tiago duarte esteves dimensionamento e optimização em ... · palavras-chave capex, topologia...

254
Universidade de Aveiro Departamento de Eletrónica, Telecomunicações e 2018 Informática Tiago Duarte Esteves Dimensionamento e Optimização em Redes Ópticas de Transporte Dimensioning and Optimization in Optical Transport Networks

Upload: others

Post on 31-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Universidade de Aveiro Departamento de Eletrónica, Telecomunicações e2018 Informática

    Tiago Duarte Esteves Dimensionamento e Optimização em RedesÓpticas de Transporte

    Dimensioning and Optimization in OpticalTransport Networks

  • Universidade de Aveiro Departamento de Eletrónica, Telecomunicações e2018 Informática

    Tiago Duarte Esteves Dimensionamento e Optimização em RedesÓpticas de Transporte

    Dimensioning and Optimization in OpticalTransport Networks

    Dissertação apresentada à Universidade de Aveiro para cumprimentodos requisitos necessários à obtenção do grau de Mestre em En-genharia de Computadores e Telemática, realizada sob a orientaçãocientífica do Doutor Armando Humberto Moreira Nolasco Pinto, Pro-fessor Associado do Departamento de Eletrónica, Telecomunicaçõese Informática da Universidade de Aveiro e coorientação empresarialdo Doutor Rui Manuel Dias Morais, Doutor em Engenharia Eletrotéc-nica pela Universidade de Aveiro, coordenador de atividades de inves-tigação em optimização de redes na Coriant Portugal. Tendo comoinstituição de acolhimento o Instituto de Telecomunicações - Pólo deAveiro.

  • Aos meus pais, Joaquim e Alice, e à minhaesposa Cristina

    "‘Apply yourself both now and in the next life.Without effort, you cannot be prosperous.

    Though the land be good,You cannot have an abundant crop

    without cultivation."’

    Plato

  • o júri / the jury

    presidente / president Doutor Amaro Fernandes de SousaProfessor Auxiliar da Universidade de Aveiro

    vogais / examiners committee Doutor João José de Oliveira PiresProfessor Auxiliar do Instituto Superior Técnico da Universidade de Lisboa

    Doutor Armando Humberto Moreira Nolasco PintoProfessor Associado da Universidade de Aveiro (orientador)

  • agradecimentos /acknowledgements

    Em primeiro lugar quero agradecer ao Professor Armando NolascoPinto pela atribuição desta dissertação, bem como pela orientaçãoe disponibilidade que demonstrou ao longo de todo o tempo derealização da mesma. Queria também salientar o meu agradecimentoao Dr. Rui Dias Morais pelo importante apoio cientifico prestado e pelasua total disponibilidade.

    Não posso deixar de gratular os meus colegas e amigos do de-partamento de Electrónica, Telecomunicações e Informática peloapoio dado de diversas formas.

    Um especial agradecimento aos meus pais, Joaquim e Alice,pois sem o seu apoio incondicional nada disto era possível.

    Por fim, um especial reconhecimento à minha Cristina que sem-pre me incentivou, apoiou e de uma forma amorosa me deu forçaspara concluir esta etapa de uma forma proveitosa.

    A todos um sincero obrigado!

  • palavras-chave CAPEX, topologia fisica, topologia óptica, canais ópticos, modo opaco,modo transparente, modo translucido, modelo analítico, programaçãolinear inteira

    resumo Nesta dissertação é apresentado um estudo de dimensionamento eoptimização de redes ópticas de transporte tendo em consideraçãovários aspectos específicos e determinadas restrições. Primeiramenteé definido a topologia física da rede usada para este estudo definindoos seus nós e as suas ligações. Para uma análise mais detalhadae para uma vasta variedade de resultados são tidos em conta trêsdiferentes quantidades de tráfego injetado na rede onde é necessárioter em conta como esse tráfego é agregado e encaminhado. O en-caminhamento do tráfego é baseado nas diferentes topologias lógicas(opaco, transparente e translúcido). Nesta dissertação o principal fac-tor em causa é o CAPEX da rede e para isso são criados modelos deprogramação linear baseados em restrições e funções objectivo com opropósito de minimizar esse valor garantindo o encaminhamento totaldo tráfego. Os resultados destes modelos são descritos detalhada-mente ao longo da dissertação. Os cálculos analíticos deste processotambém são considerados. Com estes resultados e tendo em contaalgoritmos de agregação e encaminhamento baseados em heurísticasdesenvolvidos numa dissertação anterior é feita a comparação de re-sultados. Por fim são apresentadas todas as conclusões.

  • keywords CAPEX, physical topology, optical topology, optical channels, opaquemode, transparent mode, translucent mode, analytical model, integerlinear programming

    abstract In this dissertation a study is presented on the design and optimiza-tion of optical transport networks taking into account several specificaspects and certain restrictions. First, the physical topology of the net-work used for this study is defined by determine its nodes and theirconnections. For a more detailed analysis and for a wide variety ofresults, three different amounts of traffic injected into the network aretaken into account where it is necessary to consider how this trafficis aggregated. Traffic routing is based on different logical topologies(opaque, transparent and translucent). In this thesis the main factorin question is the CAPEX of the network and for this are created lin-ear programming models based on constraints and objective functionswith the purpose of minimizing this value guaranteeing the total trafficrouting. The results of these models are described in detail through-out the dissertation. The analytical calculations of this process are alsoconsidered. With these results and taking into account algorithms ofaggregation and routing based on heuristics developed in a previousdissertation the comparison of results is made. Finally, all the conclu-sions are presented.

  • Table of contents

    Table of contents i

    List of acronyms ii

    List of symbols iv

    List of figures ix

    List of tables xi

    1 Introduction 11.1 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2 Network specification 52.1 Network components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.1.1 Link architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.2 Node architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.2 Network topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2.1 Physical topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2.2 Logical topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2.3 Transport modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3.1 Opaque transport mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3.2 Transparent transport mode . . . . . . . . . . . . . . . . . . . . . . . . . 72.3.3 Translucent transport mode . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2.4 Reference network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4.1 Physical topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4.2 Traffic network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    i

  • Table of contents

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3 Capital expenditure 19

    3.1 ILP models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    3.1.1 Opaque transport mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    3.1.2 Transparent transport mode . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.1.3 Translucent transport mode . . . . . . . . . . . . . . . . . . . . . . . . . 26

    3.2 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    3.2.1 Opaque transport mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    3.2.2 Transparent transport mode . . . . . . . . . . . . . . . . . . . . . . . . . 30

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    4 Integer linear programming 33

    4.1 Introduction of ILP models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    4.2 Opaque without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    4.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    4.2.2 Result description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    4.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    4.3 Opaque with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    4.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    4.3.2 Result description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    4.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    4.4 Transparent without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    4.4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    4.4.2 Result description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    4.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    4.5 Transparent with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    4.5.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    4.5.2 Result description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    4.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    4.6 Translucent without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    4.6.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    4.6.2 Result description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    4.6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    4.7 Translucent with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    4.7.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    4.7.2 Result description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    4.7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

    4.8 Master conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    ii

  • Table of contents

    5 Analytical models 1755.1 Opaque without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1765.2 Opaque with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1795.3 Transparent without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . 1825.4 Transparent with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    6 Comparative analysis 1896.1 Opaque without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1906.2 Opaque with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1916.3 Transparent without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . 1926.4 Transparent with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 1936.5 Translucent without survivability . . . . . . . . . . . . . . . . . . . . . . . . . . 1946.6 Translucent with 1+1 protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 194References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    7 Conclusions and future directions 1977.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1987.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    Appendices 200

    iii

  • List of acronyms

    CAPEX capital expenditures

    EXC electrical cross connect

    ILP integer linear programming

    LR long-reach

    ODU optical data unit

    OEO optical-electrical-optical

    OLT optical line terminal

    OPEX operational expenditures

    OXC optical cross connect

    SR short-reach

    WDM wavelength division multiplexing

    v

  • List of symbols

    ( i,j ) physical link between the nodes i and j

    ( o,d ) demand between the nodes o and d

    ( o,d,c ) demand between the nodes o and d with bit rate c

    ( p,k ) lightpath between the nodes p and k

    γOLT0 OLT without transponders cost

    γOLT1 transponder cost

    γe0 EXC cost

    γe1,−1 EXC Port for line ports cost

    γe1,0 EXC Port for ODU0 cost

    γe1,1 EXC Port for ODU1 cost

    γe1,2 EXC Port for ODU2 cost

    γe1,3 EXC Port for ODU3 cost

    γe1,4 EXC Port for ODU4 cost

    γe2 Tributary Port cost

    γo0 OXC cost in monetary units (e.g. euros, or dollars)

    γo1 OXC Port cost

    δ nodal degree

    λod the number of 100 Gbit/s optical channels between the nodes o and d

    ξ grooming coefficient

    τ line bit-rate

    vii

  • List of symbols

    B natural number corresponding to the maximum index of short-reachports

    Bc client signals granularities (1.25, 2.5, 10, 40, 100)

    c index for bit rate of the client signal

    cR cost of unidirectional optical amplifier

    C set of the client signal

    CC total network CAPEX in monetary units (e.g. euros, or dollars)

    CEXC electrical part cost

    CL Link cost in monetary units (e.g. euros, or dollars)

    CN Node cost in monetary units (e.g. euros, or dollars)

    COXC optical part cost

    < d > average number of demands

    d index for node that is destination of a demand

    D number of unidirectional demands

    Dodc client demands between nodes o and d with bit rate c

    Dnd,c client demands between nodes n and d with bit rate c

    fodij the number of 100 Gbit/s optical channels between the nodes o and d thatuses link (i,j)

    fbodij binary variable indicating if link between the nodes i and j is used in thepath between nodes o and d

    fpodij the number of 100 Gbit/s optical channels with protection between thenodes o and d that uses link (i,j)

    G Network topology in form of adjacency matrix

    Gij binary indicating if connection between (i, j) in network topology exists

    < h > average number of hops for working paths

    < h′ > average number of hops for backup paths

    i index for start node of a physical link

    j index for end node of a physical link

    < k > survivability coefficient

    < kp > survivability coefficient in protection case

    Kij maximum number of optical channels supported by each transmissionsystem

    viii

  • List of symbols

    < len > average link length

    lenij length of link ij in kilometers

    lenl length of link l

    Lij binary variable indicating if link between the nodes i and j is used

    Lu number of unidirectional Links

    Lsodij Number of ODU-o low speed signals from node o to node d employinglightpath (i,j)

    N total number of nodes

    Nexc,n binary variable indicating if node n is used in electrical part

    Noxc,n binary variable indicating if node n is used in optical part

    NR total number of optical amplifiers

    NRij number of optical amplifiers in link (i, j)

    o index for node that is origin of a demand

    < Pexc > average number of ports of the electrical switch

    < Poxc > average number of ports of the optical switch

    Pexc,c,n number of ports of the electrical switch

    Poxc,n number of ports of the optical switch

    PTRIB total number of tributary ports

    span distance between amplifiers in kilometers

    T total bidirectional traffic

    T1 total unidirectional traffic

    T 01 unidirectional traffic of the ODU0

    T 11 unidirectional traffic of the ODU1

    T 21 unidirectional traffic of the ODU2

    T 31 unidirectional traffic of the ODU3

    T 41 unidirectional traffic of the ODU4

    < w > average number of optical channels

    wnj number of optical channels that are routed through the link between thenodes n and j

    Wij total number of optical channels that are routed through the link betweenthe nodes i and j

    ix

  • List of figures

    2.1 Schematic of a node where we can see the main components [3, 4]. . . . . . . 6

    2.2 Physical topology of the reference network. . . . . . . . . . . . . . . . . . . . . 8

    2.3 ODU0 logical topology defined by the ODU0 traffic matrix in low scenario. . 10

    2.4 ODU1 logical topology defined by the ODU1 traffic matrix in low scenario. . 11

    2.5 ODU2 logical topology defined by the ODU2 traffic matrix in low scenario. . 11

    2.6 ODU3 logical topology defined by the ODU3 traffic matrix in low scenario. . 11

    2.7 ODU4 logical topology defined by the ODU4 traffic matrix in low scenario. . 11

    2.8 ODU0 logical topology defined by the ODU0 traffic matrix in medium scenario. 13

    2.9 ODU1 logical topology defined by the ODU1 traffic matrix in medium scenario. 13

    2.10 ODU2 logical topology defined by the ODU2 traffic matrix in medium scenario. 13

    2.11 ODU3 logical topology defined by the ODU3 traffic matrix in medium scenario. 13

    2.12 ODU4 logical topology defined by the ODU4 traffic matrix in medium scenario. 14

    2.13 ODU0 logical topology defined by the ODU0 traffic matrix in high scenario. . 15

    2.14 ODU1 logical topology defined by the ODU1 traffic matrix in high scenario. . 15

    2.15 ODU2 logical topology defined by the ODU2 traffic matrix in high scenario. . 15

    2.16 ODU3 logical topology defined by the ODU3 traffic matrix in high scenario. . 16

    2.17 ODU4 logical topology defined by the ODU4 traffic matrix in high scenario. . 16

    3.1 Design of a link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    3.2 Design of a electrical switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.3 Design of a optical switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.1 Opaque without survivability: allowed physical topology. The allowed phys-ical topology is defined by the duct and sites in the field. It is assumed thateach duct supports up to 1 bidirectional transmission system and each sitesupports up to 1 node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    xi

  • List of figures

    4.2 Opaque without survivability: allowed optical topology. The allowed opticaltopology is defined by the transport mode. It is assumed that each transmis-sion system supports up to 100 optical channels. . . . . . . . . . . . . . . . . . 35

    4.3 Opaque without survivability in low scenario: physical topology after dimen-sioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    4.4 Opaque without survivability in low scenario: optical topology after dimen-sioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    4.5 Opaque without survivability in medium scenario: physical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    4.6 Opaque without survivability in medium scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    4.7 Opaque without survivability in high scenario: physical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    4.8 Opaque without survivability in high scenario: optical topology after dimen-sioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    4.9 Opaque with 1+1 protection: allowed physical topology. The allowed phys-ical topology is defined by the duct and sites in the field. It is assumed thateach duct supports up to 1 bidirectional transmission system and each sitesupports up to 1 node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    4.10 Opaque with 1+1 protection: allowed optical topology. The allowed opticaltopology is defined by the transport mode. It is assumed that each transmis-sion system supports up to 100 optical channels. . . . . . . . . . . . . . . . . . 51

    4.11 Opaque with 1+1 protection in low scenario: physical topology after dimen-sioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    4.12 Opaque with 1+1 protection in low scenario: optical topology after dimen-sioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    4.13 Opaque with 1+1 protection in medium scenario: physical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    4.14 Opaque with 1+1 protection in medium scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    4.15 Opaque with 1+1 protection in high scenario: physical topology after dimen-sioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    4.16 Opaque with 1+1 protection in high scenario: optical topology after dimen-sioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    4.17 Transparent without survivability: allowed physical topology. The allowedphysical topology is defined by the duct and sites in the field. It is assumedthat each duct supports up to 1 bidirectional transmission system and eachsite supports up to 1 node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    4.18 Transparent without survivability: allowed optical topology. The allowedoptical topology is defined by the transport mode. It is assumed that eachconnections between demands supports up to 100 lightpaths. . . . . . . . . . 70

    xii

  • List of figures

    4.19 Transparent without survivability in low scenario: physical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    4.20 Transparent without survivability in low scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    4.21 Transparent without survivability in medium scenario: physical topology af-ter dimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    4.22 Transparent without survivability in medium scenario: optical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    4.23 Transparent without survivability in high scenario: physical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    4.24 Transparent without survivability in high scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    4.25 Transparent with 1+1 protection: allowed physical topology. The allowedphysical topology is defined by the duct and sites in the field. It is assumedthat each duct supports up to 1 bidirectional transmission system and eachsite supports up to 1 node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    4.26 Transparent with 1+1 protection: allowed optical topology. The allowed op-tical topology is defined by the transport mode (transparent transport modein this case). It is assumed that each connections between demands supportsup to 100 lightpaths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    4.27 Transparent with 1+1 protection in low scenario: physical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    4.28 Transparent with 1+1 protection in low scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    4.29 Transparent with 1+1 protection in medium scenario: physical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    4.30 Transparent with 1+1 protection in medium scenario: optical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    4.31 Transparent with 1+1 protection in high scenario: physical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    4.32 Transparent with 1+1 protection in high scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    4.33 Translucent without survivability: allowed physical topology. The allowedphysical topology is defined by the duct and sites in the field. It is assumedthat each duct supports up to 1 bidirectional transmission system and eachsite supports up to 1 node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    4.34 Translucent without survivability: allowed optical topology. The allowed op-tical topology is defined by the transport mode. It is assumed that each con-nections between demands supports up to 100 lightpaths. . . . . . . . . . . . 130

    4.35 Translucent without survivability in low scenario: physical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    xiii

  • List of figures

    4.36 Translucent without survivability in low scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    4.37 Translucent without survivability in medium scenario: physical topology af-ter dimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    4.38 Translucent without survivability in medium scenario: optical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    4.39 Translucent without survivability in high scenario: physical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    4.40 Translucent without survivability in high scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    4.41 Translucent with 1+1 protection: allowed physical topology. The allowedphysical topology is defined by the duct and sites in the field. It is assumedthat each duct supports up to 1 bidirectional transmission system and eachsite supports up to 1 node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    4.42 Translucent with 1+1 protection: allowed optical topology. The allowed op-tical topology is defined by the transport mode. It is assumed that each con-nections between demands supports up to 100 lightpaths. . . . . . . . . . . . 150

    4.43 Translucent with 1+1 protection in low scenario: physical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    4.44 Translucent with 1+1 protection in low scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    4.45 Translucent with 1+1 protection in medium scenario: physical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    4.46 Translucent with 1+1 protection in medium scenario: optical topology afterdimensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    4.47 Translucent with 1+1 protection in high scenario: physical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    4.48 Translucent with 1+1 protection in high scenario: optical topology after di-mensioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    4.49 Graphic with the cost in Euros per Gbit/s of the three modes of transportwithout survivability and with 1+1 protection for all scenarios referred initially.172

    xiv

  • List of tables

    2.1 Table of reference network values. . . . . . . . . . . . . . . . . . . . . . . . . . 9

    3.1 Table with index and your corresponding bit rate . . . . . . . . . . . . . . . . 22

    3.2 Table of costs used to calculate CAPEX using ILP models [3]. . . . . . . . . . . 24

    3.3 Table of costs used to calculate CAPEX using analytical models [3]. . . . . . . 29

    4.1 Table with information regarding links for opaque mode without survivabil-ity in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    4.2 Table with information regarding nodes for opaque mode without survivabil-ity in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    4.3 Opaque without survivability in low scenario: detailed description of node 1.The number of demands is distributed to the various destination nodes, andcan be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    4.4 Opaque without survivability in low scenario: detailed description of node 2.The number of demands is distributed to the various destination nodes, andcan be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    4.5 Opaque without survivability in low scenario: detailed description of node 3.The number of demands is distributed to the various destination nodes, andcan be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    4.6 Opaque without survivability in low scenario: detailed description of node 4.The number of demands is distributed to the various destination nodes, andcan be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    4.7 Opaque without survivability in low scenario: detailed description of node 5.The number of demands is distributed to the various destination nodes, andcan be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    4.8 Opaque without survivability in low scenario: detailed description of node 6.The number of demands is distributed to the various destination nodes, andcan be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    xv

  • List of tables

    4.9 Opaque without survivability in low scenario: description of demands rout-ing. We are assuming that between a pair of nodes all demands follow thesame route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4.10 Opaque without survivability in low scenario: detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4.11 Table with information regarding links for opaque mode without survivabil-ity in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    4.12 Table with information regarding nodes for opaque mode without survivabil-ity in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    4.13 Opaque without survivability in medium scenario: detailed description ofnode 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 42

    4.14 Opaque without survivability in medium scenario: detailed description ofnode 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 42

    4.15 Opaque without survivability in medium scenario: detailed description ofnode 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 43

    4.16 Opaque without survivability in medium scenario: detailed description ofnode 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 43

    4.17 Opaque without survivability in medium scenario: detailed description ofnode 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 43

    4.18 Opaque without survivability in medium scenario: detailed description ofnode 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 44

    4.19 Opaque without survivability in medium scenario: table with description ofdemands routing. We are assuming that between a pair of nodes all demandsfollow the same route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    4.20 Opaque without survivability in medium scenario: detailed description ofCAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    4.21 Table with information regarding links for opaque mode without survivabil-ity in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    4.22 Table with information regarding nodes for opaque mode without survivabil-ity in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    4.23 Opaque without survivability in high scenario: detailed description of node1. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2 . . . . . . . . . . . . . . . . . . 47

    xvi

  • List of tables

    4.24 Opaque without survivability in high scenario: detailed description of node2. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 47

    4.25 Opaque without survivability in high scenario: detailed description of node3. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 47

    4.26 Opaque without survivability in high scenario: detailed description of node4. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 48

    4.27 Opaque without survivability in high scenario: detailed description of node5. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 48

    4.28 Opaque without survivability in high scenario: detailed description of node6. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 48

    4.29 Opaque without survivability in high scenario: description of demands rout-ing. We are assuming that between a pair of nodes all demands follow thesame route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    4.30 Opaque without survivability in high scenario: detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    4.31 Opaque without survivability: table with the various CAPEX values obtainedin the different traffic scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    4.32 Table with information regarding links for opaque mode with 1+1 protectionin low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    4.33 Table with information regarding nodes for opaque mode with 1+1 protectionin low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    4.34 Opaque with 1+1 protection in low scenario: detailed description of node 1.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 55

    4.35 Opaque with 1+1 protection in low scenario: detailed description of node 2.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 55

    4.36 Opaque with 1+1 protection in low scenario: detailed description of node 3.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 55

    4.37 Opaque with 1+1 protection in low scenario: detailed description of node 4.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 56

    4.38 Opaque with 1+1 protection in low scenario: detailed description of node 5.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 56

    xvii

  • List of tables

    4.39 Opaque with 1+1 protection in low scenario: detailed description of node 6.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 56

    4.40 Opaque with 1+1 protection in low scenario: description of routing. We areassuming that between a pair of nodes all demands follow the same route. . . 57

    4.41 Opaque with 1+1 protection in low scenario: detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    4.42 Table with information regarding links for opaque mode with 1+1 protectionin medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    4.43 Table with information regarding nodes for opaque mode with 1+1 protectionin medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    4.44 Opaque with 1+1 protection in medium scenario: detailed description of node1. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 60

    4.45 Opaque with 1+1 protection in medium scenario: detailed description of node2. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 60

    4.46 Opaque with 1+1 protection in medium scenario: detailed description of node3. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 60

    4.47 Opaque with 1+1 protection in medium scenario: detailed description of node4. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 61

    4.48 Opaque with 1+1 protection in medium scenario: detailed description of node5. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 61

    4.49 Opaque with 1+1 protection in medium scenario: detailed description of node6. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 61

    4.50 Opaque with 1+1 protection in medium scenario: table with description ofrouting. We are assuming that between a pair of nodes all demands followthe same route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    4.51 Opaque with 1+1 protection in medium scenario: table with detailed descrip-tion of CAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    4.52 Table with information regarding links for opaque mode with 1+1 protectionin high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    4.53 Table with information regarding nodes for opaque mode with 1+1 protectionin high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    4.54 Opaque with 1+1 protection in high scenario: detailed description of node 1.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 65

    xviii

  • List of tables

    4.55 Opaque with 1+1 protection in high scenario: detailed description of node 2.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 65

    4.56 Opaque with 1+1 protection in high scenario: detailed description of node 3.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 65

    4.57 Opaque with 1+1 protection in high scenario: detailed description of node 4.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 66

    4.58 Opaque with 1+1 protection in high scenario: detailed description of node 5.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 66

    4.59 Opaque with 1+1 protection in high scenario: detailed description of node 6.The number of demands is distributed to the various destination nodes, thisdistribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . 66

    4.60 Opaque with 1+1 protection in high scenario: description of routing. We areassuming that between a pair of nodes all demands follow the same route. . . 67

    4.61 Opaque with 1+1 protection in high scenario: detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    4.62 Opaque with 1+1 protection: Table with the various CAPEX values obtainedin the different traffic scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    4.63 Table with information regarding links for transparent mode without surviv-ability in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    4.64 Table with information regarding nodes for transparent mode without sur-vivability in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    4.65 Transparent without survivability in low scenario: detailed description ofnode 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In this node as wecan see there are no through ports. . . . . . . . . . . . . . . . . . . . . . . . . . 73

    4.66 Transparent without survivability in low scenario: detailed description ofnode 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 74

    xix

  • List of tables

    4.67 Transparent without survivability in low scenario: detailed description ofnode 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 75

    4.68 Transparent without survivability in low scenario: detailed description ofnode 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 76

    4.69 Transparent without survivability in low scenario: detailed description ofnode 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 77

    4.70 Transparent without survivability in low scenario: detailed description ofnode 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In this node as wecan see there are no through ports. . . . . . . . . . . . . . . . . . . . . . . . . . 78

    4.71 Transparent without survivability in low scenario: description of routing. . . 79

    4.72 Transparent without survivability in low scenario: detailed description ofCAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    4.73 Table with information regarding links for transparent mode without surviv-ability in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    4.74 Table with information regarding nodes for transparent mode without sur-vivability in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    4.75 Transparent without survivability in medium scenario: detailed descriptionof node 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In this node as wecan see there are no through ports. . . . . . . . . . . . . . . . . . . . . . . . . . 82

    xx

  • List of tables

    4.76 Transparent without survivability in medium scenario: detailed descriptionof node 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 83

    4.77 Transparent without survivability in medium scenario: detailed descriptionof node 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 84

    4.78 Transparent without survivability in medium scenario: detailed descriptionof node 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 85

    4.79 Transparent without survivability in medium scenario: detailed descriptionof node 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 86

    4.80 Transparent without survivability in medium scenario: detailed descriptionof node 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In this node as wecan see there are no through ports. . . . . . . . . . . . . . . . . . . . . . . . . . 87

    4.81 Transparent without survivability in medium scenario: description of routing 88

    4.82 Transparent without survivability in medium scenario: detailed descriptionof CAPEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    4.83 Table with information regarding links for transparent mode without surviv-ability in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    4.84 Table with information regarding nodes for transparent mode without sur-vivability in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    xxi

  • List of tables

    4.85 Transparent without survivability in high scenario: detailed description ofnode 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In this node as wecan see there are no through ports. . . . . . . . . . . . . . . . . . . . . . . . . . 91

    4.86 Transparent without survivability in high scenario: detailed description ofnode 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 92

    4.87 Transparent without survivability in high scenario: detailed description ofnode 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 93

    4.88 Transparent without survivability in high scenario: detailed description ofnode 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 94

    4.89 Transparent without survivability in high scenario: detailed description ofnode 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2 . Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In the latter thenumber of ports is double the number of optical channels. . . . . . . . . . . . 95

    4.90 Transparent without survivability in high scenario: detailed description ofnode 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In this node as wecan see there are no through ports. . . . . . . . . . . . . . . . . . . . . . . . . . 96

    4.91 Transparent without survivability in high scenario: description of routing. . . 97

    4.92 Transparent without survivability in high scenario: detailed description ofCAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    4.93 Transparent without survivability: Table with the various CAPEX values ob-tained in the different traffic scenarios. . . . . . . . . . . . . . . . . . . . . . . . 98

    xxii

  • List of tables

    4.94 Table with information regarding links for transparent mode with 1+1 protec-tion in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    4.95 Table with information regarding nodes for transparent mode with 1+1 pro-tection in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    4.96 Transparent with 1+1 protection in low scenario: detailed description of node1. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. Regarding the number ofline ports when this node is equal to the source, it means that add ports areused, otherwise it means that through ports are used. . . . . . . . . . . . . . . 103

    4.97 Transparent with 1+1 protection in low scenario: detailed description of node2. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. Regarding the number ofline ports when this node is equal to the source, it means that add ports areused, otherwise it means that through ports are used. In both cases the num-ber of ports is double the number of optical channels. . . . . . . . . . . . . . . 104

    4.98 Transparent with 1+1 protection in low scenario: detailed description of node3. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. Regarding the number ofline ports when this node is equal to the source, it means that add ports areused, otherwise it means that through ports are used. In both cases the num-ber of ports is double the number of optical channels. . . . . . . . . . . . . . . 105

    4.99 Transparent with 1+1 protection in low scenario: detailed description of node4. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. Regarding the number ofline ports when this node is equal to the source, it means that add ports areused, otherwise it means that through ports are used. In both cases the num-ber of ports is double the number of optical channels. . . . . . . . . . . . . . . 106

    4.100Transparent with 1+1 protection in low scenario: detailed description of node5. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. Regarding the number ofline ports when this node is equal to the source, it means that add ports areused, otherwise it means that through ports are used. In both cases the num-ber of ports is double the number of optical channels. . . . . . . . . . . . . . . 107

    4.101Transparent with 1+1 protection in low scenario: detailed description of node6. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. Regarding the number ofline ports when this node is equal to the source, it means that add ports areused, otherwise it means that through ports are used. In both cases the num-ber of ports is double the number of optical channels. . . . . . . . . . . . . . . 108

    xxiii

  • List of tables

    4.102Transparent with 1+1 protection in low scenario: description of the routing.In this case, the first path corresponds to the working path and the secondpath to the protection path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    4.103Transparent with 1+1 protection in low scenario: Detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    4.104Table with information regarding links for transparent mode with 1+1 protec-tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    4.105Table with information regarding nodes for transparent mode with 1+1 pro-tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    4.106Transparent with 1+1 protection in medium scenario: detailed description ofnode 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. . . . . . . . . . . . . 112

    4.107Transparent with 1+1 protection in medium scenario: detailed description ofnode 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 113

    4.108Transparent with 1+1 protection in medium scenario: detailed description ofnode 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 114

    4.109Transparent with 1+1 protection in medium scenario: detailed description ofnode 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 115

    4.110Transparent with 1+1 protection in medium scenario: detailed description ofnode 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 116

    xxiv

  • List of tables

    4.111Transparent with 1+1 protection in medium scenario: detailed description ofnode 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 117

    4.112Transparent with 1+1 protection in medium scenario: description of the rout-ing. In this case, the first path corresponds to the working path and the secondpath to the protection path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    4.113Transparent with 1+1 protection in medium scenario: detailed description ofCAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    4.114Table with information regarding links for transparent mode with 1+1 protec-tion in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    4.115Table with information regarding nodes for transparent mode with 1+1 pro-tection in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    4.116Transparent with 1+1 protection in high scenario: detailed description of node1. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2 . Regarding the number ofline ports when this node is equal to the source, it means that add ports areused, otherwise it means that through ports are used. . . . . . . . . . . . . . . 121

    4.117Transparent with 1+1 protection in high scenario: detailed description of node2. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2 . Regarding the numberof line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 122

    4.118Transparent with 1+1 protection in high scenario: detailed description of node3. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2 . Regarding the numberof line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 123

    4.119Transparent with 1+1 protection in high scenario: detailed description of node4. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2 . Regarding the numberof line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 124

    xxv

  • List of tables

    4.120Transparent with 1+1 protection in high scenario: detailed description of node5. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2 . Regarding the numberof line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 125

    4.121Transparent with 1+1 protection in high scenario: detailed description of node6. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2 . Regarding the numberof line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. In both cases thenumber of ports is double the number of optical channels. . . . . . . . . . . . 126

    4.122Transparent with 1+1 protection in high scenario: description of the routing.In this case, the first path corresponds to the working path and the secondpath to the protection path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    4.123Transparent with 1+1 protection in high scenario: detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    4.124Transparent with 1+1 protection in high scenario: table with different valueof CAPEX for this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    4.125Table with information regarding links for translucent mode without surviv-ability in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    4.126Table with information regarding nodes for translucent mode without surviv-ability in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    4.127Translucent without survivability in low scenario: detailed description ofnode 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 133

    4.128Translucent without survivability in low scenario: detailed description ofnode 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 134

    4.129Translucent without survivability in low scenario: detailed description ofnode 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 134

    4.130Translucent without survivability in low scenario: detailed description ofnode 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is different to the source, it means that throughports are used. In the latter the number of ports is double the number of op-tical channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    4.131Translucent without survivability in low scenario: detailed description ofnode 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 135

    xxvi

  • List of tables

    4.132Translucent without survivability in low scenario: detailed description ofnode 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 136

    4.133Translucent without survivability in low scenario: description of demandsrouting. In this case all the demands follow the same path for a certain pairof nodes, but this may not happen for other cases. . . . . . . . . . . . . . . . . 136

    4.134Translucent without survivability in low scenario: detailed description ofCAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    4.135Table with information regarding links for translucent mode without surviv-ability in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    4.136Table with information regarding nodes for translucent mode without surviv-ability in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    4.137Translucent without survivability in medium scenario: detailed descriptionof node 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 139

    4.138Translucent without survivability in medium scenario: detailed descriptionof node 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 139

    4.139Translucent without survivability in medium scenario: detailed descriptionof node 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 140

    4.140Translucent without survivability in medium scenario: detailed descriptionof node 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. Regarding the num-ber of line ports when this node is equal to the source, it means that add portsare used, otherwise it means that through ports are used. . . . . . . . . . . . . 140

    4.141Translucent without survivability in medium scenario: detailed descriptionof node 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 141

    4.142Translucent without survivability in medium scenario: detailed descriptionof node 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 141

    4.143Translucent without survivability in medium scenario: description of demandsrouting. In this case some demands follow different paths for the same pairof nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    4.144Translucent without survivability in medium scenario: detailed descriptionof CAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    4.145Table with information regarding links for translucent mode without surviv-ability in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    4.146Table with information regarding nodes for translucent mode without surviv-ability in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    xxvii

  • List of tables

    4.147Translucent without survivability in high scenario: detailed description ofnode 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 144

    4.148Translucent without survivability in high scenario: detailed description ofnode 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 145

    4.149Translucent without survivability in high scenario: detailed description ofnode 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 145

    4.150Translucent without survivability in high scenario: detailed description ofnode 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 146

    4.151Translucent without survivability in high scenario: detailed description ofnode 5. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 146

    4.152Translucent without survivability in high scenario: detailed description ofnode 6. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 147

    4.153Translucent without survivability in high scenario: detailed description ofCAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    4.154Translucent without survivability in high scenario: description of demandsrouting. In this case some demands follow different paths for the same pairof nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    4.155Translucent without survivability: table with the various CAPEX values ob-tained in the different traffic scenarios. . . . . . . . . . . . . . . . . . . . . . . . 148

    4.156Table with information regarding links for translucent mode with 1+1 protec-tion in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    4.157Table with information regarding nodes for translucent mode with 1+1 pro-tection in low scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    4.158Translucent with 1+1 protection in low scenario: detailed description of node1. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 154

    4.159Translucent with 1+1 protection in low scenario: detailed description of node2. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 154

    4.160Translucent with 1+1 protection in low scenario: detailed description of node3. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 155

    4.161Translucent with 1+1 protection in low scenario: detailed description of node4. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 155

    xxviii

  • List of tables

    4.162Translucent with 1+1 protection in low scenario: detailed description of node5. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 156

    4.163Translucent with 1+1 protection in low scenario: detailed description of node6. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 156

    4.164Translucent with 1+1 protection in low scenario: description of demands rout-ing. The type W means that it is working path and type P protection path. . . 157

    4.165Translucent with 1+1 protection in low scenario: detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    4.166Table with information regarding links for translucent mode with 1+1 protec-tion in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    4.167Table with information regarding nodes for translucent mode with 1+1 pro-tection in medium scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    4.168Translucent with 1+1 protection in medium scenario: detailed description ofnode 1. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 160

    4.169Translucent with 1+1 protection in medium scenario: detailed description ofnode 2. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 160

    4.170Translucent with 1+1 protection in medium scenario: detailed description ofnode 3. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 161

    4.171Translucent with 1+1 protection in medium scenario: detailed description ofnode 4. The number of demands is distributed to the various destinationnodes, this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . 161

    4.172Translucent with 1+1 protection in medium scenario: detailed description ofnode 5. The number of demands is distributed to the various destinationnodes can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . 162

    4.173Translucent with 1+1 protection in medium scenario: detailed description ofnode 6. The number of demands is distributed to the various destinationnodes, can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . 162

    4.174Translucent with 1+1 protection in medium scenario: detailed description ofCAPEX for this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    4.175Translucent with 1+1 protection in medium scenario: description of demandsrouting. The type W means that it is working path and type P protection path. 164

    4.176Table with information regarding links for translucent mode with 1+1 protec-tion in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    4.177Table with information regarding nodes for translucent mode with 1+1 pro-tection in high scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    xxix

  • List of tables

    4.178Translucent with 1+1 protection in high scenario: detailed description of node1. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 166

    4.179Translucent with 1+1 protection in high scenario: detailed description of node2. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 167

    4.180Translucent with 1+1 protection in high scenario: detailed description of node4. The number of demands is distributed to the various destination nodes,this distribution can be observed in section 2.4.2. . . . . . . . . . . . . . . . . . 167

    4.181Translucent with 1+1 protection in high scenario: detailed description of node3. The number of demands is distributed to the various destination nodes canbe observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    4.182Translucent with 1+1 protection in high scenario: detailed description of node5. The number of demands is distributed to the various destination nodes canbe observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    4.183Translucent with 1+1 protection in high scenario: detailed description of node6. The number of demands is distributed to the various destination nodes canbe observed in section 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    4.184Translucent with 1+1 protection in high scenario: detailed description of CAPEXfor this scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    4.185Translucent with 1+1 protection in high scenario: description of demandsrouting. The type W means that it is working path and type P protectionpath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

    4.186Translucent with 1+1 protection: table with the various CAPEX values ob-tained in the different traffic scenarios. . . . . . . . . . . . . . . . . . . . . . . . 171

    6.1 Opaque without survivability: Table with different value of CAPEX for allscenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    6.2 Opaque with 1+1 protection: Table with different value of CAPEX for all sce-narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

    6.3 Transparent without survivability: Table with different value of CAPEX forall scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    6.4 Transparent with 1+1 protection: Table with different value of CAPEX for allscenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

    6.5 Translucent without survivability: Table with different value of CAPEX forall scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    6.6 Translucent with 1+1 protection: Table with different value of CAPEX for allscenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    xxx

  • CHAPTER 1

    Introduction

    The amount of traffic, in particular IP traffic, has been increasing very substantially. Thisincrease is due to the growing number of Internet-based applications, the increase in thenumber of devices connected to the Internet, the expansion of optical fiber to customers’homes, increased bandwidth of mobile access technologies, and increased of video traffic [1].At the same time, with the increase in traffic, operators are under heavy pressure to reducethe cost per bit transported [2]. This implies the introduction of new technologies, whichon the one hand increase the capacity of transport of the networks and on the other, reducethe costs of operation (OPEX) [3]. This process of technological conversion is operatingin a macroeconomic scenario in which operators find it difficult to finance which forcesthem to have strong investment constraints (CAPEX) [3]. The transport networks have beenpredominantly based on circuit switching, either at the level of the optical channels or atthe level of the electrical circuits, and the introduction of packet switching undermines thisparadigm.

  • 1. Introduction

    1.1 Motivation and objectives

    Taking into account all these factors, the need to implement planning tools becomes im-portant both for suppliers and operators and is used in the various stages of the telecommu-nications business. These have a very important role and directly affect the competitivenessof operators. One of the tools used for transport network planning is the integer linearprogramming models. These models offer optimal solutions, however, some scalability lim-itations may arise. They also allow quick and easy changes. Therefore this model becomesrelevant in an environment where requirements may differ substantially between operators[4].Due to the importance of transport network planning and design, this dissertation aims toachieve the following main objectives:

    1. Define one reference network and three different scenarios for performing tests.

    2. Develop ILP models for opaque, transparent and translucent networks without sur-vivability and using 1+1 protection.

    3. Get analytical solutions for the previous point.

    4. Compare the analytical results and results based on ILP with the results obtainedthrough heuristics.

    1.2 Thesis outline

    This thesis is organized in 7 chapters. Chapter 2 consists of a state-of-art review about op-tical transport networks. In this chapter is also where the reference network used through-out the dissertation as well as the different traffics used is defined. The Chapter 3 beginsby determining the CAPEX calculation formula for use in the ILP model and for analyticalcalculations. The first section refers to ILP models and the other to analytical models. InChapter 4 are several sections each for a particular mode of transport and certain surviv-ability. In section 4.2 we have opaque without survivability, in section 4.3 opaque with 1+1protection. Sections 4.4 and 4.5 relate to the transparent and lastly sections 4.6 and 4.7 re-fer to the translucent. In the referred section it is possible to see the model description, thedetailed description of the results and the conclusions of these results. The analytical calcu-lation of all the models referred to in Chapter 4 can be found in Chapter 5. In Chapter 6 theresults obtained throughout this dissertation are compared and the chapter is divided intosix sections where each corresponds to a certain mode of transport with their respective sur-vivability. The last step is the conclusions 7 and suggestions for future research directions.

    2

  • REFERENCES

    References

    [1] Cisco, “Global Mobile Data Traffic Forecast Update 2015-2020,” in Cisco Visual Network-ing Index, pp. 2,3, 2016.

    [2] Alcatel-Lucent (2009). “The new economics of telecom networks -bringing value back to the network,” Tech. Rep. [Online]. Available:http://images.tmcnet.com/online-communities/ngc/pdfs/application-enablement/whitepapers/The-New-Economics-of-Telecom-Networks.pdf

    [3] S. Verbrugge, D. Colle, M. Pickavet, P. Demeester, S. Pasqualini, A. Iselt, A. Kirstädter,R. Hülsermann, F.-J. Westphal, and M. Jäger, “Methodology and input availability pa-rameters for calculating OpEx and CapEx costs for realistic network scenarios,” Journalof Optical Networking, vol. 5, no. 6, pp. 509–520, June 2006.

    [4] R. M. D. Morais, “Planning and Dimensioning of Multilayer Optical Transport Net-works.” PhD thesis, Universidade de Aveiro, 2015.

    3

    http://images.tmcnet.com/online-communities/ngc/pdfs/application-enablement/whitepapers/The-New-Economics-of-Telecom-Networks.pdfhttp://images.tmcnet.com/online-communities/ngc/pdfs/application-enablement/whitepapers/The-New-Economics-of-Telecom-Networks.pdf

  • CHAPTER 2

    Network specification

    The purpose of this chapter is to describe a state-of-art review about optical transportnetworks and finally describe a reference network that will be used for the various types ofdimensioning throughout this dissertation. In addition to the reference network will also bedescribed the various traffic models used in this network in question.The organization of this chapter is done by creating four subsections, the first 2.1 refers tothe components of the network, the second 2.2 depicts the topologies of the network and inthe third 2.3 it is possible to describe the different types of mode of transport. At the end, inthe 2.4 is described the physical topology of the network and how to create the traffic matrixfor the three existing traffic models (low, medium and high traffic).

  • 2. Network specification

    2.1 Network components

    2.1.1 Link architecture

    Links are basically physical point-to-point connections ensured by the transmission sys-tems between two adjacent nodes. These links can be composed of one or more transmissionsystems, where it starts and ends at the node and has the function of transporting a WDMsignal between the directly connected nodes [1][2]. Signals are transmitted through a pairof fibers that require bidirectional communication. Transmission systems contain opticalamplifiers at an expected distance (span) in order to increase signal strength thus allowingreliable signal detection [3].

    2.1.2 Node architecture

    In the node are performed enough operations thus requiring a lot of hardware, conse-quently, are considered the element of a more expensive optical transport network. In opti-cal networks these nodes are composed of three structures: modules, shelves and rack. Themodules contain optical and electrical components to perform functions such as encapsu-lation and wavelength assignment and these can contain multiple ports. The shelves aredesigned to support different modules so that they can be assembled. Finally, the rack hasthe function of supplying power to the shelves [3, 4].

    Figure 2.1: Schematic of a node where we can see the main components [3, 4].

    2.2 Network topologies

    2.2.1 Physical topology

    A physical topology is defined by a set of nodes and edges that characterize the network.The nodes are where we can find the elements of the network. Already the edges are the

    6

  • 2.3. Transport modes

    physical interconnection between these nodes where in this case correspond to optical fibers.Some of the common physical topologies are mesh, ring, and star topology [5][6].

    2.2.2 Logical topology

    Fundamentally, the logical topology represents how the flow of traffic on the networkoccurs. This flow can be described in terms of traffic requests, or logical links. Logicaltopologies can be represented by traffic arrays where the elements of the array entry repre-sent the number of client traffic units that flow between the source node and the destinationnode. If you know all traffic requests we can say that we are dealing with static traffic. Inthe situation where all requests for traffic are not known, this traffic is said to be dynamic[5][6].

    2.3 Transport modes

    2.3.1 Opaque transport mode

    A network configured in opaque transport mode performs OEO conversions on each in-termediate node because of the need for converting to electronic domain [1]. An advantagein this way is that it eliminates the accumulation of physical deficiencies and allows fullflexibility in the exchange and removal of customer signals [4]. The optical and physicaltopologies are the same, causing each traffic route to match the link-to-link path imposed byfiber optics between each intermediate node to the destination [3, 7].

    2.3.2 Transparent transport mode

    In transparent transport mode, a route is only defined between source and destinationnodes always in the optical domain [1]. In this mode the physical and optical topologies aredifferent [3]. Since this type of network performs the OEO conversion only at the end nodesof the path, the capacity’s utilization of the wavelength channels is restricted to the clientsignals with