t yt

Ht and P �" as de�ned in (1) and (3). Then using (9) we can write:

dt = P ��1" H

�1=2t yt � SQ�

�1� �2;t

� de�ned as in (10): If we let X = I2�SL where I2 is a 2x2 identity matrix and �1;tbe the volatilities part of �t; then the loglikelihood for (10) would be given by:

100

Page 108: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

log p(ytjht) = �0:5k log(2�)� 0:5P

i �1;t;i � 0:5 log(det(P �"XP �0" ))� 0:5d0tX�1dt

Then the �rst derivatives with respect to the state vector �t would be given by:

@lt@�t

= �0:5

266641

1

0

0

37775� 0:5 @d0t@�t(X�1 +X�10) dt

@d0t@�t

=�@dt@�t

�0=

0@ n�0:5P ��1" diag(H

�1=2t yt)

o0�nSQ�

�1�

o01A

The second derivatives are obtained from:

@2lt@�t@�0t

= �0:5(@d0t@�t(X�1 +X�10) @dt

@�0t+ [d0t (X

�1 +X�10) I4]@vec

�@d0t@�t

�@�0t

)

where I4 is a 4x4 identity matrix and is a Kronecker product. The last expressionin the equation is equal to:

@vec

�@d0t@�t

�@�0t

= 0:25Z

where Z1;1 =nP �

�1" diag(H

�1=2t yt)

o1;1, Z5;1 =

nP �

�1" diag(H

�1=2t yt)

o2;1, and

Z6;2 =nP �

�1" diag(H

�1=2t yt)

o2;2while the rest of the entries are zeros.

101

Page 109: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Bibliography

[1] Aguilar, O., West, M., (2000), Bayesian Dynamic Factor Models and Portfolio Allo-

cation, Journal of Business and Economic Statistics, 18, 338-357

[2] Andersen, T. Chung, H., Sorensen, B., (1999), E¢ cient method of moments estima-

tion of a stochastic volatility model: a Monte Carlo study, Journal of Econometrics,

91, 61-87

[3] Asai, M, McAleer, M, (2006), Asymmetric Multivariate Stochastic Volatility, Econo-

metric Reviews, 25 (2-3), 453-473

[4] Asai, M., McAleer, M., Yu, J., (2006), Multivariate Stochastic Volatility: A Review,

Econometric Reviews, 25 (2-3), 145-175

[5] Bauwens, L., L. Sebastien and J.V.K. Rombouts, (2006), Multivariate GARCHMod-

els: A Survey. Journal of Applied Econometrics, 21, 79-109.

[6] Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity, Jour-

nal of Econometrics, Volume 31, Issue 3, 307-327

[7] Bollerslev, T. R.Y. Chou, K.F. Kroner, (1992). ARCH modelling in �nance: A review

of the theory and empirical evidence, Journal of Econometrics 52, 5-59

[8] Breidt, FJ., Carriquiry, A. (1996), Improved quasi-maximum likelihood estimation for

stochastic volatility models, In: Zellner, A., Lee, J.S. (Eds.) Modelling and Prediction:

Honouring Seymour Geisel. Springer, New York.

[9] Broto, C., Ruiz, E., (2004), Estimation methods for stochastic volatility models: a

survey, Journal of Economic Surveys, Volume 18, Issue 5, 613-649

[10] Carnero, A. , Peña, D. , Ruiz, E., (2004), Persistence and Kurtosis in GARCH and

Stochastic Volatility Models, Journal of Financial Econometrics, Volume 2, Issue 2,

319-342.

102

Page 110: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[11] Chib, S., Nardari, F., Shephard, N., (2006), Analysis of High Dimensional Multi-

variate Stochastic Volatility Models, Journal of Econometrics, 134(2), 341-371

[12] Chib, S. Omori, Y., Asai, M., (2009), Multivariate Stochastic Volatility, Handbook

of Financial Time Series, Part 2, 365-400.

[13] Danielsson, J., (1998), Multivariate Stochastic Volatility Models: Estimation and A

Comparison With VGARCH models, Journal of Empirical Finance, 5, 155-173

[14] Danielsson, J., Richard J.F., (1993), Accelerated Gaussian Importance Sampler with

Application to Dynamic Latent Variable Models, Journal of Applied Econometrics, 8,

S153-S154

[15] Danielsson, J. (1994), Stochastic volatility in asset prices estimation with simulated

maximum likelihood, Journal of Econometrics, Volume 64, Issues 1-2, 375-400

[16] De Jong, P., Shephard, N.,(1995), The simulation smoother for time series models.

Biometrika Volume 82, No 2, pp 339 - 350

[17] Dunsmuir, W., (1979), A Central Limit Theorem for Parameter Estimation in Sta-

tionary Time Series and Its Applications to Models for a Signal Observed White Noise,

Annals of Statistics, 7, 490-506

[18] Durbin, J., Koopman, S.J,. (1997), Monte Carlo maximum likelihood estimation for

non-Gaussian state space models. Biometrika Volume 84, No 3, pp 669 - 684

[19] Durbin, J., Koopman, S.J., (2002), A simple and e¢ cient simulation smoother for

state space time series analysis. Biometrika Volume 89, No 3, pp 603 - 615

[20] Engle, RF. (1982), Autoregressive conditional heteroskedasticity with estimates of

the variance of United Kingdom in�ation, Econometrica, Volume 50, No 4.

[21] Fuller, W.A., (1996), Introduction to Statistical Time Series, New York, Wiley

[22] Ghysels, E., Harvey, A. C., Renault, E. (1996). Stochastic volatility. In: Rao, C. R.,

Maddala, G. S., eds. Statistical Models in Finance. Amsterdam: North-Holland, pp.

119�191.

[23] Harvey, A., (1989), Forecasting Structural Models and the Kalman Filter, Cam-

bridge University Press, Cambridge

[24] Harvey, A., Ruiz, E., Shephard, N., (1994), Multivariate stochastic variance mod-

els.The Review of Economic Studies, Volume 61, pp 247 - 264

103

Page 111: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[25] Hull, J., White, A. (1987), Hedging the Risks from Writing Foreign Currency Op-

tions, Journal of International Money and Finance, 6, 131-152.

[26] Jacquier, E., Polson, N., Rossi, P., (1994), Bayesian Analisis of Stochastic Volatility

Models, Journal of Business and Economic Statistics, 12, 371-389

[27] Jungbacker, B., and Koopman, S. J., (2005), On Importance Sampling for State

Space Models, Tinbergen Institute Discussion Paper No. 05-117. Available at SSRN:

http://ssrn.com/abstract=873472

[28] Jungbacker, B., Koopman, S.J., (2006), Monte Carlo likelihood estimation for three

multivariate stochastic volatility models. Econometric Reviews Volume 25, Issue 2-3,

385 - 408

[29] Kim, S., Shephard, N., Chib, S., (1998), Stochastic Volatility: Likelihood Inference

and Comparison with ARCH Models, Review of Economic Studies, Volume 65, Issue

3, 361-393.

[30] Liesenfeld, R., Richard, J.F. (2003), Univariate and Multivariate Stochastic Volatil-

ity Models: Estimation and Diagnostics, Journal of Empirical Finance, 10, 505-531

[31] Liesenfeld, R., Richard, J.F. (2006), Classical and Bayesian Analysis of Univariate

and Multivariate Stochastic Volatility Models, Econometric Reviews 25(2�3):335�360

[32] Lutkepohl, H., (1996), Handbook of Matrices, Wiley, New York.

[33] Maasoumi, E., McAleer, M. (2006), Multivariate Stochastic Volatility: An Overview,

Econometric Reviews, 25 (2-3), 139-144

[34] Meyer, R., Yu, J. (2000). BUGS for a bayesian analysis of stochastic volatility

models. Econometrics Journal 3:198�215.

[35] Nelson, D.B., (1988), Time Series Behavior of Stock Market Volatility and Returns,

unpublished PhD dissertation, MIT, Economics Dept.

[36] Ruiz, E. (1994), Quasi-maximum likelihood estimation of stochastic volatility mod-

els, Journal of Econometrics, Volume 63, Issue 1, 289-306

[37] Sandmann, G., Koopman, S.J., (1998), Estimation of stochastic volatility models

via Monte Carlo maximum likelihood. Journal of Econometrics, Volume 87, Issue 2,

pp 271-301

104

Page 112: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[38] Shephard, N. (1996), Statistical Aspects of ARCH and Stochastic Volatility. In Cox:

D.R. Hinkley, D.V. Barndo¤-Nielsen, O.E. eds. Time Series Models in Econometrics,

Finance and Other Fields. London: Chapman and Hall, 1-67

[39] Shephard, N., Andersen, T.G., (2009), Stochastic Volatility: Origins and Overview,

Handbook of Financial Econometrics, Part 2, 233-254

[40] Shephard, N., Pitt, M.K., (1997), Likelihood Analysis of Non-Gaussian Measure-

ment Time Series, Biometrika, 84, 653-667.

[41] Silvennoinen, A. and T. Teräsvirta, (2009), Multivariate GARCH Models. In T. G.

Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds. Handbook of Financial Time

Series. New York: Springer.

[42] Taylor, S. J, (1982), Financial returns modelled by the product of two stochastic

processes - a study of daily sugar prices 1961-79. In O. D. Anderson (Ed.), Time Series

Analysis: Theory and Practice, 1, pp. 203-226. Amsterdam: North-Holland.

[43] Taylor, S.J., (1986), Modelling Financial Time Series, Chichester; John Wiley.

[44] Taylor, S.J., (1994), Modelling Stochastic Volatility: A Review and Comparat¬ve

Study, Mathematical Finance, 4 (2), 183-204.

[45] Tsay, R.S., (2005), Analysis of Financial Time Series: Financial Econometrics (2ed)

New York: Wiley

[46] Tsui A. K., Yu, Q., (1999), Constant conditional correlation in a bivariate garch

model: Evidence from the stock market in china, Mathematics and Computers in

Simulation, 48, 503�509.

[47] Watanabe, T., (1999), A Nonlinear Filtering Approach to Stochastic Volatility Mod-

els with an Application to Daily Stock Returns, Journal of Applied Econometrics, 14,

101-121

[48] Yu, J., Meyer, R., (2006), Multivariate Stochastic Volatility Models: Bayesian Es-

timation and Model Comparison, Econometric Reviews 25: 2-3.

105

Page 113: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 2.1: Indices, returns, squared returns (as a proxy for volatilities) and correlations

(estimated by a rolling window of 60 days) of FTSE-100 and DAX stock markets. Source:

Yahoo Finance.

0 200 400 600 800 1000 1200 1400 16002000

4000

6000

8000

10000

Indi

ces

FT SE­100 and DAX, Period: 04/01/2005­04/11/2011

0 200 400 600 800 1000 1200 1400 1600­10

­5

0

5

10

Ret

urns

0 200 400 600 800 1000 1200 1400 16000

50

100

150

Sq.

 Ret

urns

0 200 400 600 800 1000 1200 1400 16000.7

0.8

0.9

1

Cor

rela

tions

FTSE­100DAX

106

Page 114: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 2.2: Kernel density estimates of the deviations of MCL and QML volatility and

correlation estimates from the true ones, for the CCMSV model. Experiments 1 to 4.

­0.5 0 0.50

5

10

∆h1t

Exp 

1

MCLQMLzero l ine

­0.5 0 0.50

5

10

∆h2t

­0.5 0 0.50

10

20

30∆p

­0.5 0 0.50

5

10

Exp 

2

­0.5 0 0.50

5

10

­0.5 0 0.50

10

20

30

­0.5 0 0.50

5

10

Exp 

3

­0.5 0 0.50

10

20

30

­0.5 0 0.50

5

10

Exp 

4

­0.5 0 0.50

5

10

­0.5 0 0.50

10

20

30

­0.5 0 0.50

5

10

107

Page 115: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 2.3: Kernel density estimates of the deviations of MCL and QML volatility and

correlation estimates from the true ones, for the CCMSV model. Experiments 5 to 8.

­0.5 0 0.50

5

10

Exp 

5

∆h1t

­0.5 0 0.50

5

10

∆h2t

­0.5 0 0.50

10

20

30∆p

­0.5 0 0.50

5

10

Exp 

6

­0.5 0 0.50

5

10

­0.5 0 0.50

10

20

30

­0.5 0 0.50

5

10

Exp 

7

­0.5 0 0.50

5

10

­0.5 0 0.50

10

20

30

MCLQMLzero l ine

­0.5 0 0.50

5

10

Exp 

8

­0.5 0 0.50

5

10

­0.5 0 0.50

10

20

30

108

Page 116: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 2.4: Kernel density estimates of the deviations of MCL and QML volatility and

correlation estimates from the true ones, for the TVCMSV model. Experiments 1 and

2.

­0.5 0 0.50

2

4

6

8

10

∆h1t

Exp 

1

­0.5 0 0.50

2

4

6

8

10

∆h2t

­0.5 0 0.50

20

40

60

80

∆pt

MCLQMLzero l ine

­0.5 0 0.50

2

4

6

8

10

Exp 

2

­0.5 0 0.50

2

4

6

8

10

­0.5 0 0.50

20

40

60

80

109

Page 117: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 2.5: Kernel density estimates of the deviations of MCL and QML volatility and

correlation estimates from the true ones, for the MSV model with diagonal leverage.

Experiments 1 and 2.

­0.5 0 0.50

2

4

6

8

10

∆h1t

Exp 

1

MCLQMLzero l ine

­0.5 0 0.50

2

4

6

8

10

∆h2t

­0.5 0 0.50

5

10

15

20

25

30∆p

­0.5 0 0.50

2

4

6

8

10

Exp 

2

­0.5 0 0.50

2

4

6

8

10

­0.5 0 0.50

5

10

15

20

25

30

110

Page 118: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 2.6: Kernel density estimates of the deviations of MCL and QML volatility and

correlation estimates from the true ones, for the MSV model with non-diagonal leverage.

Experiments 1 and 2.

­0.5 0 0.50

2

4

6

8

10

Exp 

1

∆h1t

MCLQML­unresQML­reszero l ine

­0.5 0 0.50

2

4

6

8

10

∆h2t

­0.5 0 0.50

5

10

15

20

25

30∆p

­0.5 0 0.50

2

4

6

8

10

Exp 

2

­0.5 0 0.50

2

4

6

8

10

­0.5 0 0.50

5

10

15

20

25

30

111

Page 119: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 2.7: Absolute values of the returns and the MCL and QML smooth estimates of

the standard deviations for IBEX 35, FTSE 100 and DAX stock markets

0 200 400 600 800 1000 1200 1400 16000

5

10

15

IBE

X 3

5

0 200 400 600 800 1000 1200 1400 16000

5

10

15

FTS

E 1

00

0 200 400 600 800 1000 1200 1400 16000

5

10

15

DA

X

| yt |

MCLQML

112

Page 120: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 2.1: The parameter estimation results of the simulations where the data is gen-

erated by a CC-MSV model and estimated via QML and MCL methods. For each

experiment, the true parameter values are reported in the �rst row. Then for each esti-

mation method, MC mean, standard deviation (in parantheses) and root mean squared

error (in square brackets) are reported, respectively. Experiments 1-4.Estim.nParam. fP"g21 �11 �21 �11 �22 fQ�g11 fQ�g21 fQ�g22Exp 1 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 0.1509 -0.1368 -0.2770 0.8646 0.8948 0.2373 0.0539 0.1824

(0.1751) (0.1092) (0.4187) (0.0971) (0.1488) (0.2731) (0.0601) (0.2454)

[0.1819] [0.1153] [0.4437] [0.1033] [0.1587] [0.2867] [0.0617] [0.2659]

MCL 0.1943 -0.1197 -0.1673 0.8811 0.9354 0.1649 0.0390 0.0862

(0.0444) (0.0617) (0.0965) (0.0499) (0.0350) (0.0695) (0.0231) (0.0363)

[0.0447] [0.0647] [0.1034] [0.0534] [0.0380] [0.0711] [0.0231] [0.0368]

Exp 2 - True 0.2000 -0.1000 -0.1300 0.9000 0.9800 0.1500 0.0400 0.0800

QML 0.1919 -0.1821 -0.2573 0.8241 0.9604 0.2593 0.0380 0.1015

(0.1858) (0.2093) (0.5369) (0.1835) (0.0798) (0.3124) (0.0532) (0.1333)

[0.1860] [0.2248] [0.5518] [0.1986] [0.0821] [0.3310] [0.0533] [0.1350]

MCL 0.1957 -0.1376 -0.1822 0.8649 0.9716 0.1797 0.0392 0.0809

(0.0427) (0.0727) (0.1018) (0.0641) (0.0157) (0.0782) (0.0288) (0.0279)

[0.0429] [0.0819] [0.1144] [0.0731] [0.0178] [0.0836] [0.0288] [0.0279]

Exp 3 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 0.4000 0.1500 0.3500

QML 0.1880 -0.1265 -0.1526 0.8707 0.9404 0.4954 0.1618 0.3649

(0.1833) (0.0790) (0.0647) (0.0577) (0.0214) (0.2785) (0.0732) (0.1333)

[0.1837] [0.0833] [0.0686] [0.0647] [0.0234] [0.2944] [0.0742] [0.1341]

MCL 0.1899 -0.1119 -0.1402 0.8867 0.9459 0.3974 0.1491 0.3325

(0.0428) (0.0536) (0.0499) (0.0346) (0.0171) (0.0881) (0.0498) (0.0850)

[0.0440] [0.0549] [0.0510] [0.0370] [0.0179] [0.0882] [0.0498] [0.0868]

Exp 4 - True 0.8000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 0.8034 -0.1613 -0.2117 0.8363 0.9197 0.2747 0.0567 0.1230

(0.0365) (0.1398) (0.2018) (0.1377) (0.0660) (0.3111) (0.0568) (0.1578)

[0.0366] [0.1527] [0.2177] [0.1517] [0.0726] [0.3352] [0.0593] [0.1635]

MCL 0.7961 -0.1130 -0.1692 0.8854 0.9349 0.1559 0.0477 0.0841

(0.0160) (0.0476) (0.0880) (0.0384) (0.0333) (0.0500) (0.0227) (0.0326)

[0.0165] [0.0494] [0.0964] [0.0411] [0.0366] [0.0503] [0.0240] [0.0328]

113

Page 121: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 2.2: The parameter estimation results of the simulations where the data is gen-

erated by a CC-MSV model and estimated via QML and MCL methods. For each

experiment, the true parameter values are reported in the �rst row. Then for each esti-

mation method, MC mean, standard deviation (in parantheses) and root mean squared

error (in square brackets) are reported, respectively. Experiments 5-8.Estim.nParam. fP"g21 �11 �21 �11 �22 fQ�g11 fQ�g21 fQ�g22Exp 5 - True 0.2000 -0.1000 -0.1300 0.9000 0.9800 0.4000 0.1500 0.3500

QML 0.1876 -0.1322 -0.1873 0.8676 0.9712 0.5114 0.1554 0.3439

(0.1940) (0.0832) (0.0814) (0.0598) (0.0111) (0.2813) (0.0651) (0.0929)

[0.1944] [0.0892] [0.0995] [0.0680] [0.0142] [0.3025] [0.0653] [0.0931]

MCL 0.1918 -0.1150 -0.1727 0.8852 0.9733 0.4054 0.1464 0.3314

(0.0410) (0.0521) (0.0760) (0.0334) (0.0105) (0.0841) (0.0447) (0.0750)

[0.0418] [0.0542] [0.0872] [0.0366] [0.0124] [0.0842] [0.0449] [0.0772]

Exp 6 - True 0.8000 -0.1000 -0.1300 0.9000 0.9800 0.4000 0.1500 0.3500

QML 0.8047 -0.1304 -0.1747 0.8714 0.9725 0.4666 0.1504 0.3383

(0.0376) (0.0763) (0.0875) (0.0622) (0.0132) (0.2286) (0.0852) (0.0997)

[0.0379] [0.0821] [0.0983] [0.0684] [0.0152] [0.2381] [0.0852] [0.1004]

MCL 0.7893 -0.1107 -0.1549 0.8906 0.9756 0.3703 0.1482 0.3250

(0.0183) (0.0403) (0.0779) (0.0285) (0.0117) (0.0821) (0.0608) (0.0655)

[0.0212] [0.0417] [0.0818] [0.0300] [0.0125] [0.0873] [0.0608] [0.0701]

Exp 7 - True 0.8000 -0.1000 -0.1300 0.9000 0.9500 0.4000 0.1500 0.3500

QML 0.8097 -0.1171 -0.1726 0.8822 0.9353 0.4297 0.1439 0.3852

(0.0430) (0.0561) (0.0970) (0.0505) (0.0307) (0.2127) (0.1008) (0.1633)

[0.0441] [0.0586] [0.1059] [0.0536] [0.0340] [0.2147] [0.1010] [0.1671]

MCL 0.7901 -0.1042 -0.1412 0.8978 0.9469 0.3520 0.1422 0.3193

(0.0211) (0.0373) (0.0543) (0.0247) (0.0175) (0.0763) (0.0560) (0.0725)

[0.0233] [0.0376] [0.0555] [0.0248] [0.0178] [0.0901] [0.0565] [0.0787]

Exp 8 - True 0.8000 -0.1000 -0.1300 0.9000 0.9800 0.1500 0.0400 0.0800

QML 0.8030 -0.1294 -0.2093 0.8650 0.9676 0.2212 0.0525 0.1035

(0.0424) (0.1174) (0.1583) (0.1079) (0.0245) (0.2554) (0.0468) (0.0662)

[0.0426] [0.1210] [0.1771] [0.1134] [0.0275] [0.2652] [0.0484] [0.0702]

MCL 0.7971 -0.1097 -0.1693 0.8854 0.9737 0.1469 0.0440 0.0826

(0.0201) (0.0429) (0.0765) (0.0392) (0.0122) (0.0444) (0.0248) (0.0233)

[0.0203] [0.0440] [0.0860] [0.0419] [0.0137] [0.0445] [0.0251] [0.0235]

114

Page 122: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 2.3: Root mean squared error of the QML and MCL volatility and correlation

estimates for CC-MSV modelExperiment Method �h1t �h2t �p Experiment Method �h1t �h2t �p

Exp 1 QML 0.6409 0.5459 0.1819 Exp 5 QML 1.0889 0.8983 0.1944

MCL 0.5407 0.4951 0.0447 MCL 1.0506 0.8286 0.0418

QML/MCL 1.1853 1.1026 4.0694 QML/MCL 1.0364 1.0842 4.6507

Exp 2 QML 0.6334 0.6336 0.1860 Exp 6 QML 0.8746 0.9181 0.0379

MCL 0.5611 0.4676 0.0429 MCL 0.7893 0.7105 0.0212

QML/MCL 1.1288 1.3550 4.3357 QML/MCL 1.1081 1.2922 1.7877

Exp 3 QML 0.9383 0.8748 0.1837 Exp 7 QML 0.9336 0.9068 0.0441

MCL 0.8885 0.8137 0.0440 MCL 0.8309 0.8759 0.0233

QML/MCL 1.0560 1.0751 4.1750 QML/MCL 1.1236 1.0353 2.1724

Exp 4 QML 0.6829 0.6164 0.0366 Exp 8 QML 0.5563 0.8516 0.0426

MCL 0.5038 0.5015 0.0165 MCL 0.5217 0.6874 0.0203

QML/MCL 1.3555 1.2291 2.2182 QML/MCL 1.0663 1.2388 2.0985

Table 2.4: The parameter estimation results of the simulations where the data is gen-

erated by a TVC-MSV model and estimated via QML and MCL methods. For each

experiment, the true parameter values are reported in the �rst row. Then for each es-

timation method, MC mean, standard deviation (in paranthesis and root mean squared

error (in square brackets) are reported, respectively.Estim.nParam. fDg21 �11 �21 �11 �22 fQ�g11 fQ�g21 fQ�g22Exp 1 - True 0.2041 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 0.2034 -0.1852 -0.2068 0.8205 0.9178 0.2742 0.0648 0.0897

(0.0439) (0.2449) (0.3879) (0.2109) (0.1540) (0.3603) (0.0815) (0.1079)

[0.0439] [0.2593] [0.3954] [0.2254] [0.1574] [0.3811] [0.0852] [0.1083]

MCL 0.2039 -0.1322 -0.1691 0.8684 0.9352 0.1783 0.0501 0.0903

(0.0174) (0.0703) (0.0759) (0.0670) (0.0286) (0.0817) (0.0315) (0.0348)

[0.0174] [0.0773] [0.0854] [0.0741] [0.0322] [0.0865] [0.0330] [0.0363]

Exp 2 - True 1.3333 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 1.3275 -0.1541 -0.2205 0.8459 0.9151 0.2712 0.0597 0.0984

(0.0250) (0.1413) (0.3675) (0.1315) (0.1338) (0.3438) (0.0774) (0.0945)

[0.0257] [0.1513] [0.3785] [0.1421] [0.1383] [0.3646] [0.0798] [0.0962]

MCL 1.3359 -0.1358 -0.1677 0.8623 0.9358 0.1759 0.0441 0.0898

(0.0164) (0.0829) (0.0809) (0.0780) (0.0307) (0.0757) (0.0286) (0.0392)

[0.0166] [0.0903] [0.0892] [0.0867] [0.0338] [0.0800] [0.0289] [0.0404]

115

Page 123: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 2.5: Root mean squared error of the QML and MCL volatility and correlation

estimates TVCMSV modelExperiment n Variable Method �h1t �h2t �pt

Exp 1 QML 0.6045 0.7038 0.1439

MCL 0.5176 0.4678 0.1096

QML/MCL 1.1679 1.5044 1.3129

Exp 2 QML 0.6834 0.5564 0.0571

MCL 0.5148 0.5185 0.0475

QML/MCL 1.3275 1.0730 1.2021

Table 2.6: The parameter estimation results of the simulations where the data is gen-

erated by an MSV model with diagonal leverage and estimated via QML and MCL

methods. For each experiment, the true parameter values are reported in the �rst row.

Then for each estimation method, MC mean, standard deviation (in paranthesis) root

mean squared error (in square brackets) are reported, respectively.Estim.nParam. fP"g21 �11 �21 �11 �22 L11 L22 fQ�g11 fQ�g21 fQ�g22Exp 1 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.2000 -0.2500 0.1500 0.0400 0.0800QML 0.1289 -0.1650 -0.2379 0.8431 0.9093 -0.1543 -0.2431 0.2529 0.0475 0.1306

(0.2438) (0.1745) (0.3002) (0.1472) (0.1125) (0.2192) (0.3691) (0.2728) (0.0578) (0.1547)[0.2539] [0.1862] [0.3190] [0.1579] [0.1197] [0.2240] [0.3692] [0.2916] [0.0583] [0.1628]

MCL 0.1935 -0.1272 -0.1712 0.8760 0.9350 -0.1335 -0.1822 0.1650 0.0413 0.0842(0.0499) (0.0603) (0.0864) (0.0508) (0.0322) (0.1526) (0.2087) (0.0681) (0.0277) (0.0347)[0.0503] [0.0662] [0.0957] [0.0562] [0.0355] [0.1665] [0.2195] [0.0697] [0.0277] [0.0349]

Exp 2 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.5500 -0.6000 0.1500 0.0400 0.0800QML 0.0751 -0.1798 -0.2235 0.8274 0.9162 -0.3822 -0.5342 0.2520 0.0404 0.1071

(0.2748) (0.1595) (0.2049) (0.1285) (0.0700) (0.2371) (0.2939) (0.2723) (0.0504) (0.1214)[0.3018] [0.1784] [0.2252] [0.1476] [0.0777] [0.2905] [0.3012] [0.2908] [0.0504] [0.1243]

MCL 0.2029 -0.1648 -0.1976 0.8452 0.9273 -0.2952 -0.4543 0.2033 0.0446 0.0879(0.0416) (0.0696) (0.0958) (0.0616) (0.0373) (0.1380) (0.1675) (0.0733) (0.0276) (0.0329)(0.0417) [0.0951] [0.1173] [0.0824] [0.0437] [0.2898] (0.2220) (0.0906) (0.0280) (0.0338)

Table 2.7: Root mean squared error of the QML and MCL volatility and correlation

estimates of the MSV model with diagonal leverageExperiment n Variable Method �h1t �h2t �pt

Exp 1 QML 0.6821 0.6206 0.2539

MCL 0.6208 0.5414 0.0503

QML/MCL 1.0987 1.1463 5.0477

Exp 2 QML 0.7054 0.6480 0.3018

MCL 0.7231 0.5976 0.0417

QML/MCL 0.9755 1.0843 7.2374

116

Page 124: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table2.8:TheparameterestimationresultsofthesimulationswherethedataisgeneratedbyanMSV

modelwithnon-diagonal

leverageandestimatedviaunrestrictedQML,restrictedQMLandMCLmethods.Experiment1referstothecasewherethe

leveragematrix,L,isinde�nitewhileinExperiment2itis(negative)de�nite.TherestrictionthatwasimposedtotheQML

estimationistheonethatisrequiredforMCLestimation,namely,theLmatrixispositiveornegativesemide�nite.Foreach

experiment,thetrueparametervaluesarereportedinthe�rstrow.Thenforeachestimationmethod,MCmean,standard

deviation(inparenthesis)androotmeansquarederror(insquarebrackets)arereported,respectively.

Estim.nParam.

fP"g 21

�11

�21

�11

�22

L11

L21

L22

fQ�g 11fQ

�g 21fQ

�g 22

Exp1-True

0.2000

-0.1000

-0.1300

0.9000

0.9500

-0.2000

-0.2300

-0.2500

0.1500

0.0400

0.0800

QML-unrestricted

0.1124

-0.1811

-0.2374

0.8292

0.9099

-0.1689

-0.1539

-0.2280

0.2844

0.0514

0.1511

(0.2428)(0.1616)(0.2617)(0.1430)(0.0984)(0.2474)(0.1795)(0.3349)(0.3023)(0.0548)(0.2548)

[0.2581]

[0.1808]

[0.2829]

[0.1596]

[0.1062]

[0.2494]

[0.1950]

[0.3357]

[0.3309]

[0.0560]

[0.2645]

QML-restricted

0.1323

-0.1964

-0.2716

0.8126

0.8970

-0.2009

-0.0951

-0.2637

0.2969

0.0672

0.1671

(0.2081)(0.1506)(0.2498)(0.1407)(0.0934)(0.2035)(0.1251)(0.2612)(0.2475)(0.0678)(0.2053)

[0.2189]

[0.1788]

[0.2871]

[0.1656]

[0.1074]

[0.2035]

[0.1330]

[0.2615]

[0.2878]

[0.0731]

[0.2231]

MCL

0.2045

-0.1550

-0.2307

0.8560

0.9141

-0.1530

-0.1236

-0.2342

0.1971

0.0447

0.1099

(0.0474)(0.0830)(0.1517)(0.0707)(0.0561)(0.1008)(0.0800)(0.1373)(0.0863)(0.0393)(0.0552)

[0.0477]

[0.0996]

[0.1821]

[0.0833]

[0.0666]

[0.1112]

[0.1087]

[0.1382]

[0.0984]

[0.0396]

[0.0628]

Exp2-True

0.2000

-0.1000

-0.1300

0.9000

0.9500

-0.2000

-0.0500

-0.2500

0.1500

0.0400

0.0800

QML-unrestricted

0.1535

-0.1560

-0.2669

0.8428

0.8957

-0.1441

-0.0106

-0.1813

0.2049

0.0426

0.1630

(0.2405)(0.1436)(0.3407)(0.1843)(0.1388)(0.2530)(0.1958)(0.3825)(0.1696)(0.0602)(0.2345)

[0.2450]

[0.1541]

[0.3672]

[0.1929]

[0.1490]

[0.2591]

[0.1997]

[0.3886]

[0.1783]

[0.0602]

[0.2488]

MCL

0.1960

-0.1356

-0.2012

0.8702

0.9232

-0.1452

-0.0159

-0.1995

0.1726

0.0445

0.1046

(0.0370)(0.0515)(0.1082)(0.0441)(0.0413)(0.1036)(0.0849)(0.1384)(0.0658)(0.0306)(0.0493)

[0.0372]

[0.0626]

[0.1296]

[0.0532]

[0.0492]

[0.1172]

[0.0915]

[0.1473]

[0.0696]

[0.0309]

[0.0551]

117

Page 125: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 2.9: Root mean squared error of the QML and MCL volatility and correlation

estimates of the MSV model with non-diagonal leverage. In Experiment 1 the leverage

matrix, L, is inde�nite while in Experiment 2 it is (negative) de�nite.Experiment n Variable Method �h1t �h2t �pt

Exp 1 QML - unres 0.7125 0.6760 0.2581

QML - res 0.7047 0.6576 0.2189

MCL 0.6164 0.5206 0.0477

QML - unres/MCL 1.1559 1.2985 5.4109

QML - res/MCL 1.1433 1.2632 4.5891

Exp 2 QML - unres 0.6787 0.6406 0.2450

MCL 0.5979 0.5098 0.0372

QML - unres/MCL 1.1351 1.2566 6.5860

Table 2.10: Descriptive statistics of the returnsStatistics n Series IBEX-35 FTSE-100 DAX

Mean -0.0034 0.0076 0.0192

SD 1.5981 1.3667 1.5163

Skewness 0.1504 -0.1385 0.0346

Kurtosis 10.7492 10.4146 9.7788

Maximum 13.4836 9.3842 10.7975

Minimum -9.5859 -9.2646 -7.4335

Box-Ljung, yt 21.49 55.67 21.97

Box-Ljung, y2t 595.21 1227.2 792.34

Box-Ljung, log y2t 484.99 398.69 318.29

Table 2.11: The empirical estimation results for the univariate SV model with leverage.Estim. Series � � L Q� Log-like AIC BIC

QML IBEX 35 0.0137 0.9636 -0.5262 0.0693 -3890.6 7789.2 7811.0

(0.0012) (0.0055) (0.0944) (0.0080)

FTSE 100 0.0003 0.9625 -0.4964 0.0747 -3911.7 7831.4 7853.1

(0.0038) (0.0057) (0.0457) (0.0066)

DAX 0.0202 0.9480 -0.6653 0.0801 -3902.8 7813.5 7835.3

(0.0049) (0.0076) (0.0974) (0.0080)

MCL IBEX 35 0.0025 0.9957 -0.6574 0.0049 -2456.7 4921.4 4943.2

(0.0002) (0.0012) (0.0007) (0.0002)

FTSE 100 -0.0001 0.9965 -0.6022 0.0038 -2149.1 4306.2 4328.0

(0.0001) (0.0014) (0.0312) (0.0015)

DAX 0.0026 0.9942 -0.8328 0.0044 -2412.3 4832.5 4854.3

(0.0002) (0.0014) (0.0113) (0.0003)

118

Page 126: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table2.12:TheempiricalestimationresultsfortheMSV

withnon-diagonalleveragemodel.Thedataisobtainedfrom

the

returnsofIBEX35,FTSE

100andDAXstockmarkets(inorder1st ,2ndand3rdseries).Theestimationisperformedvia

QMLandMCLmethods.Bollerslev-WooldridgerobuststandarderrorsareobtainedfortheQMLestimateswhilethestandard

errorsofMCLestimatesareobtainedfrom

thenumericalapproximationtotheHessian.RestrictedQMLestimationistheone

wheretherestrictionneededforMCLestimationisalsoemployedintheQMLestimationonlyforcomparisonreasons.

QML-unrestricted

fP"g 21

fP"g 31

fP"g 32

�11

�21

�31

�11

�22

�33

L11

L21

Log-like:-11179

0.8068

0.8720

0.8743

0.0147

0.0046

0.0131

0.9612

0.9548

0.9581

-0.5793

-0.1573

AIC:22400

(0.0232)(0.0201)(0.0150)(0.0015)(0.0014)(0.0017)(0.0057)(0.0065)(0.0068)(0.0284)(0.0218)

BIC:22515

L31

L22

L32

L33

fQ�g 11fQ

�g 21fQ

�g 31fQ

�g 22fQ

�g 32fQ

�g 33

-0.0522

-0.0851

-0.1835

-0.2173

0.0797

0.0788

0.0718

0.0949

0.0754

0.0770

(0.0024)(0.0027)(0.0110)(0.0124)(0.0069)(0.0034)(0.0038)(0.0058)(0.0048)(0.0081)

QML-restricted

fP"g 21

fP"g 31

fP"g 32

�11

�21

�31

�11

�22

�33

L11

L21

Log-like:-11181

0.8090

0.8730

0.8747

0.0157

0.0061

0.0161

0.9609

0.9506

0.9522

-0.6219

-0.1738

AIC:22403

(0.0226)(0.0181)(0.0161)(0.0010)(0.0028)(0.0024)(0.0050)(0.0071)(0.0083)(0.1125)(0.0144)

BIC:22518

L31

L22

L32

L33

fQ�g 11fQ

�g 21fQ

�g 31fQ

�g 22fQ

�g 32fQ

�g 33

-0.0725

-0.1245

-0.1453

-0.2143

0.0851

0.0883

0.0839

0.1101

0.0899

0.0981

(0.0143)(0.0173)(0.0299)(0.0177)(0.0041)(0.0036)(0.0077)(0.0080)(0.0067)(0.0168)

MCL

fP"g 21

fP"g 31

fP"g 32

�11

�22

�33

�11

�22

�33

L11

L21

Log-like:-4751

0.8212

0.8297

0.8542

0.0070

-0.0008

0.0043

0.9751

0.9778

0.9755

-0.6465

-0.2151

AIC:9543

(0.0001)(0.0002)(0.0001)(0.0002)(0.0001)(0.0003)(0.0002)(0.0002)(0.0004)(0.0001)(0.0001)

BIC:9658

L31

L22

L32

L33

fQ�g 11fQ

�g 21fQ

�g 31fQ

�g 22fQ

�g 32fQ

�g 33

p_val/CCMSV:0.00

-0.1052

-0.1769

-0.1387

-0.2657

0.0397

0.0347

0.0373

0.0305

0.0327

0.0351

(0.0019)(0.0195)(0.0224)(0.0377)(0.0001)(0.0001)(0.0002)(0.0001)(0.0002)(0.0001)

MCL-CCMSV

fP"g 21

fP"g 31

fP"g 32

�11

�22

�33

�11

�22

�33

L11

L21

Log-like:-5588

0.8413

0.8750

0.8835

0.0053

-0.0006

0.0030

0.9812

0.9833

09827

--

AIC:11207

(0.0001)(0.0002)(0.0002)(0.0004)(0.0002)(0.0003)(0.0003)(0.0002)(0.0005)

--

BIC:11289

L31

L22

L32

L33

fQ�g 11fQ

�g 21fQ

�g 31fQ

�g 22fQ

�g 32fQ

�g 33

--

--

0.0409

0.0339

0.0331

0.0328

0.0298

0.0327

--

--

(0.0002)(0.0002)(0.0003)(0.0002)(0.0003)(0.0003)

119

Page 127: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica
Page 128: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Chapter 3

Do Correlated Markets Have MoreVolatility Spillovers?

3.1 Introduction

In �nancial time series literature it is well known that even though a return series might

not have an autocorrelated structure, the squared returns tend to be serially correlated.

This is referred to as the clustering of the volatilities, which implies that periods of higher

(lower) volatility are followed by periods of higher (lower) volatility. To explain this time

varying behavior of volatilities generalized autoregressive conditional heteroskedasticity

(GARCH) models have been proposed by Engle (1982) and Bollerslev (1986). In GARCH

set up, future volatilities are modelled as a deterministic function of current volatilities

and squares of current (demeaned) returns. Later, to be able capture the e¤ects of

market interactions, multivariate GARCH (MGARCH) models have been developed.

Various MGARCH models have been well documented in Bauwens et al. (2006) and

Silvennoinen and Teräsvirta (2009).

One problem that is usually encountered in the MGARCH models is ensuring that

the conditional variance-covariance matrix is positive de�nite at any period. Bollerslev

(1990) proposed the Constant Conditional Correlation GARCH (CCC-GARCH) model

which can go around this problem. He showed that the maximum likelihood estimator

of the correlation matrix is equal to the sample correlation matrix, which by de�nition

positive de�nite. Given that the variance-covariance matrix can be decomposed to a

multiplication of the diagonal matrix of variances and the correlation matrix, the only

restriction required is that the variances are positive.

CCC-GARCH model assumes that the correlations are constant over time, which is

seen as a limitation by some papers. For example, Tse (2000) argued that the correlations

121

Page 129: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

need not be constant and proposed a Lagrange Multiplier test for checking if the constant

correlations assumption holds. According to his results, for the spot-futures prices and

foreign exchange data the assumption of constant correlations can not be rejected while

correlations across national stock market returns are time varying. Engle (2002) and Tse

and Tsui (2002) proposed Dynamic Conditional Correlation GARCH (DCC-GARCH)

model where the correlations are changing over time. The fact that the intercept of

the equation, which drives the correlation dynamics, can be replaced by its sample

counterpart reduces the amount of parameters to be estimated signi�cantly for the DCC-

GARCH model. In the literature this replacement is referred to as correlation targeting

approach (Engle 2009). Aielli (2008) argued that estimators of DCC-GARCH model

with correlation targeting are asymptotically biased and he proposed a correction to it

which he called Corrected DCC-GARCH (cDCC-GARCH) model.

Another shortcoming of the CCC-GARCH model is that it didn�t include possible

volatility spillovers, that is to say, the future volatility of series i depends only on the

current volatilities and squared returns of series i. Jeantheau (1998) relaxed this as-

sumption in his model called Extended CCC-GARCH (ECCC-GARCH) and allowed for

volatility interactions between series. He provided the stationarity and identi�cation

assumptions and showed that the quasi-maximum likelihood (QML) estimators of this

model�s parameters are consistent. He and Teräsvirta (2004) showed that the extension

Jeantheau (1998) proposed actually allows for richer autocorrelation structure for the

squared returns compared to the CCC-GARCH model.1

In our paper, we propose a multivariate GARCH model, which we call Network

GARCH (NET-GARCH), where we allow for the volatility spillovers to occur between

the more correlated series. In this model, the future volatility of series i is in�uenced

more by the current volatility and squared return of series j if the series i and j are

highly (positively or negatively) correlated. Moreover, we let the correlations follow the

cDCC-GARCH model. Therefore at each period, the current squared returns, volatilities

and correlations are determining the future volatilities. The idea can be explained by a

real life experience that a person is more likely to smoke if a close friend of that person is

a smoker, and less likely to smoke if a casual friend is a smoker. To put it di¤erently, if a

person is a smoker, then his close friends are likely to be smokers as well while his casual

friends are less likely to be smokers. A similar behavior has been documented in Norscia

and Palagi (2011) where the authors have conducted some experiments on yawning

behavior and found out that yawning is most contagious between kin, then friends, then

1In particular, He and Teräsvirta (2004) showed that the autocorrelations of individual processes do

not necessarily decay monotonically from the �rst lag onward, as it would in the case of CCC-GARCH

model.

122

Page 130: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

acquaintances and lastly strangers. Following this way of thought, in our model we claim

that there may be more volatility spillovers between the markets that are more related. If

an asset i is experiencing high uncertainty (high volatility), asset j that is friendly (more

correlated) with asset i is likely to import some of the uncertainty (volatility spillovers)

from asset i. To illustrate this with an example, we present Figure 3.1. To obtain this

�gure we used the �rst 40 stocks in the FTSE-100 index (alphabetically ordered)2. We

�t a VAR(1) to the squared returns vector r2t . Then for series i, we plot the coe¢ cients,

�i;j, of the squared returns of all other series j (j 6= i) along with the correlations, �ij,

between series i and j. In Figure 3.1, we report the graphs corresponding to the equations

of r27;t and r240;t. The red and blue dashed lines correspond to the means of the coe¢ cients

reported with red stars and blue circles. As we can see, most of the time the correlations

above the average (red dashed line) are matched with the coe¢ cients above the average

(blue dashed line). There are many cases where high/low correlation �ij between returns

ri;t and rj;t (points with red stars) is matched with a high/low estimated coe¢ cient �i;j of

a past squared return (points with blue circles). Some examples showing such a relation

is marked with a black straight line in the �gure. This implies that if two series i and

j have above (below) average correlation, the coe¢ cient of the previous period squared

return j (volatility spillover e¤ect) is also high (low).

In our paper, through some simulation experiments we show that the parameters

as well as the volatilities and correlations are estimated accurately. Later, we look at

the Value-at-Risk performance of the NET-GARCH model and compare it with that of

the extended model of Jeantheau (1998) with dynamic correlations (which we denote

as EcDCC-GARCH model) and with that of cDCC-GARCH model. Our results in this

section suggest that the means of the VaR estimates obtained from these models are very

similar and close to the pre-set VaR quantile of 5%. The NET-GARCH model proves to

be attractive because while it can capture the volatility spillovers with much less number

of parameters, it also can estimate the VaR�s very closely to the EcDCC-GARCH model.

In another experiment, we generate data with a BEKK and EcDCC-GARCH model

and estimate with EcDCC, NET and cDCC-GARCH models. The results obtained in

this section suggest that although NET-GARCH model overestimates the volatilities

of the series with low variance, it still does a good job in capturing the underlying

volatilities given the number of parameters in the model. Therefore while NET-GARCH

is estimating well the volatilities of an equally weighted portfolio, it is not performing

that well in estimating the volatilities of a minimum variance portfolio.

In the next section we brie�y discuss the ECCC, cDCC, EcDCC-GARCH models and

2The return data obtained from FTSE-100 index corresponds to the period 28/06/2006 - 24/01/2012.

The descriptive statistics are given in Table 1.

123

Page 131: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

introduce the NET-GARCH setup. We give the positivity, stationarity and identi�cation

restrictions for each model. In Section 3.3, we explain the maximum likelihood estimation

of the NET-GARCH model. We use the same estimation algorithm for the other models

for comparison purposes. In Section 3.4, we report the results of our Monte Carlo

simulations. Finally Section 3.5 concludes.

3.2 Econometric Model

If we let rt to be a kx1 vector of demeaned return series, then the return equation in the

ECCC-GARCH model of Jeantheau (1998) is de�ned as:

rt = H1=2t "t, "t v N(0k; Ik)

and the conditional variance Ht is decomposed to the conditional volatilities and the

correlation matrix R:

Ht = DtRDt (3.1)

Dt = diag(h1=21t ; h

1=22t ; :::; h

1=2kt )

ht+1 = W + A"(2)t +Bht

where "(2)t = ("1t ; "2t ; :::"

kt )0. Notice that in the ECCC-GARCH model of Jeantheau

(1998), the correlations are constant, hence R is without a time subscript. If the con-

ditional variances are positive and given that R is always positive de�nite, then by

construction Ht is positive de�nite. In equation (3.1), W is a kx1 vector; A and B are

kxk matrix of parameters. If A and B are restricted to be diagonal, then the model boils

down to the CCC-GARCH of Bollerslev (1990).

Jeantheau (1998) indicated the conditions Wi > 0, Aij > 0 and Bij > 0 for i; j =

1; :::; k, are su¢ cient to for the variances to be positive. If the roots of jIk�(A+B)zj = 0lie outside of the unit circle, then the model is covariance stationary. It is noted that

when A and B are diagonal, this stationarity restriction becomes Aii + Bii < 1 for all

i. Finally, the identi�cation restrictions required for the model, among others listed in

Jeantheau (1998), are that: det(A) 6= 0, det(B) 6= 0 and A and Ik �B are coprimes.

We propose NET-GARCH model by modifying equation (3.1) as follows:

hi;t+1 = Wi + Aii"(2)it +

1Xi6=j

jpij;tj

Xi6=j

ajpij;tj"(2)jt +Biihit +1X

i6=j

jpij;tj

Xi6=j

bjpij;tjhjt (3.2)

124

Page 132: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

where Aii andBii are the coe¢ cients of previous period squared errors and volatilities,

while a and b are the coe¢ cients of the weighted average of the previous period squared

errors and volatilities. When a and b are zeros, then there are no volatility spillovers,

and the equation (3.2) becomes the volatility equation of a CCC-GARCH model. The

weights are jpij;tjXi6=j

jpij;tjwhich are the absolute values of the correlations between series i

and the other series j at time t divided by the sum of the correlations between series

i and j, where i 6= j. Therefore at each time period, the volatility spillover between

series i and j depend on the coe¢ cients a and b and also the weights jpij;tjXi6=j

jpij;tjwhich are

proportional to the correlations between the two series. If these two series are highly

correlated, then we would expect more spillovers between their volatilities.

The process for dynamic correlations, pij;t = fRtgij, is de�ned below in (3.3), and j:jis the absolute value of the elements of its argument. The equation (3.2) can be rewritten

in multivariate form as:

ht+1 = W + A"(2)t + a �R�1jRt � Ikj"(2)t +Bht + b �R�1jRt � Ikjht

where �R is the diagonal matrix whose elements on the leading diagonal consist of

the row-sum of jRt � Ikj. The idea behind the equation (3.2) is that the spillovers

from squared returns and volatilities are multiplied by a �xed parameter and by the

weight that depends on the correlation coe¢ cient between the two series. We assume

that regardless of the positivity or negativity of the correlations between two series, the

spillovers have the same coe¢ cient. The restriction of this same coe¢ cient could be

modi�ed by including ai and bi to the equation of series i which would mean that series

i is in�uenced with the same coe¢ cient by all other series or by including aj and bj to

the equation of series i which would imply that series j in�uences all other series with

the same coe¢ cient.

For the NET-GARCH model, we use the same positivity constraints as above. The

variance stationarity should be checked inside the optimization for each t: the roots of

jIk ��(A+ a �R�1jRt � Ikj+B + b �R�1jRt � Ikj)

zj = 0 should be outside of the unit

circle. This can be done by introducing a big penalization to the likelihood when in

the iterations the parameter values imply non-stationarity. Finally, the identi�cation

restrictions can be derived similarly and should be imposed as well inside the optimization

for each t.

The correlation dynamics is de�ned according to the cDCC-GARCH model of Aielli

(2008):

125

Page 133: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Rt = PtQtPt (3.3)

Pt = diag(Qt)�1=2

Qt+1 = (1� �1 � �2)Q+ �1��t��0t + �2Qt

��t = diag(Qt)1=2�t:

�t = D�1t "t

where Q is replaced in the estimation by S; the sample covariance of the �t. This is

referred to as the correlation targeting approach (Engle, 2009) and it reduces signi�cantly

the number of parameters to be estimated. �1 and �2 are non-negative parameters which

satisfy �1+�2 < 1. The cDCC-GARCH model as discussed by Aielli (2008) doesn�t allow

for volatility spillovers, hence the model is de�ned by the volatility equation (3.1) where

A and B are diagonal and the correlation dynamics de�ned by (3.3). We will call the

model that consists of the volatility equation (3.1) with A and B non-diagonal and of

the correlation dynamics (3.3) by the name EcDCC-GARCH model. It should be noted

that while EcDCC and NET-GARCH models nest the cDCC-GARCH model, EcDCC

and NET-GARCH models do not nest each other.

The timing of the NET-GARCH model is as follows: at any period t, we know the

values of "t and Rt, which are functions of previous day standardized errors, and ht,

which is a function of previous day errors, volatilities and correlations. The next period

volatility ht+1, is decided depending on these three values. Similarly, the next period

correlation Rt+1 is decided depending on the standardized errors at time t, �t = D�1t "t:

3.3 Estimation

Here we describe the maximum likelihood method we use for estimating NET-GARCH

model. We need to estimate the variance parameters: � = fW 0; diagfAg; a; diagfBg; bgand the correlation parameters = f�1; �2g.The estimation procedure we use is as follows:

1. First we assume that the correlations are constant, and choose Rt = R = corr(rt).

2. Taking Rt as given, we maximize the following log-likelihood with respect to the

variance parameters, subject to positivity, stationarity and identi�cation restric-

tions for the volatilities:

L(�) = �Tk2log(2�)� 1

2

TXt=2

log jRtj �TXt=2

log jDtj �1

2

TXt=2

� 0tR�1t �t (3.4)

126

Page 134: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

3. Taking the estimated variance parameters, �, from the �rst step estimation (step

2), we maximize the following log-likelihood with respect to the correlation para-

meters, subject to the positivity, stationarity and identi�cation restrictions for the

volatilities and correlations:

L2

� j�

�= �1

2

TXt=2

�log jRtj+ b� 0tR�1

t b�t� (3.5)

4. We take the predicted correlations, Rt, and replace Rt = Rt and repeat from step

2 on.

5. Repeat steps 2-4 until convergence. Iteration could stop depending on a norm

de�ned on the parameters, maximized value of the log-likelihood or the correlations.

The maximized value of the log-likelihood function as well as the standard errors can

be obtained from (3.4) at the convergence point. This iterative algorithm is di¤erent

than the two step estimation procedure in Engle and Shephard (2001) because in their

method there is no iteration over the variance and correlation parameters. Finally, for

comparison purposes, we estimate the EcDCC and cDCC-GARCH models with this

procedure.

3.4 Monte Carlo Experiments

3.4.1 Performance of the ML Estimator

In this section we perform a set of Monte Carlo experiments to see the small sample

performance of the ML estimator discussed in the previous section when estimating

the NET-GARCH model. In our experiments, for each parameter set, we generate 500

trivariate time series vectors of length 1000, 2000 and 5000, and estimate them the way

it is described in the previous section.

The true values of the parameters are taken from the parameter estimates obtained

from �tting a NET-GARCHmodel using the return data of the stocks listed in the FTSE-

100 index between the dates 28/06/2006 and 24/01/2012. The returns are obtained via

100 x log(Pt=Pt�1). We ordered the data alphabetically and took the FTSE-100 index

as the �rst series. The descriptive statistics for this return data is given in Table 3.1.

After eliminating the stocks for which little data is available and synchronizing the rest

of the series, we obtained 87 series of length 1356. Using this data, we estimated a

NET-GARCH model for the �rst three series (as it is also used in the Section 3.4.2), and

for three trivariate series randomly selected from the dataset.

127

Page 135: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

We report our results in terms of MC means, standard deviations and root mean

squared errors of the estimates along with the true parameter values of the parameter set:

f�0;g = fW 0; diagfAg; a; diagfBg; b; �1; �2g. Later we plot the kernel density estimatesof the relative di¤erences between the estimated and true volatilities and correlations

calculated in the following manner for each estimator:

�bhi = 1

T

TXt=1

(bhi;t � hi;thi;t

)(3.6)

�bpij = 1

T

TXt=1

�bpij;t � pij;tpij;t

�(3.7)

where pij;t = fRtgij. We prefer to report the deviations in relative terms (dividingthe di¤erences by the true values of the volatilities or correlations) in order to have a

sense of percentage deviations from the true values.

In Table 3.2, we present the results of the MC experiments. In each of the four

experiments conducted, in the �rst row we provide the true parameter values used. Later

for the estimation results, in the �rst row we report the MC means of the estimates, in

the second row the standard deviations in parenthesis, and �nally in the third row the

root mean squared errors in brackets. In particular, the true parameter values span low

and high values of a and b parameters. In these experiments the variance parameters

are estimated quite accurately. In the second and fourth experiments, with sample size

T = 1000; the second correlation parameter �2 is estimated with a downward bias. This

could be due to the fact that the true values of a and b parameters are high. On the

other hand, when the sample size is increased, even the estimate of �2 is getting closer

to its true value.

In Figure 3.2, we plot the kernel density estimates of the relative deviations de�ned

as in (3.6) and (3.7) for the four experiments and T = 1000. In this �gure, we can

see that the relative deviations obtained for the volatility and correlation estimates are

distributed around zero. One interesting result is that when a and b parameters have

high values, the correlation parameter �2 is estimated with downward bias. (Experiment

2 and 4) However, the underlying correlations are still captured and are close to the true

correlations.

Overall, we conclude from this section that the underlying parameters as well as

the volatilities and correlations are estimated well by the maximum likelihood method

described in Section 3.3.

128

Page 136: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

3.4.2 VaR Performance

Following Engle and Sheppard (2001) we employ a Value-at-Risk (VaR) performance

test to see the empirical validity of our model and compare its performance with EcDCC

and cDCC-GARCH models. For this purpose we construct a minimum variance portfolio

where the time varying weights to determine the portfolio return are: wt =H�1t �

Ctand

Ct = �0H�1t �; and � is a vector of ones. The portfolio variance can be then calculated

by w0tHtwt: As Engle and Sheppard (2001) points out, "...if the model is misspeci�ed,

the minimum variance portfolio should exacerbate the short coming." When estimating

the models with high number of series/parameters, it is likely that the optimization will

terminate around the starting values given to the parameters. To avoid this trap, we

consider di¤erent random starting values for the parameters, including the parameter

estimates of the cDCC-GARCH model for the series considered. Moreover, after each

optimization, we check if the iteration would continue if it was to take the estimated

values of the parameters as initial values.

When estimating the correlation parameters of DCC and cDCC-GARCHmodels with

high number of series, as Engle and Sheppard (2001) and later Engle, Sheppard and

Shephard (2008) noted, negative biases are observed, resulting in smoother correlation

estimates. For very high number of series, the estimate of the underlying correlation

is close to being constant and equal to the long-run matrix. Hafner and Reznikova

(2010) suggest the use of shrinkage methods to solve this problem. Following their

work, we make use of the shrinkage to identity method of Ledoit and Wolf (2004). In

the variance targeting approach used when estimating the correlation parameters, the

long-run covariance matrix Q is replaced by ��I :

��I = ��Ik + (1� �)S

where �Ik is the shrinkage target, � is the shrinkage intensity and � = h�; Iki =tr(�)=k is the Frobenius inner product, which coincides with the mean of the diagonal

elements of �. Hafner and Reznikova (2010) provide simulation evidence suggesting

that shrinkage to identity method is e¤ective and easy to implement. Given that we will

consider high number of series for estimating VaRs, we use this method to escape from

the possible biases of the correlation parameter estimates.

One possible doubt that could arise is that: are there volatility spillovers at all in

this data that we constructed? If there are no volatility spillovers, then it might not be

a good idea to use this data to compare the models for volatility spillovers. Therefore as

an illustration, before we perform the VaR performance tests, using the �rst three series

we estimate EcDCC-GARCH, NET-GARCH and cDCC-GARCH models and report

129

Page 137: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

the parameter estimates and corresponding standard errors along with the values of log-

likelihood, AIC and BIC criterions. The EcDCC-GARCH estimation results for equation

(3.1):

W =

2666640:0005(0:0007)

0:0387(0:0005)

0:1051(0:0038)

377775 ; A =2666640:0617(0:0008)

0:0036(0:0004)

0:0178(0:0003)

0:0000(0:0001)

0:0455(0:0015)

0:0771(0:0017)

0:0209(0:0005)

0:0046(0:0003)

0:0679(0:0013)

377775 ; G =2666640:8838(0:0084)

0:0007(0:0009)

0:0132(0:0003)

0:0000(0:0004)

0:9349(0:0040)

0:0000(0:0002)

0:0000(0:0009)

0:0000(0:0002)

0:8367(0:0134)

377775

�1 = 0:0362(0:0004)

; �2 = 0:9249(0:0180)

; LLF = �7036:8; AIC = 14120; BIC = 14239

p_value=cDCC = 0:0000

The NET-GARCH estimation results for equation (3.2):

W =

2666640:0197(0:0003)

0:0997(0:0040)

0:0945(0:0042)

377775 ; A =2666640:0639(0:0004)

0:0613(0:0009)

0:0119(0:0004)

0:0676(0:0006)

377775 ; G =2666640:8845(0:0042)

0:9264(0:0043)

0:0000(0:0005)

0:8553(0:0073)

377775

�1 = 0:0343(0:0004)

; �2 = 0:9250(0:0110)

; LLF = �7049:3; AIC = 14125; BIC = 14192

p_value=cDCC = 0:0000

The cDCC-GARCH estimation results are:

W =

2666640:0293(0:0016)

0:1139(0:0071)

0:0776(0:0031)

377775 ; A =2666640:0864(0:0039)

0:0591(0:0035)

0:0805(0:0062)

377775 ; G =2666640:8993(0:0043)

0:9296(0:0054)

0:8844(0:0095)

377775 ;

�1 = 0:0339(0:0020)

; �2 = 0:9339(0:0125)

; LLF = �7068:3; AIC = 14159; BIC = 14216

We can see from these estimation results that some of the estimated coe¢ cients

that correspond to the volatility spillovers are statistically signi�cant at 5%. Moreover

the AIC and Likelihood Ratio tests favor the EcDCC and NET-GARCH models versus

130

Page 138: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

the cDCC-GARCH model.3 This result implies that there are statistically signi�cant

volatility spillovers between these series in the FTSE-100 index and therefore the data

constructed can be used for our VaR performance test. Although not reported here,

similar results are obtained for more number of series.

We use the HIT test of Engle and Manganelli (2000) to test the performance of a

model�s prediction of VaR. A HIT is de�ned as a binary variable which takes value 1 if

the observed return at time t is less than the predicted Value-at-Risk: HITt = 1[rt<V aR(q)]where q is the VaR quantile. When the model predicting VaR is correctly speci�ed, the

mean of these HITs should be equal to q and independent of all the past HITs and the

predicted VaRs. Therefore an OLS regression can be constructed to test both the mean

and the independence of the HITs:

HITt � q = �0 + �1HITt�1 + �2HITt�2 + :::+ �rHITt�r + �r+1V aRt + �t (3.8)

The null hypothesis in this test is H0 : �i = 0 8 i = 0; 1; :::r+1: The test statistic andits distribution is given in Engle and Manganelli (2000). We also adopt the approach

in Engle and Sheppard (2001) where they test for the independence of HITs without

simultaneously testing if the percentage of HITs was correct. Therefore they replace q

with the mean of HITs, q, in the equation (3.8) and remove the constant in the equation:

HITt � q = �1HITt�1 + �2HITt�2 + :::+ �rHITt�r + �r+1V aRt + �t (3.9)

Using the volatility estimates, we construct one step ahead forecasts of the variance

of the minimum variance portfolio, �p; and then de�ne the 5% VaR as -1.645�p. For all

the series used in the data, the assumption of normality is rejected using a Jarque-Bera

test at 5%; mainly because of high kurtosis. Therefore this VaR level is not appropriate.

However, given that we use the test to compare EcDCC model and NET-GARCH, it

still serves our purpose.

Table 3.3 shows the VaR estimates obtained from the EcDCC, NET and cDCC-

GARCH models along with the p-values obtained for the tests performed for equations

(3.8) and (3.9). As we can see the number of parameters to be estimated increases

rapidly for EcDCC-GARCH model; while it increases linearly for the NET and cDCC-

GARCH models. The percentage of HITs are very similar across the models. In the

case of EcDCC-GARCH model, the null hypothesis that the HITs have a mean q and

3BIC reports that cDCC-GARCH model �ts the data better than the EcDCC-GARCH model. Com-

pared to AIC, BIC punishes more the number of parameters and it suggests that the increase in the

number of parameters from cDCC to EcDCC-GARCH model is not compensated by the increase in the

log-likelihood.

131

Page 139: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

are independent of the past HITs and of the VaR estimate is rejected at 5% for 9 out

of 13 cases. When only the independence assumption is tested, in 5 of the 13 cases,

the null is rejected at 5%: In the case of NET-GARCH model, in 12 of the 13 cases the

null of the test using the equation (3.8) is rejected at 5%: On the other hand when only

the independence assumption in equation (3.9)is tested, in 9 of the 13 cases, the null is

rejected at 5%: For the cDCC-GARCH model, the null of the test using the equation

(3.8) is rejected at 5% in 12 of the 13 cases. Similarly, when the null of the test using the

equation (3.9) is rejected at 5% in 12 of the 13 cases. From these tests we conclude that

NET-GARCH model�s VaR estimates are more accurate than the cDCC-GARCH model,

and close to the estimates of the EcDCC-GARCH model. Therefore, we can say that

NET-GARCH model is doing a good job in capturing the volatility spillovers with much

less parameters than the EcDCC-GARCH model. Hence NET-GARCH model could be

preferred when high cross-sections are considered.

Table 3.4 shows the NET-GARCH estimates of the parameters related to volatility

spillovers (a and b) and of the correlation parameters (�1 and �2). As we can see, for

some of the estimations, a and b estimates are very di¤erent than zero. Moreover, the �2estimates are not necessarily small when a and b estimates are high, as opposed to the

results of Experiment 2 and 4 with T = 1000 in Section 3.4.1.

3.4.3 Robustness to Model

In this section, we provide MC evidence on the performances of EcDCC, NET and

cDCC-GARCH models when the true model is a BEKK or EcDCC-GARCH model. We

�rst estimate a BEKK-GARCH model using the �rst three, ten and thirteen series in

our dataset. Then using the parameter estimates, we generate 100 trivariate time series

vectors of length 1000 and estimate them with EcDCC, NET and cDCC-GARCHmodels.

The BEKK-GARCH model has the virtue of being very general because it allows for

spillovers between volatilities and covolatilities. Moreover, the model produces positive

de�nite covariance matrices naturally. The BEKK-GARCH(1,1,1) model is de�ned as:

Ht = CC 0 + A0"t�1"0t�1A+B0Ht�1B

where C;A and B are kxk matrices of parameters, C being lower triangular. BEKK-

GARCH(1,1,1) model is covariance stationary if and only if the eigenvalues of A A+

B B are less than one in absolute value. ( is a Kronecker product) The identi�ca-

tion restriction to eliminate observationally equivalent models is that A11, B11 and the

diagonal elements of C are positive. (See Engle and Kroner 1995 for details.)

In Figure 3.3 we report the relative di¤erences, calculated via (3.6), between the

132

Page 140: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

volatilities estimated by each model and the true volatilities of the minimum variance

portfolio (MVP) as explained in Section 3.4.2. and equally weighted portfolio (EWP)

where the weights are equal to 1k: In all cases considered, EcDCC-GARCH outperforms

the NET and cDCC-GARCH models in estimating the volatilities. In the case of MVP,

NET-GARCH volatility estimates deviate from the true volatilities in some cases more

than the estimates of cDCC-GARCH model. However, when we look at the EWP case,

the NET-GARCH volatility estimates are closer to the true volatilities than cDCC-

GARCH volatility estimates. Finally, in the case of 8 series and 13 series, some of the

series in the data have high skewness and kurtosis, which could explain the skewness and

fat tails of the density estimates.

Next, we generate the data with EcDCC-GARCH model taking the true values of the

parameters from �tting the EcDCC-GARCH model to the �rst three, eight and thirteen

series. Then we estimate the data with EcDCC, cDCC and NET-GARCH models.

As above, in Figure 3.4 we plot the kernel density estimates of the relative di¤erences

between the estimated and true volatilities of minimum variance and equally weighted

portfolios. We obtain similar results in the sense that for the MVP case the NET-GARCH

volatility estimates deviate from the true volatilities more than the volatility estimates of

the other two models. Moreover for the EWP case the NET-GARCH volatility estimates

are closer to true volatilities than the cDCC-GARCH volatility estimates. This result

implies that even though the NET-GARCH model overestimates the volatilities of the

series with lower variance, it performs closer to EcDCC-GARCHmodel for the series with

higher variance. Moreover, the cDCC-GARCH model performs poorly in estimating the

volatilities of the series with higher variance. Finally looking at the results with the EWP,

it is remarkable that when the underlying model is an EcDCC-GARCH, the performance

of NET-GARCH in estimating the volatilities is very close to the performance of the

EcDCC-GARCH model, knowing that in the latter case there is no misspeci�cation.

Looking at Figure 3.3 and 3.4, in the case of three series we can see that the cDCC-

GARCH volatility estimates of the MVP are very similar to that of EcDCC and NET-

GARCH models while with EWP there are di¤erences. One reason could be that the

series with lower variances are receiving relatively less volatility spillovers while the

other series is receiving more. Indeed when we look at the parameter estimates of the

EcDCC-GARCHmodel reported in Section 3.4.2, we see that the unconditional standard

deviation estimates are respectively 1:3803; 3:1330 and 1:4116 and they are close to the

standard deviations reported in Table 3.1. We note that in the equation of second series

the coe¢ cient of the previous period squared residuals of the third series is 0:0771 which

is far bigger than the other spillover coe¢ cients in the estimation results. This implies

that the series with higher variance is receiving relatively more volatility spillovers.

133

Page 141: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

We also report the root mean squared errors (RMSE) of the relative di¤erences

between the estimated and true volatilities of minimum variance portfolio and equally

weighted portfolio for each model.4 In Table 3.5, we report the RMSEs when the data is

generated by BEKK-GARCH model. In the case of three series and eight series, EcDCC-

GARCH is estimating the MVP volatilities better while in the case of thirteen series,

the RMSEs are similar across models. On the other hand in the case of EWP, EcDCC-

GARCH is estimating the volatilities better for all three simulations. NET-GARCH is

doing better in this case than the cDCC-GARCH model with three and eight series and

they are very similar with thirteen series. It is understandable that EcDCC-GARCH

captures better the volatilities generated by the BEKK-GARCH model because it is

the most general one between the three models considered. In Table 3.6, we report the

RMSEs when the data is generated by a EcDCC-GARCHmodel. It should be noted that

NET-GARCH model is estimating the volatilities better than cDCC-GARCH model in

the case of three and eight series for MVP. In the case of EWP, NET-GARCH has less

RMSE for all the simulations compared to cDCC-GARCH model. Moreover, the RMSE

of the NET-GARCH model is much closer to the RMSE of the EcDCC-GARCH model,

compared to that of the cDCC-GARCH model.

We can conclude when equal weights are given to the series in the data (EWP), on av-

erage NET-GARCH is performing quite close to the EcDCC-GARCH model. When the

underlying model is a BEKK-GARCH, with EWP the performance of NET-GARCH is

approaching to that of EcDCC-GARCH model and is at least as good as cDCC-GARCH.

When the data is generated using a EcDCC-GARCH, which is closer to a NET-GARCH

setup than BEKK-GARCH, and the portfolio is constructed with equal weights (EWP)

the NET-GARCH is doing much better than cDCC-GARCH and provides volatility

estimates close to the EcDCC-GARCH volatility estimates.

3.5 Conclusions

In this paper we propose the NET-GARCH model that captures the volatility spillovers

in a multivariate time series data while requiring the estimation of relatively less number

of parameters. The idea behind this model comes from Network Theory literature that if

a person has smoking habit, then his close friends are more likely to have the same habit

than his casual friends. Similarly, if an asset is highly volatile, then the assets closely

related to this asset are likely to import some of this high volatility.

BEKK-GARCH de�ned in Engle and Kroner (1995) and ECCC-GARCH proposed by

4Given that the mean of the squared relative di¤erences are taken, the results do not have to agree

with the Figures 3 and 4.

134

Page 142: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Jeantheau (1998) are two commonly used models for capturing the volatility spillovers in

the data. Even though BEKK-GARCH has a very rich structure allowing for volatilities

and covolatilities to have spillovers in-between, the parameters of this model are di¢ cult

to interpret as they do not represent directly the impact of the lagged terms on the

covariance matrix. (See Bauwens et al. 2006) ECCC-GARCH model has a simpler

structure because it uses the decomposition of the covariance matrix to volatilties and the

correlation matrix. However in both BEKK and ECCC-GARCH models the number of

parameters to be estimated increases rapidly with the number of series. Therefore �tting

these models to a time series data with a high cross sectional size becomes practically

very di¢ cult, if feasible. NET-GARCHmodel avoids this curse of dimensionality because

the number of parameters increase linearly with the number of series.

For the NET-GARCHmodel, we use the time-varying correlation dynamics of cDCC-

GARCH model proposed by Aielli (2008) as a correction to the DCC-GARCH model

of Engle (2002). Similarly, we consider the EcDCC-GARCH model where we use the

volatility set up of ECCC-GARCH model of Jeantheau (1998) but let the correlations

change following the cDCC-GARCH model.

The volatility dynamics of NET-GARCH model is similar to that of ECCC-GARCH

therefore we can adapt the positivity, stationarity and identi�cation restrictions discussed

in Jeantheau (1998). We use an iterative algorithm to estimate the NET-GARCH model

via maximum likelihood method. For comparison purposes, we estimate the EcDCC

and cDCC-GARCH models the same way. Throughout the paper, we use the return

data obtained from the stocks listed in FTSE-100 index for the period 28/06/2006 -

24/01/2012.

To show that the underlying parameters, volatilities and correlations of the data

generated by the NET-GARCH model are estimated well by the maximum likelihood

method, we perform Monte Carlo experiments where the data is generated and estimated

by this model. The true parameter values are obtained by �tting a NET-GARCH model

to the �rst three series and also to the estimation of three trivariate series randomly

selected from the data. In all four experiments, the volatility parameters of the NET-

GARCH model are estimated with small root mean squared errors. Even though with

small sample sizes, one of the correlation parameters was underestimated in two of the

four experiments, this bias disappeared with large sample sizes. The volatilities and

correlations were also estimated quite accurately.

In another section, following Engle and Sheppard (2001) we used Value-at-Risk (VaR)

performance test to check the empirical validity of the NET-GARCHmodel and compare

its performance in estimating the VaRs with that of EcDCC and cDCC-GARCH mod-

els. For this purpose we constructed minimum variance portfolios to calculate the VaR

135

Page 143: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

estimate of each model. The results of this section suggests that NET-GARCH model

provides VaR estimates similar to that of EcDCC and cDCC-GARCH models. To test

the performance of each model in predicting correctly the VaRs, we used the test pro-

posed by Engle and Manganelli (2000). If a binary variable is de�ned which takes value

1 at time t if the observed return at time t is less than the predicted VaR, then under the

null hypothesis the mean of this binary variable should be equal to the preset VaR quan-

tile and this binary variable should be independent of all its past values and predicted

VaRs. Following Engle and Shephard (2001) we checked also only for independence of

these binary variables without simultaneously testing if the mean of this binary variable

matches the mean. The results of these tests suggest that even though NET-GARCH is

not performing as good as the EcDCC-GARCH model, it is still performing better than

the cDCC-GARCH model. Given that the number of parameters increase rapidly with

the number of series in case of EcDCC-GARCH model, NET-GARCH model seems to

be a reasonable alternative as it captures the volatility spillovers with much less number

of parameters.

We performed another set of Monte Carlo experiments to see how EcDCC, cDCC

and NET-GARCH models perform when the true data generating process is a BEKK-

GARCH or a EcDCC-GARCH model. To take the true values of the parameters, we

estimated the �rst three, eight and thirteen series by BEKK and EcDCC-GARCH mod-

els. We reported the results in this section with �gures that show the kernel density

estimates of the relative di¤erences between the volatilities estimated by each model

and the true volatilities of the minimum variance portfolios and equally weighted port-

folios. We also reported the root mean squared errors of these relative di¤erences. The

results obtained in this section suggests that NET-GARCH model is doing relatively

better than the cDCC-GARCH when the underlying model is either BEKK or EcDCC-

GARCH model in estimating the volatilities of the equally weighted portfolio. It is

remarkable that the NET-GARCH model is approximating particularly well the per-

formance of EcDCC-GARCH model with the equally weighted portfolio when the data

is generated by a EcDCC-GARCH model, given that when �tting a EcDCC-GARCH

model to this data there is no model misspeci�cation. On the other hand with the min-

imum variance portfolio NET-GARCH is not performing very well because it could be

overestimating the volatilities of the series with low variance.

Under the light of the �ndings in this paper, we can conclude that NET-GARCH

model is a reasonable alternative to the EcDCC-GARCH model to capture the volatility

spillovers. Even though with small number of series BEKK or EcDCC-GARCH models

should still be preferred because they o¤er a richer variance structure, with high number

of series the estimation of these models could become di¢ cult, when feasible. NET-

136

Page 144: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

GARCH model proves to be useful in this case because it requires estimation of much

less parameters.

137

Page 145: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Bibliography

[1] Aielli, G. P. (2008). Consistent estimation of large scale dynamic conditional corre-

lations. Unpublished paper: Department of Economics, Statistics, Mathematics and

Sociology, University of Messina. Working paper n. 47.

[2] Bauwens, L., Laurent, S. and J.V.K. Rombouts (2006). Multivariate GARCHModels:

A Survey. Journal of Applied Econometrics, 21, 79-109.

[3] Bollerslev, T. (1990). Modelling the Coherence in Short-Run Nominal Exchange

Rates: A Multivariate Generalized ARCH Model. The Review of Economics and Sta-

tistics, 72, 498-505.

[4] Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity,

Journal of Econometrics, 31:307-327

[5] Engle,R. (2009) Anticipating Correlations: A New Paradigm for Risk Management.

Princeton University Press

[6] Engle, R., N. Shephard and K. Sheppard (2008). Fitting and Testing Vast Dimen-

sional Time-Varying Covariance Models. NYU Working Paper No. FIN-07-046.

[7] Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate

Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Busi-

ness and Economic Statistics, 20, 339-350.

[8] Engle, R., K. Sheppard (2001). Theoretical and Empirical Properties of Dynamic

Conditional Correlation Multivariate GARCH. NBER Working Paper, No: W8554.

[9] Engle, R., Manganelli, S. (2000) CAViaR: Conditional Autoregressive Value at Risk

by Regression Quantiles, Econometric Society World Congress 2000 Contributed Pa-

pers

[10] Engle, R., K.F. Kroner, (1995) Multivariate Simultaneous GARCH, Econometric

Theory, 11, 122-150

138

Page 146: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

[11] Engle, R. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of

Variance of United Kingdom In�ation, Econometrica 50:987-1008.

[12] Hafner C.M. and Reznikova, O. (2010) On the estimatiion of dynamic conditional

correlation models, Computational Statistics and Data Analysis, forthcoming.

[13] He, C., Teräsvirta, T. (2004) An Extended Constant Conditional Correlation

GARCH Model and Its Fourth-Moment Structure, Econometrics Theory, 20, 904-926.

[14] Jeantheau, T. (1998). Strong Consistency of Estimators For Multivariate ARCH

Models. Econometric Theory, 14, 70-86.

[15] Ledoit, O., Wolf, M. (2004), A Well-conditioned Estimator for Large-dimensional

Covariance Matrices, Journal of Multivariate Analysis, 88, 365-411.

[16] Norscia, I., Palagi, E. (2011), Yawn Contagion and Empathy in Homo Sapiens,

PLoS ONE 6(12): e28472. doi:10.1371/journal.pone.0028472

[17] Silvennoinen, A. and T. Teräsvirta (2009). Multivariate GARCH Models. In T. G.

Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds. Handbook of Financial Time

Series. New York: Springer.

[18] Tse, Y.K. and A.K.C. Tsui (2002). A Multivariate Generalized Autoregressive Con-

ditional Heteroskedasticity Model with Time-Varying Correlations. Journal of Busi-

ness and Economic Statistics, 20, 351-362.

[19] Tse, Y.K. (2000). A Test for Constant Correlations in a Multivariate GARCH

Model, Journal of Econometrics, 98: 1, 107-127

139

Page 147: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 3.1: The correlations between returns ri;t and rj;t and the coe¢ cients �i;j obtained

from regressing r2i;t on all past returns r2j;t:

0 5 10 15 20 25 30 35 40­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

r2j,t­1

β 7,j

0 5 10 15 20 25 30 35 40­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

r2j,t­1

β 40,j

βi,j

pij

140

Page 148: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 3.2: Kernel density estimates of the di¤erences from the estimated volatilities

and correlations to the true ones.

­0.5 0 0.50

2

4

6

8

10

∆h1,t

­0.5 0 0.50

2

4

6

8

10

∆h2,t

­0.5 0 0.50

2

4

6

8

10

∆h3,t

­0.5 0 0.50

2

4

6

8

10

∆p12,t

­0.5 0 0.50

2

4

6

8

10

∆p13,t

­0.5 0 0.50

2

4

6

8

10

∆p23,t

1,2,38,51,759,17,6339,50,64zero line

141

Page 149: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 3.3: Relative di¤erences obtained via Eq.(3.6) between the volatilities estimated

by each model and the true volatilities of the minimum variance portfolio and equally

weighted portfolio. Data generated by BEKK-GARCH.

­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

8 Series

­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

13 Series

­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

8 Series

­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.50

2

4

6

8Relative to true portfolio volat ilit ies, equally weighted portfolio

3 Series

­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

13 Series

­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

3 Series

Relative to true portfolio volat ilit ies, minimum variance port folio

EcDCC­G ARCHcDCC­GARCHNET­GARCHzero line

142

Page 150: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Figure 3.4: Relative di¤erences obtained via Eq.(3.6) between the volatilities estimated

by each model and the true volatilities of the minimum variance portfolio and equally

weighted portfolio. Data generated by EcDCC-GARCH.

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.40

5

10

3 Series

Relat ive  to  true portfolio volat ilit ies, minimum variance portfolio

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.40

5

10

3 Series

Relat ive  to  true portfolio volat ilit ies, equally weighted portfolio

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.40

5

10

8 Series­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.40

5

10

8 Series

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.40

5

10

13 Series­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.40

5

10

13 Series

EcDCC­G ARCHcDCC­G ARCHNET­G ARCHzero  line

143

Page 151: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 3.1: Descriptive statistics of the data constructed from FTSE-100 index and the

stocks listed in this index. Data period: 28/06/2006 - 24/01/2012Series Mean Std. Skew. Kur. Series Mean Std. Skew. Kur.

1 FTSE-100 -0.0015 1.4970 -0.0942 9.0396 45 LAND -0.0606 2.3179 -0.2188 6.68942 AAL 0.0043 3.4408 -0.1037 8.2890 46 LGEN -0.0071 3.3810 -0.3054 16.45263 ABF 0.0238 1.4689 -0.0940 6.8130 47 LLOY -0.2068 4.7186 -1.4634 26.42894 ADM 0.0229 2.4677 -1.1965 29.0575 48 MGGT 0.0281 2.3877 -0.2681 6.68505 AGK 0.1485 2.4093 0.1599 5.5519 49 MKT -0.0428 2.3019 -1.6983 24.71986 AMEC 0.0899 2.3539 -0.1948 9.2227 50 MRW 0.0233 1.6401 0.1125 6.10497 ANTO 0.0954 3.5319 0.0063 6.3748 51 NG 0.0062 1.6080 -0.1827 15.14458 ARM 0.1174 2.6773 0.0793 10.0159 52 NXT 0.0346 2.8541 0.1710 6.02059 AV -0.0365 3.4057 -1.0698 21.7725 53 OML 0.1582 6.6378 22.2919 695.289610 AZN -0.0065 1.6681 -0.1669 8.3330 54 PFC 0.1215 2.7099 -0.0196 5.410611 BA -0.0092 1.8944 -0.1849 6.0797 55 PRU 0.0247 3.4564 0.2229 11.820712 BARC -0.0797 4.3066 1.3082 27.9911 56 PSON 0.0342 1.6515 0.3752 6.114913 BATS 0.1713 3.0103 15.4167 362.1889 57 RBS -0.2271 5.3314 -6.7997 140.825614 BG 0.0555 2.3920 -0.0653 5.6275 58 RDSA 0.0353 1.8025 0.2834 9.009215 BLND -0.0482 2.4852 -0.1107 5.4603 59 REL -0.0140 1.7858 -0.6051 10.975916 BLT 0.0854 3.0561 0.1605 7.9547 60 REX -0.0278 2.0941 -0.7562 10.338717 BNZL 0.0261 1.5910 -0.2562 7.4417 61 RIO 0.0249 3.7442 -1.4811 24.182318 BP -0.0089 1.9991 -0.0299 8.2053 62 RR 0.0424 2.1727 0.0620 6.135419 BRBY 0.0745 2.7260 -0.2302 6.5810 63 RRS 0.1305 3.0205 0.2453 6.818120 BSY 0.0153 1.8452 0.3956 12.4347 64 RSA 0.0008 2.0503 0.3387 7.239921 BTA -0.0108 2.2629 -0.9214 12.9328 65 SAB 0.1119 2.2059 3.7722 55.063022 CCL -0.0043 2.4160 -0.2755 8.5126 66 SBRY -0.0150 2.0068 -1.2839 22.242323 CNA -0.0015 1.7028 -0.3791 7.1562 67 SDR 0.0367 2.8123 -0.0829 20.303924 CNE -0.0080 12.9246 0.1409 303.3931 68 SDRC 0.0259 2.8403 -0.7525 24.615525 CPG 0.0661 1.9439 -0.0919 7.1912 69 SGE 0.0199 1.8265 0.1769 5.813926 CPI 0.0092 1.5266 -0.2669 6.0986 70 SHP 0.0656 1.8443 0.2456 7.461927 CRH -0.0226 2.8603 -0.3086 7.3763 71 SMIN -0.0197 8.9780 -0.1688 599.483728 CSCG -0.0139 2.8593 1.0524 23.3745 72 SN 0.0229 1.8678 -0.0345 9.155729 DGE 0.0290 1.4093 0.2022 8.4300 73 SRP 0.0303 1.7043 -0.3114 5.776230 GFS 0.0337 1.8236 -1.6515 31.4891 74 SSE 0.0084 1.5841 -0.2191 12.343131 GKN -0.0277 3.4729 -1.3542 21.9307 75 STAN 0.0303 3.0494 0.4123 12.281032 GSK -0.0010 1.6062 0.1956 18.4226 76 SVT -0.0176 1.8385 -5.3025 115.246333 HMSO -0.0815 2.6684 -2.0512 30.6719 77 TATE -0.0013 2.2307 -2.5062 40.517834 HSBA -0.0107 2.2490 -0.7236 17.7591 78 TLW 0.0936 2.8452 0.5325 9.0712135 IAG -0.0628 3.0781 -0.1681 4.6689 79 TSCO -0.0080 1.7229 -0.2662 11.382436 IAP -0.0160 3.0994 -0.0131 12.9078 80 ULVR 0.0364 1.6135 0.0494 6.838837 IMI 0.0386 2.5659 -0.0339 5.8627 81 VED -0.0101 3.8847 -0.2963 6.381038 IMT 0.0158 1.6755 -0.2761 8.6727 82 VOD 0.0343 1.8772 -0.3156 8.463739 IPR 0.0033 2.1728 -1.1934 17.4467 83 WEIR 0.1070 2.9768 -0.2227 7.502340 ITRK 0.0853 1.9420 -0.4278 7.7864 84 WOS 0.0525 5.2736 16.9660 494.030041 ITVL -0.0246 3.0161 0.6070 9.7016 85 WPP 0.0129 2.0725 -0.2415 6.230942 JMAT 0.0330 2.3194 -0.0129 6.4140 86 WTP 0.0269 2.1872 0.1243 8.028243 KAZ 0.0021 4.2780 -0.2219 9.7506 87 XTA -0.0072 3.9689 -0.2361 7.329544 KGF 0.0087 2.4336 0.0743 4.7148

144

Page 152: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table3.2:MCmeans,standarddeviationsandrootmeansquarederrorsoftheparameter.

W1

W2

W3

A11

A22

A33

aB11

B22

B33

b�1

�2

Exp.1-True

0.0197

0.0997

0.0945

0.0639

0.0613

0.0676

0.0119

0.8845

0.9264

0.8553

0.0000

0.0343

0.9250

Series:1,2,3

0.0224

0.1254

0.1169

0.0632

0.0591

0.0679

0.0118

0.8716

0.9248

0.8350

0.0032

0.0340

0.9099

T=1000

(0.0185)

(0.0652)

(0.0485)

(0.0162)

(0.0115)

(0.0173)

(0.0039)

(0.0316)

(0.0150)

(0.0417)

(0.0076)

(0.0093)

(0.0658)

[0.0187]

[0.0700]

[0.0535]

[0.0163]

[0.0118]

[0.0173]

[0.0039]

[0.0341]

[0.0151]

[0.0463]

[0.0082]

[0.0093]

[0.0675]

Exp.2-True

0.2971

0.1284

0.0047

0.0763

0.1053

0.0973

0.0045

0.8659

0.7552

0.8923

0.0171

0.0180

0.9119

Series:8,51,75

0.3882

0.1455

0.0393

0.0787

0.1041

0.0991

0.0056

0.8478

0.7402

0.8840

0.0180

0.0207

0.5509

T=1000

(0.2669)

(0.0802)

(0.0613)

(0.0243)

(0.0314)

(0.0204)

(0.0055)

(0.0572)

(0.0754)

(0.0209)

(0.0118)

(0.0141)

(0.3946)

[0.2820]

[0.0820]

[0.0704]

[0.0245]

[0.0314]

[0.0205]

[0.0056]

[0.0600]

[0.0769]

[0.0225]

[0.0119]

[0.0144]

[0.5348]

Exp.2

0.3488

0.1309

0.0212

0.0781

0.1040

0.0979

0.0045

0.8552

0.7482

0.8873

0.0191

0.0198

0.7293

Series:8,51,75

(0.1538)

(0.0590)

(0.0318)

(0.0171)

(0.0219)

(0.0153)

(0.0041)

(0.0356)

(0.0550)

(0.0156)

(0.0110)

(0.0094)

(0.3273)

T=2000

[0.1622]

[0.0591]

[0.0359]

[0.0172]

[0.0220]

[0.0153]

[0.0041]

[0.0372]

[0.0554]

[0.0164]

[0.0112]

[0.0095]

[0.3748]

Exp.2

0.3126

0.1272

0.0117

0.0765

0.1045

0.0978

0.0041

0.8627

0.7546

0.8901

0.0181

0.0185

0.8785

Series:8,51,75

(0.0690)

(0.0315)

(0.0155)

(0.0103)

(0.0137)

(0.0084)

(0.0030)

(0.0174)

(0.0332)

(0.0084)

(0.0062)

(0.0047)

(0.1466)

T=5000

[0.0708]

[0.0315]

[0.0171]

[0.0103]

[0.0137]

[0.0084]

[0.0030]

[0.0177]

[0.0332]

[0.0087]

[0.0063]

[0.0047]

[0.1503]

Exp.3-True

0.0355

0.0851

0.0858

0.1186

0.0656

0.0416

0.0074

0.8777

0.8457

0.9384

0.0058

0.0274

0.9187

Series:9,17,63

0.1183

0.1367

0.1587

0.1216

0.0734

0.0463

0.0082

0.8603

0.8109

0.9194

0.0108

0.0307

0.8079

T=1000

(0.2750)

(0.3424)

(0.2110)

(0.0361)

(0.0939)

(0.0651)

(0.0090)

(0.0767)

(0.1090)

(0.0899)

(0.0226)

(0.0450)

(0.2583)

[0.2872]

[0.3463]

[0.2233]

[0.0362]

[0.0942]

[0.0652]

[0.0090]

[0.0786]

[0.1144]

[0.0919]

[0.0232]

[0.0452]

[0.2811]

Exp.4-True

0.1563

0.2881

0.0000

0.1435

0.1412

0.0850

0.0259

0.7954

0.6537

0.8696

0.0306

0.0094

0.9697

Series:39,50,64

0.2129

0.3253

0.0319

0.1441

0.1364

0.0841

0.0270

0.7827

0.6405

0.8620

0.0317

0.0127

0.3685

T=1000

(0.1050)

(0.1227)

(0.0504)

(0.0272)

(0.0336)

(0.0207)

(0.0126)

(0.0367)

(0.0796)

(0.0275)

(0.0243)

(0.0128)

(0.4235)

[0.1193]

[0.1282]

[0.0597]

[0.0273]

[0.0339]

[0.0207]

[0.0126]

[0.0388]

[0.0806]

[0.0285]

[0.0243]

[0.0133]

[0.7354]

Exp.4

0.1787

0.3072

0.0195

0.1402

0.1373

0.0861

0.0258

0.7946

0.6499

0.8641

0.0311

0.0140

0.6399

Series:39,50,64

(0.0708)

(0.0858)

(0.0266)

(0.0212)

(0.0279)

(0.0149)

(0.0098)

(0.0297)

(0.0700)

(0.0207)

(0.0178)

(0.0091)

(0.4165)

T=2000

[0.0743]

[0.0879]

[0.0329]

[0.0215]

[0.0282]

[0.0150]

[0.0098]

[0.0297]

[0.0701]

[0.0214]

[0.0178]

[0.0101]

[0.5331]

Exp.4

0.1639

0.2962

0.0109

0.1425

0.1395

0.0848

0.0262

0.7954

0.6540

0.8681

0.0294

0.0098

0.7743

Series:39,50,64

(0.0392)

(0.0522)

(0.0149)

(0.0131)

(0.0161)

(0.0099)

(0.0066)

(0.0171)

(0.0366)

(0.0123)

(0.0114)

(0.0049)

(0.3775)

T=5000

[0.0400]

[0.0528]

[0.0184]

[0.0132]

[0.0161]

[0.0099]

[0.0066]

[0.0171]

[0.0367]

[0.0124]

[0.0115]

[0.0049]

[0.4251]

145

Page 153: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table3.3:VaR

PerformanceofEcDCC,NET-GARCHandcDCC-GARCHmodels.Calculationsarebasedonaminimum

varianceportfolio.

EcDCC-GARCH

NET-GARCH

cDCC-GARCH

No.of

No.of

%of

P_values

P_values

No.of

%of

P_values

P_values

No.of

%of

P_values

P_values

series

parameters

HITs

forEq.(3.8)

forEq.(3.9)

parameters

HITs

forEq.(3.8)

forEq.(3.9)

parameters

HITs

forEq.(3.8)

forEq.(3.9)

212

0.0509

0.0809

0.0883

100.0509

0.0765

0.0571

80.0509

0.1220

0.1308

323

0.0531

0.0624

0.1224

130.0511

0.0334

0.0690

110.0524

0.0032

0.0031

438

0.0532

0.0453

0.0913

160.0546

0.0328

0.0345

140.0597

0.0040

0.0077

557

0.0553

0.0048

0.0047

190.0568

0.0481

0.0755

170.0598

0.0163

0.0295

680

0.0457

0.0521

0.0730

220.0548

0.0274

0.0435

200.0590

0.0041

0.0074

7107

0.0546

0.0209

0.0366

250.0553

0.0000

0.0001

230.0583

0.0005

0.0006

8138

0.0530

0.0282

0.0769

280.0494

0.0463

0.0714

260.0592

0.0001

0.0001

9173

0.0560

0.0256

0.0341

310.0508

0.0035

0.0044

290.0553

0.0015

0.0014

10212

0.0534

0.0937

0.0880

340.0531

0.0000

0.0001

320.0560

0.0037

0.0042

15467

0.0516

0.0271

0.0190

490.0553

0.0001

0.0001

470.0774

0.0000

0.0003

20822

0.0575

0.0000

0.0003

640.0524

0.0000

0.0000

620.0701

0.0000

0.0001

251277

0.0671

0.0035

0.0702

790.0715

0.0000

0.0000

770.0804

0.0000

0.0001

301832

0.0804

0.0000

0.1168

940.0664

0.0000

0.0003

920.0752

0.0000

0.0144

146

Page 154: Three Essays on Multivarite Volatility Modelling and ...rua.ua.es/dspace/bitstream/10045/26482/1/tesis_Hakan_Eratalay.pdf · Por otra parte, la literatura de la volatilidad estocÆstica

Table 3.4: The NET-GARCH estimates of some parametersNo. of series a b �1 �2

2 0:0056 0:0000 0:0494 0:9332

3 0:0119 0:0000 0:0343 0:9250

4 0:0134 0:0000 0:0641 0:3818

5 0:0183 0:0000 0:0411 0:4161

6 0:0215 0:0000 0:0095 0:9589

7 0:0316 0:0385 0:0306 0:6023

8 0:0344 0:0302 0:0316 0:5601

9 0:0315 0:0115 0:0169 0:8598

10 0:0330 0:0128 0:0174 0:8510

15 0:0546 0:0452 0:0192 0:7591

20 0:0246 0:0311 0:0122 0:8786

25 0:0000 0:0000 0:2379 0:1610

30 0:0002 0:0000 0:0056 0:9119

Table 3.5: The root mean squared errors of the relative di¤erences between the estimated

and true volatilities.BEKK EcDCC cDCC NET

MVP EWP MVP EWP MVP EWP

3s 0:1879 0:1527 0:2182 0:1937 0:2101 0:1706

8s 0:3464 0:2096 0:3816 0:2689 0:4067 0:2626

13s 0:3432 0:2476 0:3440 0:2985 0:3444 0:2977

Table 3.6: The root mean squared errors of the relative di¤erences between the estimated

and true volatilities.EcDCC EcDCC cDCC NET

MVP EWP MVP EWP MVP EWP

3s 0:1872 0:1315 0:2246 0:1464 0:1886 0:1388

8s 0:1445 0:0894 0:2337 0:1950 0:1661 0:1151

13s 0:1560 0:1322 0:3119 0:2225 0:3401 0:1654

147