three-state air quality study (3saqs) three-state data warehouse (3sdw) 2011 wrf modeling model...

36
Three-State Air Quality Study (3SAQS) Three-State Data Warehouse (3SDW) 2011 WRF Modeling Model Performance Evaluation University of North Carolina (UNC-IE) Cooperative Institute for Research in the Atmosphere (CIRA) ENVIRON International Corporation (ENVIRON) July 28, 2014

Upload: philippa-summers

Post on 21-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Three-State Air Quality Study (3SAQS)

Three-State Data Warehouse (3SDW)

2011 WRF Modeling Model Performance Evaluation

University of North Carolina (UNC-IE)Cooperative Institute for Research in the Atmosphere (CIRA)

ENVIRON International Corporation (ENVIRON)

July 28, 2014

2

3SAQS WRF MPE Summary• Objective: Develop best possible regional meteorology

database for annual 2011 air quality modeling• Nested 36/12/4-km WRF-ARW 3.5.1 with configuration

optimized for the intermountain West • Single configuration across the entire year

– no special wintertime version at this time

• Standard and extended model performance evaluation metrics focused on the 4 km three-state domain

• MPE conclusion: 3SAQS 2011 WRF application exhibited reasonably good model performance that was as good or better than other recent prognostic model applications used in air quality planning

3SAQS Draft WRF 2011 MPE Report

• Draft dated July 2014Executive Summary1.0 Introduction2.0 Methodology3.0 WRF Surface Model Performance Evaluation Results4.0 Precipitation Evaluation5.0 Evaluation for Winter High Ozone Periods

4

3SAQS Tech Committee Call June 19, 2014

• Summarized WRF surface and winter ozone model performance during June 19, 2014 3SAQS Technical Committee webinar

• So will only highlight some of these results here with conclusions

• In this presentation focus on new precipitation comparisons and overall conclusions

4

WRF Domain and Configuration

• Standard (40N-97W) Lambert-Conformal Conic projection

• CONUS 36km (165x129)• WestJumpAQMS 12km

(256x253)• 3SAQS 4km (301x361)• 37 layers to 50 mb (12m

surface layer)

6

Configuration Tests

• First-order simulations on all three domains for January 1-7 and July 1-7, 2011 to test different configurations:– NAM vs. ECMWF Initial and boundary conditions (ICBC)– 2006 NCLD vs. USGS land-use land cover (LULC) data– Noah-YSU vs. PX-ACM2 land surface/boundary layer

schemes– Obs nudging coefficient and network sensitivities

• Ultimately settled on the same configuration as WestJumpAQMS 2008 WRF

7

Evaluation Approach

• AMET used to evaluate surface temperatures, winds, and mixing ratios against MADIS observations

• Wintertime evaluation of winds, temperature, humidity and vertical temperature (inversions)

• PRISM precipitation evaluations• Compared results to performance benchmarks (bias and

error) for Western U.S. regional met modeling• Performance in CO, UT, WY, and 4-km 3S domain

– average of all monitors within each area

• Additional performance for snow cover, STE, planned in future

WRF Monthly Performance Summaries2-m Temperature

COWY

WRF Monthly Performance SummariesWind Speed

COWY

10

WRF Monthly Performance SummariesWind Direction

COWY

WRF Monthly Performance SummariesMixing Ratio

COWY

12

Example Summary MPE PlotTemperature in 4 km 3SAQS DomainJan Jul

13

2011 WRF MPE Surface Met• Almost always achieved Complex Performance

Benchmark and Frequently achieved Simple Benchmarks

• Performance as good or better than past WRF/MM5 applications in Rocky Mountains

• No systematic bias or problem performance seen.• 3SAQS 4 and 12 km MPE products can be viewed

at:http://

views.cira.colostate.edu/tsdw/Tools/ImageBrowser.aspx?pathid=TsdwBase11aMetPlotsRoot

13

14

3SAQS 2011 WRF MPE Winter Ozone

• 2011 WRF simulation included several high winter ozone events in Upper Green River Basin (URGRB) in southwest Wyoming during the Upper Green River Ozone Study (UGWOS)

• 13 ozone exceedance days (76 ppb or higher) occurred during February and March 2011– 123 ppb on Mar 2, 2011– 121 ppb on Mar 3, 2011– 121 ppb on Mar 12, 2011

UGRWOS Monitoring

Sites

2011 Winter Ozone WRF Evaluation

• Use UGWOS special study and routine NOAA ds3505 surface met obs in SWWY

• Soccer plots for Feb and Mar and SWWY domain

• Vertical temperature profiles

• 3SAQS 2011 WRF run not configured for winter ozone conditions

WRF Wind MPE UGRWOS & ds3505

Mar 1, 2011 1500 (Max O3 =121 ppb)

Mar 2, 2011 1500 (Max O3 =123 ppb)

Mar 10, 2011 1500 (Max O3 = 84 ppb)

Mar 12, 2011 1500 (Max O3 = 121ppb)

24

Winter Ozone WRF Conclusions• Need more focused evaluation for high ozone days• Some promise with low bias for winds and

temperature– Large error not unexpected given slow wind speed

• Vertical temperature matched reasonable well– Worse near the surface

• 3SAQS 2011 WRF 36/12/4 km can provide starting point for focused higher resolution WRF model of winter ozone episodes using winter ozone WRF configuration in 3SAQS 2015 SOW

25

Precipitation Evaluation Approach• Monthly total precipitation from PRISM analysis fields

– Parameter-elevation Regressions on Independent Slopes Model– Interpolates precipitation observations using regression

equations to account for elevation and other factors– Regrid ~1 km PRISM data to WRF domains– Note: PRISM analyses fields only for lower 48 USA

• Canada, Mexico and Oceans not included

• Qualitative comparison of monthly WRF and PRISM precipitation– PRISM also has daily products– Plans to develop quantitative PRISM evaluation tool in future

26

January Monthly Precipitation (inches)PRISM WRF

27

March Monthly Precipitation (inches)PRISM WRF

28

May Monthly Precipitation (inches)PRISM WRF

29

July Monthly Precipitation (inches)PRISM WRF

30

August Monthly Precipitation (inches)PRISM WRF

31

September Monthly Precipitation (in)PRISM WRF

32

October Monthly Precipitation (in)PRISM WRF

33

December Monthly Precipitation (in)PRISM WRF

34

3SAQS 2011 WRF Precipitation MPE

• Very good agreement between PRISM and WRF monthly precipitation spatial fields and magnitudes during winter and adjacent months– WRF able to simulate synoptic storm systems well

• PRISM/WRF agreement during monthly total precipitation in summer months not as good– Convective precipitation has been historically difficult

for WRF/MM5 to simulate– Questions whether PRISM interpolation scheme

appropriate for summer thunderstorms

34

35

3SAQS 2011 WRF Conclusions• WRF surface meteorological performance consistent achieves

model performance benchmark across CO, UT and WUY and 4 km domain– Some indication model has difficulty simulating nocturnal inversions in

complex terrain– Appears to be a slow wind speed bias of ~-0.5 m/s year-round– Mixing ratio overestimated in cooler and underestimated in warmer

months

• Monthly precipitation performance in winter and adjacent months quite good– Maybe some issues with summer convective precipitation

• Overall, 3SAQS 2011 WRF performance was reasonably good and as good or better than the performance of other WRF/MM5 applications in the Rocky Mountain region

36

3SAQS 2011 WRF Next Steps• Update draft 3SAQS 2011 WRF MPE report

– Over next week or two• Focused high-resolution WRF sensitivity

modeling for winter ozone events (2015 SOW)– Leverage work of University of Utah and others– Snow cover and cloud evaluation

• In addition to surface, upper-air and precipitation

• Stratospheric/Tropospheric Exchange (STE)– Need PGM modeling results to evaluate WRF