time reversal techniques in wave imaging and applicationswahab/documents/nust12.pdf · [gallot 11,...

120
Time Reversal Techniques in Wave Imaging and Applications Abdul Wahab LPMA, University of Paris VII, & CMAP, ´ Ecole Polytechnique, France. CAMP, National University of Science & Technology, Pakistan. Joint work with H. Ammari (ENS-Paris), E. Bretin (INSA-Lyon), J. Garnier (Paris VII), S. Gdoura (Sup´ elec-Paris), D. Lesselier (Sup´ elec-Paris) A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 1 / 57

Upload: others

Post on 17-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal Techniques in Wave Imaging andApplications

Abdul WahabLPMA, University of Paris VII,

&CMAP, Ecole Polytechnique,

France.

CAMP, National University of Science & Technology,Pakistan.

Joint work with H. Ammari (ENS-Paris), E. Bretin (INSA-Lyon), J. Garnier (Paris VII),

S. Gdoura (Supelec-Paris), D. Lesselier (Supelec-Paris)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 1 / 57

Page 2: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Outlines

Principles of Time Reversal

Inverse Source Problems

Time Reversal Cavity

Applications of Time Reversal

Open Questions

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 1 / 57

Page 3: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalIntroduced by M. Fink (Paris VII & ESPCI) in 1989.

The wave equation with compressibility K, density ρ and speed c = 1/√ρK :

W[u](x, t) :=

(∇ ·

1

ρ∇−

1

ρc2∂2

∂t2

)u(x, t) = 0, x ∈ Rd.

is time invariant (under transformation t→ −t).If u(x, t) is solution then so does u(x,−t) !

The fundamental solution, G, to the operator W verifies spatial reciprocity i.e.

G(x− y, t) = G(y − x, t), ∀x, y ∈ Rd, x 6= y.

One can revert a wave from its final state to initial state.

Time reversalIt is a technique that focuses waves onto a source or a scatter by emitting a time reversedversion of the received wave field measured by an array of transducers.(C. Bardos, 09)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 2 / 57

Page 4: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalIntroduced by M. Fink (Paris VII & ESPCI) in 1989.

The wave equation with compressibility K, density ρ and speed c = 1/√ρK :

W[u](x, t) :=

(∇ ·

1

ρ∇−

1

ρc2∂2

∂t2

)u(x, t) = 0, x ∈ Rd.

is time invariant (under transformation t→ −t).If u(x, t) is solution then so does u(x,−t) !

The fundamental solution, G, to the operator W verifies spatial reciprocity i.e.

G(x− y, t) = G(y − x, t), ∀x, y ∈ Rd, x 6= y.

One can revert a wave from its final state to initial state.

Time reversalIt is a technique that focuses waves onto a source or a scatter by emitting a time reversedversion of the received wave field measured by an array of transducers.(C. Bardos, 09)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 2 / 57

Page 5: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalIntroduced by M. Fink (Paris VII & ESPCI) in 1989.

The wave equation with compressibility K, density ρ and speed c = 1/√ρK :

W[u](x, t) :=

(∇ ·

1

ρ∇−

1

ρc2∂2

∂t2

)u(x, t) = 0, x ∈ Rd.

is time invariant (under transformation t→ −t).If u(x, t) is solution then so does u(x,−t) !

The fundamental solution, G, to the operator W verifies spatial reciprocity i.e.

G(x− y, t) = G(y − x, t), ∀x, y ∈ Rd, x 6= y.

One can revert a wave from its final state to initial state.

Time reversalIt is a technique that focuses waves onto a source or a scatter by emitting a time reversedversion of the received wave field measured by an array of transducers.(C. Bardos, 09)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 2 / 57

Page 6: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalIntroduced by M. Fink (Paris VII & ESPCI) in 1989.

The wave equation with compressibility K, density ρ and speed c = 1/√ρK :

W[u](x, t) :=

(∇ ·

1

ρ∇−

1

ρc2∂2

∂t2

)u(x, t) = 0, x ∈ Rd.

is time invariant (under transformation t→ −t).If u(x, t) is solution then so does u(x,−t) !

The fundamental solution, G, to the operator W verifies spatial reciprocity i.e.

G(x− y, t) = G(y − x, t), ∀x, y ∈ Rd, x 6= y.

One can revert a wave from its final state to initial state.

Time reversalIt is a technique that focuses waves onto a source or a scatter by emitting a time reversedversion of the received wave field measured by an array of transducers.(C. Bardos, 09)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 2 / 57

Page 7: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalIntroduced by M. Fink (Paris VII & ESPCI) in 1989.

The wave equation with compressibility K, density ρ and speed c = 1/√ρK :

W[u](x, t) :=

(∇ ·

1

ρ∇−

1

ρc2∂2

∂t2

)u(x, t) = 0, x ∈ Rd.

is time invariant (under transformation t→ −t).If u(x, t) is solution then so does u(x,−t) !

The fundamental solution, G, to the operator W verifies spatial reciprocity i.e.

G(x− y, t) = G(y − x, t), ∀x, y ∈ Rd, x 6= y.

One can revert a wave from its final state to initial state.

Time reversalIt is a technique that focuses waves onto a source or a scatter by emitting a time reversedversion of the received wave field measured by an array of transducers.(C. Bardos, 09)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 2 / 57

Page 8: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Physical Experiment

Time reversal of a scattered wave by an obstacle. [Fink 99]

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 3 / 57

Page 9: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Physical Experiment

Time reversal of a scattered wave by an obstacle. [Fink 99]

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 3 / 57

Page 10: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Physical Experiment

Time reversal of a scattered wave by an obstacle. [Fink 99]

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 3 / 57

Page 11: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Physical Experiment

Time reversal of a scattered wave by an obstacle. [Fink 99]

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 3 / 57

Page 12: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Physical Experiment

Time reversal of a scattered wave by an obstacle. [Fink 99]

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 3 / 57

Page 13: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Physical Experiment

Time reversal of a scattered wave by an obstacle. [Fink 99]

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 3 / 57

Page 14: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Physical Experiment

Time reversal of a scattered wave by an obstacle. [Fink 99]

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 3 / 57

Page 15: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Applications

TRCGiven the measurements of wave field scattered by a (point or extended) scatterer at asurface(in far field). Find

- Properties of the medium or scatterer such as refractive index, Young’s modulus,Poisson’s ratio, electric permittivity, magnetic permeability etc.

- Find the shape (for extended scatterers) and the location of the scatterers.

Applications

- Biomedical imaging with diffracting sources.

- Non-destructive evolution.

- Exploration geophysics and seismology.

- Telecommunications.

- Synthetic aperture radar imaging.

- Passive tomography and travel time imaging.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 4 / 57

Page 16: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalAcoustic Time-reversal Cavity : Applications

TRCGiven the measurements of wave field scattered by a (point or extended) scatterer at asurface(in far field). Find

- Properties of the medium or scatterer such as refractive index, Young’s modulus,Poisson’s ratio, electric permittivity, magnetic permeability etc.

- Find the shape (for extended scatterers) and the location of the scatterers.

Applications

- Biomedical imaging with diffracting sources.

- Non-destructive evolution.

- Exploration geophysics and seismology.

- Telecommunications.

- Synthetic aperture radar imaging.

- Passive tomography and travel time imaging.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 4 / 57

Page 17: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalInverse Source Problems : Physical Experiment

Time reversal of a secondary (or modulated) wave.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 5 / 57

Page 18: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalInverse Source Problems : Physical Experiment

Time reversal of a secondary (or modulated) wave.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 5 / 57

Page 19: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalInverse Source Problems : Physical Experiment

Time reversal of a secondary (or modulated) wave.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 5 / 57

Page 20: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalInverse Source Problems : Physical Experiment

Time reversal of a secondary (or modulated) wave.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 5 / 57

Page 21: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalInverse Source Problems : Applications

ISPSuppose a primary incident wave passes through a medium and is modulated or triggers asecondary wave due to the presence of an anomaly. Given the measurements of themodulated or secondary wave field at a surface(in far field). Find the source (i.e. theanomaly) of the modulation or the secondary wave.

Applications

- Biomedical imaging with non-diffracting sources.

- Reservoir localization.

- EM source localization with applications in Robotics.

- Earthquake source localization.

- Identification of the initial state of a dynamical system.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 6 / 57

Page 22: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalInverse Source Problems : Applications

ISPSuppose a primary incident wave passes through a medium and is modulated or triggers asecondary wave due to the presence of an anomaly. Given the measurements of themodulated or secondary wave field at a surface(in far field). Find the source (i.e. theanomaly) of the modulation or the secondary wave.

Applications

- Biomedical imaging with non-diffracting sources.

- Reservoir localization.

- EM source localization with applications in Robotics.

- Earthquake source localization.

- Identification of the initial state of a dynamical system.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 6 / 57

Page 23: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Principle of Time reversalSome Important Results

Physics & Experiments

- [Cassereau & Fink 92, TR Cavity], [Fink 97], [Carminati 07, EM-Waves], [Anderson11, Elastic-ISP], [Johnson, Solids and non-linear elastic media].

Mathematical Analysis

- [Bardos & Fink, TRC], [Blomgren, Papanicolaou, Zhao, Randomness Hypothesis],[Garnier, Papanicolaou, Solna, Wave guides, Layered media, Dispersive media], [Bal,Changing Environment].

Applications

- [Lerosey, Rosny, Tourin, Fink, Science 07], [Larmat 10, Seismology], [Larmat 08 Glacialearthquake], [de Rosny, Telecommunications], [Stojanovic 05, Underwater acoustics],[Gallot 11, Passive elastography].

Biomedical Imaging - [Ammari 11, Elastography], [Burgholzer 08, Photo-acoustics],[Kuchment & Hristova 08, Thermo-acoustics], [Treeby 08, Photo-aocustics].

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 7 / 57

Page 24: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source Problems

Inverse Source Problems

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 8 / 57

Page 25: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsMotivation : Multi-Physics Imaging

Tissue optical absorption:

p(y,t)

f(x)

Optical pulsePhoto-acoustic imaging

- Absorbed energy density.

Magneto-acoustic imaging

- Divergence of the Lorentz force.

Acoustic radiation force imaging

- Radiation force.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 9 / 57

Page 26: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsMathematical Formulation

Let f be compactly supported in a bounded smooth domain Ω ⊂ Rd with d = 2, 3 andboundary ∂Ω.

ProblemFind supp

f(x)

given

ga(y, t) := pa(y, t) : (y, t) ∈ ∂Ω× [0, T ]

such that :

(1

c2∂2

∂t2−∆− a

∂t∆

)pa(x, t) =

∂tδ0(t)f(x), (x, t) ∈ Rd × R,

pa(x, t) = 0 =∂pa(x, t)

∂t, x ∈ Rd, t 0,

for T sufficiently large.

- a ≥ 0 : Medium dependant attenuation parameter,

- c : Speed of the wave front.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 10 / 57

Page 27: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsMathematical Formulation

Let f be compactly supported in a bounded smooth domain Ω ⊂ Rd with d = 2, 3 andboundary ∂Ω.

ProblemFind supp

f(x)

given

ga(y, t) := ua(y, t) : (y, t) ∈ ∂Ω× [0, T ]

such that :

(∂2

∂t2−

∂tLηλ,ηµ − Lλ,µ

)ua(x, t) =

∂tδ0(t)f(x), (x, t) ∈ Rd × R,

ua(x, t) = 0 =∂

∂tua(x, t), x ∈ Rd, t 0,

for T sufficiently large.

- (λ, µ) : Lame parameters,

- (ηλ, ηµ) : visco-elastic moduli,

- Lα,β [~pa] = (α+ β)∇∇ · ua − β∆ua,

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 10 / 57

Page 28: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Integral formulation

Adjoint WaveLet v be the solution of the wave equation

∂ttv(x, t)−∆v(x, t) = 0, (x, t) ∈ Ω× (0, T )

v(x, 0) = 0, ∂tv(x, 0) = 0, x ∈ Ω

v(x, t) = g0(x, T − t), (x, t) ∈ ∂Ω× [0, T ]

Then,v(x, t) = p0(x, T − t), ∀(x, t) ∈ Ω× [0, T ], and v(x, T ) = f(x)

Exact Integral FormulationGreen’s theorem and integration by parts yield

f(x) = v(x, T ) =

∫ T

0

∫∂Ω

∂GD(x, y, t− T )

∂νyg0(y, t− T )dσ(y) ∀x ∈ Ω

where GD is the Dirichlet Green function and v is the adjoint wave.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 11 / 57

Page 29: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Integral formulation

Adjoint WaveLet v be the solution of the wave equation

∂ttv(x, t)−∆v(x, t) = 0, (x, t) ∈ Ω× (0, T )

v(x, 0) = 0, ∂tv(x, 0) = 0, x ∈ Ω

v(x, t) = g0(x, T − t), (x, t) ∈ ∂Ω× [0, T ]

Then,v(x, t) = p0(x, T − t), ∀(x, t) ∈ Ω× [0, T ], and v(x, T ) = f(x)

Exact Integral FormulationGreen’s theorem and integration by parts yield

f(x) = v(x, T ) =

∫ T

0

∫∂Ω

∂GD(x, y, t− T )

∂νyg0(y, t− T )dσ(y) ∀x ∈ Ω

where GD is the Dirichlet Green function and v is the adjoint wave.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 11 / 57

Page 30: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Experiment

−1 −0.5 0 0.5

−1

−0.5

0

0.5

0 0.5 1 1.5 2

50

100

150

200

250

Simulations carried out by E. Bretin(INSA-Lyon)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 12 / 57

Page 31: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Experiment

−1 −0.5 0 0.5

−1

−0.5

0

0.5

0 0.5 1 1.5 2

50

100

150

200

250

Simulations carried out by E. Bretin(INSA-Lyon)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 12 / 57

Page 32: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Integral formulation II

Modified TR-functionalLet G0(x, y, t) be the outgoing fundamental solution and vs(x, t) be such that

∂ttvs(x, t)−∆vs(x, t) = ∂tδs(t)g0(x, T − s)δ∂Ω(x), ∀(x, t) ∈ Rd × R,vs(x, t) = 0, ∂tvs(x, t) = 0 ∀x ∈ Rd, t s.

Then, a modified time-reversal functional is given by

I(x) :=

∫ T

0vs(x, T )ds

=

∫ T

0

∫∂Ω

∂tG0(x, y, T − s)g0(y, T − s)dσ(y)ds ∀x ∈ Ω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 13 / 57

Page 33: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Integral formulation II

Remark that g0(y) = −iω∫

ΩG0(z, y)f(z)dz for all y ∈ ∂Ω

Helmholtz-Kirchhoff Identity : For x, z ∈ Ω sufficiently far from y ∈ ∂Ω∫∂Ω

G0(x, y)G0(z, y)dσ(y) '1

ω=m

G0(x, z)

1

∫Rω=m

G0(x, z)

dω = δx(z)

Therefore,

I(x) =1

∫Rdf(z)

∫R

∫∂Ωω2G0(x, y)G0(z, y)dσ(y)dωdz

'1

∫Rdf(z)

∫Rω=m

G0(x, z)

dωdz

TheoremFor x far from ∂Ω (w.r.t. wavelength), we have I(x) ' f(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 14 / 57

Page 34: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Integral formulation II

Remark that g0(y) = −iω∫

ΩG0(z, y)f(z)dz for all y ∈ ∂Ω

Helmholtz-Kirchhoff Identity : For x, z ∈ Ω sufficiently far from y ∈ ∂Ω∫∂Ω

G0(x, y)G0(z, y)dσ(y) '1

ω=m

G0(x, z)

1

∫Rω=m

G0(x, z)

dω = δx(z)

Therefore,

I(x) =1

∫Rdf(z)

∫R

∫∂Ωω2G0(x, y)G0(z, y)dσ(y)dωdz

'1

∫Rdf(z)

∫Rω=m

G0(x, z)

dωdz

TheoremFor x far from ∂Ω (w.r.t. wavelength), we have I(x) ' f(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 14 / 57

Page 35: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Integral formulation II

Remark that g0(y) = −iω∫

ΩG0(z, y)f(z)dz for all y ∈ ∂Ω

Helmholtz-Kirchhoff Identity : For x, z ∈ Ω sufficiently far from y ∈ ∂Ω∫∂Ω

G0(x, y)G0(z, y)dσ(y) '1

ω=m

G0(x, z)

1

∫Rω=m

G0(x, z)

dω = δx(z)

Therefore,

I(x) =1

∫Rdf(z)

∫R

∫∂Ωω2G0(x, y)G0(z, y)dσ(y)dωdz

'1

∫Rdf(z)

∫Rω=m

G0(x, z)

dωdz

TheoremFor x far from ∂Ω (w.r.t. wavelength), we have I(x) ' f(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 14 / 57

Page 36: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Reconstructions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Left to Right : Initial image, Exact time-reversal, Modified time-reversal

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TR in Attenuating Media

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 15 / 57

Page 37: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Reconstructions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Left to Right : Initial image, Exact time-reversal, Modified time-reversal

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TR in Attenuating Media

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 15 / 57

Page 38: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : TR in attenuating media

Consider the thermo-viscous wave equation∂ttpa(x, t)−∆pa(x, t)− a∂t(∆pa(x, t)) = 0

pa(x, 0) = f(x), and ∂tpa(x, 0) = 0.

Attenuated TR-functionalDefine

Ia(x) =

∫ T

0vs,a(x, T )ds ∀x ∈ Ω

where vs,a(x, t) is the solution of the adjoint attenuated wave equation [Burgholzer 07], [Treeby 10]

∂ttvs,a(x, t)−∆vs,a(x, t)+a∂t(∆vs,a(x, t)) = ∂tδs(t)ga(x, T − s)δ∂Ω(x).

- Stability,

- Order of correction,

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 16 / 57

Page 39: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : TR in attenuating media

Consider the thermo-viscous wave equation∂ttpa(x, t)−∆pa(x, t)− a∂t(∆pa(x, t)) = 0

pa(x, 0) = f(x), and ∂tpa(x, 0) = 0.

Attenuated TR-functionalDefine

Ia(x) =

∫ T

0vs,a(x, T )ds ∀x ∈ Ω

where vs,a(x, t) is the solution of the adjoint attenuated wave equation [Burgholzer 07], [Treeby 10]

∂ttvs,a(x, t)−∆vs,a(x, t)+a∂t(∆vs,a(x, t)) = ∂tδs(t)ga(x, T − s)δ∂Ω(x).

- Stability,

- Order of correction,

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 16 / 57

Page 40: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : TR in attenuating media

Consider the thermo-viscous wave equation∂ttpa(x, t)−∆pa(x, t)− a∂t(∆pa(x, t)) = 0

pa(x, 0) = f(x), and ∂tpa(x, 0) = 0.

Attenuated TR-functionalDefine

Ia(x) =

∫ T

0vs,a(x, T )ds ∀x ∈ Ω

where vs,a(x, t) is the solution of the adjoint attenuated wave equation [Burgholzer 07], [Treeby 10]

∂ttvs,a(x, t)−∆vs,a(x, t)+a∂t(∆vs,a(x, t)) = ∂tδs(t)ga(x, T − s)δ∂Ω(x).

- Stability,

- Order of correction,

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 16 / 57

Page 41: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Truncated TR functional

LetGa be the fundamental solution of the Lossy Helmholtz equation

ω2 Ga(x, y) + (1 + iaω) ∆yGa(x, y) = −δx(y) in Rd.

Let Ga,ρ(x, y, t) :=1

∫|ω|<ρ

Ga(x, y) exp(−iωt)dω

Consider an approximation vs,a,ρ(x, t) of vs,a(x, t) given by :

vs,a,ρ(x, t) =

∫∂Ω

∂tGa,ρ(x, y, t− s)ga(y, T − s)dσ(y)

We define :

Truncated TR-FunctionalFor all x ∈ Ω :

Ia,ρ(x) :=

∫ T

0vs,a,ρ(x, T )ds =

∫ T

0

∫∂Ω

∂tGa,ρ(x, y, T − s)ga(y, T − s)dσ(y)ds.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 17 / 57

Page 42: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Truncated TR functional

LetGa be the fundamental solution of the Lossy Helmholtz equation

ω2 Ga(x, y) + (1 + iaω) ∆yGa(x, y) = −δx(y) in Rd.

Let Ga,ρ(x, y, t) :=1

∫|ω|<ρ

Ga(x, y) exp(−iωt)dω

Consider an approximation vs,a,ρ(x, t) of vs,a(x, t) given by :

vs,a,ρ(x, t) =

∫∂Ω

∂tGa,ρ(x, y, t− s)ga(y, T − s)dσ(y)

We define :

Truncated TR-FunctionalFor all x ∈ Ω :

Ia,ρ(x) :=

∫ T

0vs,a,ρ(x, T )ds =

∫ T

0

∫∂Ω

∂tGa,ρ(x, y, T − s)ga(y, T − s)dσ(y)ds.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 17 / 57

Page 43: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Truncated TR functional

LetGa be the fundamental solution of the Lossy Helmholtz equation

ω2 Ga(x, y) + (1 + iaω) ∆yGa(x, y) = −δx(y) in Rd.

Let Ga,ρ(x, y, t) :=1

∫|ω|<ρ

Ga(x, y) exp(−iωt)dω

Consider an approximation vs,a,ρ(x, t) of vs,a(x, t) given by :

vs,a,ρ(x, t) =

∫∂Ω

∂tGa,ρ(x, y, t− s)ga(y, T − s)dσ(y)

We define :

Truncated TR-FunctionalFor all x ∈ Ω :

Ia,ρ(x) :=

∫ T

0vs,a,ρ(x, T )ds =

∫ T

0

∫∂Ω

∂tGa,ρ(x, y, T − s)ga(y, T − s)dσ(y)ds.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 17 / 57

Page 44: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Attenuation operators

Remark that p0(x, ω) and pa(x, ω) satisfy(κ2(ω) + ∆

)pa(x, ω) =

iκ2(ω)

ωf(x), and

(ω2 + ∆

)p0(x, ω) = iωf(x).

Therefore, pa(x, ω) =κ(ω)ω

p0(x, κ(ω)) or pa(x, t) = L[p0(x, ·)](t) where

Attenuation Operator

L[φ](t) =1

∫R

κ(ω)

ω

∫Rφ(s)eiκ(ω)sds

e−iωtdω.

with κ(ω) =ω

√1− iaω

is the complex wave number.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 18 / 57

Page 45: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Attenuation operators

Remark that p0(x, ω) and pa(x, ω) satisfy(κ2(ω) + ∆

)pa(x, ω) =

iκ2(ω)

ωf(x), and

(ω2 + ∆

)p0(x, ω) = iωf(x).

Therefore, pa(x, ω) =κ(ω)ω

p0(x, κ(ω)) or pa(x, t) = L[p0(x, ·)](t) where

Attenuation Operator

L[φ](t) =1

∫R

κ(ω)

ω

∫Rφ(s)eiκ(ω)sds

e−iωtdω.

with κ(ω) =ω

√1− iaω

is the complex wave number.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 18 / 57

Page 46: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Attenuation operators

Moreover, we define operator Lρ associated with κ(ω) = ω√1+iaω

by

Lρ[φ](t) :=1

∫ ∞0

φ(s)

∫|ω|≤ρ

κ(ω)

ωeiκ(ω)se−iωtdω

ds,

We denote its adjoint operator by L∗ρ given by

L∗ρ[φ](t) =1

∫|ω|≤ρ

κ(ω)

ωeiκ(ω)t

∫ ∞0

φ(s)e−iωsds

dω.

As

∫R

exp

1

2caω2s

expiω(s− t)dω =

2π√cas

exp

(t− s)2

2cas

ds,

for κ(ω) = ω + iaω2

2

L[φ](t) =1

2√π

(1−

ac

2

∂t

)∫ ∞0

φ(s)2π√cas

exp

(t− s)2

2cas

ds

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 19 / 57

Page 47: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Attenuation operators

Moreover, we define operator Lρ associated with κ(ω) = ω√1+iaω

by

Lρ[φ](t) :=1

∫ ∞0

φ(s)

∫|ω|≤ρ

κ(ω)

ωeiκ(ω)se−iωtdω

ds,

We denote its adjoint operator by L∗ρ given by

L∗ρ[φ](t) =1

∫|ω|≤ρ

κ(ω)

ωeiκ(ω)t

∫ ∞0

φ(s)e−iωsds

dω.

As

∫R

exp

1

2caω2s

expiω(s− t)dω =

2π√cas

exp

(t− s)2

2cas

ds,

for κ(ω) = ω + iaω2

2

L[φ](t) =1

2√π

(1−

ac

2

∂t

)∫ ∞0

φ(s)2π√cas

exp

(t− s)2

2cas

ds

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 19 / 57

Page 48: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Attenuation operators

Moreover, we define operator Lρ associated with κ(ω) = ω√1+iaω

by

Lρ[φ](t) :=1

∫ ∞0

φ(s)

∫|ω|≤ρ

κ(ω)

ωeiκ(ω)se−iωtdω

ds,

We denote its adjoint operator by L∗ρ given by

L∗ρ[φ](t) =1

∫|ω|≤ρ

κ(ω)

ωeiκ(ω)t

∫ ∞0

φ(s)e−iωsds

dω.

As

∫R

exp

1

2caω2s

expiω(s− t)dω =

2π√cas

exp

(t− s)2

2cas

ds,

for κ(ω) = ω + iaω2

2

L[φ](t) =1

2√π

(1−

ac

2

∂t

)∫ ∞0

φ(s)2π√cas

exp

(t− s)2

2cas

ds

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 19 / 57

Page 49: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Stationary Phase Analysis

Theorem (Stationary Phase Theorem [Hormander 03])

Let K ⊂ [0,∞) be a compact set, X an open neighbourhood of K and k ∈ N. Let

ψ ∈ C2k0 (K) and h ∈ C3k+1

0 (X) be such that :

=mh ≥ 0, =mh(t0) = 0 = h′(t0), h′′(t0) 6= 0, h′ 6= 0 in K\t0

then for ε > 0∣∣∣∣∣∫Kψ(t)eih(t)/εdt− eih(t0)/ε

(h′′(t0)/2iπε

)−1/2∑j<k

εjDj [ψ]

∣∣∣∣∣≤ Cεk

∑α≤2k

supx∈K

∣∣ψ(α)(x)∣∣

where

Dj [ψ] =∑

ν−µ=j

∑2ν≥3µ

i−j(−1)ν1

2ν ν!µ!h′′(t0)−v

(θµt0ψ

)(2ν)(t0)

with

θt0 (t) := h(t)− h(t0)−1

2h′′(t0)(t− t0)2.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 20 / 57

Page 50: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Asymptotic approximation : a ω−1

Proposition

For κ(ω) ' ω + iaω2

2and a→ 0 following results hold :

Let φ(t) ∈ S([0,∞[), then

L[φ](t) = φ(t) +a

2

(tφ′)′

(t) + o(a).

Let φ(t) ∈ D([0,∞[), then for all ρ > 0

L∗ρ[φ](t) = Sρ[φ](t)−a

2Sρ[(tφ′)′] + o(a).

Let φ(t) ∈ D([0,∞[) and ρ > 0, then

L∗ρ [L[φ]] (t) = Sρ[φ](t) + o(a).

where S is the Schwartz space, D is the space of C∞−functions of compact support and

Sρ[φ](t) =1

∫|ω|≤ρ

e−iωtφ(ω)dω

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 21 / 57

Page 51: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Analysis of truncated functional

Consequently we have

Ia,ρ(x) =

∫ T

0

∫∂Ω

∂tGa,ρ(x, y, t)ga(y, t)dσ(y)dt

=

∫ T

0

∫∂ΩLρ [∂tG0(x, y, ·)] (t)L [g(y, ·)] (t)dσ(y)dt

=

∫ T

0

∫∂Ω

∂tG0(x, y, t)L∗ρ [L [g0(y, ·)]] (t)dσ(y)dt

=

∫ T

0

∫∂Ω

∂tG0(x, y, t)Sρ [g0(y, ·)] (t)dσ(y)dt+ o(a)

Finally remark that

δρ,x(z) =1

∫|ω|≤ρ

ω=mG0(x, z)

dω → δx(z) as ρ→ +∞.

Therefore,

Ia,ρ(x) ' δρ,x(y) ∗ f(y) + o(a)

ρ→∞−−−−→

f(x) + o(a).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 22 / 57

Page 52: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Analysis of truncated functional

Consequently we have

Ia,ρ(x) =

∫ T

0

∫∂Ω

∂tGa,ρ(x, y, t)ga(y, t)dσ(y)dt

=

∫ T

0

∫∂ΩLρ [∂tG0(x, y, ·)] (t)L [g(y, ·)] (t)dσ(y)dt

=

∫ T

0

∫∂Ω

∂tG0(x, y, t)L∗ρ [L [g0(y, ·)]] (t)dσ(y)dt

=

∫ T

0

∫∂Ω

∂tG0(x, y, t)Sρ [g0(y, ·)] (t)dσ(y)dt+ o(a)

Finally remark that

δρ,x(z) =1

∫|ω|≤ρ

ω=mG0(x, z)

dω → δx(z) as ρ→ +∞.

Therefore,

Ia,ρ(x) ' δρ,x(y) ∗ f(y) + o(a)

ρ→∞−−−−→

f(x) + o(a).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 22 / 57

Page 53: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Analysis of truncated functional

Consequently we have

Ia,ρ(x) =

∫ T

0

∫∂Ω

∂tGa,ρ(x, y, t)ga(y, t)dσ(y)dt

=

∫ T

0

∫∂ΩLρ [∂tG0(x, y, ·)] (t)L [g(y, ·)] (t)dσ(y)dt

=

∫ T

0

∫∂Ω

∂tG0(x, y, t)L∗ρ [L [g0(y, ·)]] (t)dσ(y)dt

=

∫ T

0

∫∂Ω

∂tG0(x, y, t)Sρ [g0(y, ·)] (t)dσ(y)dt+ o(a)

Finally remark that

δρ,x(z) =1

∫|ω|≤ρ

ω=mG0(x, z)

dω → δx(z) as ρ→ +∞.

Therefore,

Ia,ρ(x) ' δρ,x(y) ∗ f(y) + o(a)

ρ→∞−−−−→

f(x) + o(a).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 22 / 57

Page 54: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Truncated TR-functional Reconstructions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test with a = 0.0005. Left to Right : Without correction, with correction & ρ = 15, withcorrection & ρ = 20.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test with a = 0.001. Left to Right : Without correction, with correction & ρ = 15, with correction& ρ = 20.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 23 / 57

Page 55: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Pre-processing TR-scheme

As ga(y, t) = L[g0(y, ·)](t), an alternative strategy is to

- pre-process the measured data ga(y, t) using a pseudo-inverse of L as a filter

- apply the ideal time-reversal functional I(x) to identify source location.

Using higher order asymptotic expansion :

L[φ](t) =

k∑m=0

am

m! 2m

(tmφ′

)(2m−1)(t) + o(ak)

L−1k [φ](t) =

k∑m=0

amφk,m(t) such that L−1k L[φ](t) = φ(t) + o(ak).

and φk,m verifyφk,0 = φ

φk,m = −m∑l=1

Dl[φk,m−l],and Dmφ(t) =

1

m! 2m

(tmφ′

)(2m−1)(t).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 24 / 57

Page 56: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Pre-processing TR-scheme

As ga(y, t) = L[g0(y, ·)](t), an alternative strategy is to

- pre-process the measured data ga(y, t) using a pseudo-inverse of L as a filter

- apply the ideal time-reversal functional I(x) to identify source location.

Using higher order asymptotic expansion :

L[φ](t) =k∑

m=0

am

m! 2m

(tmφ′

)(2m−1)(t) + o(ak)

L−1k [φ](t) =

k∑m=0

amφk,m(t) such that L−1k L[φ](t) = φ(t) + o(ak).

and φk,m verifyφk,0 = φ

φk,m = −m∑l=1

Dl[φk,m−l],and Dmφ(t) =

1

m! 2m

(tmφ′

)(2m−1)(t).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 24 / 57

Page 57: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Pre-processing TR-scheme

As ga(y, t) = L[g0(y, ·)](t), an alternative strategy is to

- pre-process the measured data ga(y, t) using a pseudo-inverse of L as a filter

- apply the ideal time-reversal functional I(x) to identify source location.

Using higher order asymptotic expansion :

L[φ](t) =k∑

m=0

am

m! 2m

(tmφ′

)(2m−1)(t) + o(ak)

L−1k [φ](t) =

k∑m=0

amφk,m(t) such that L−1k L[φ](t) = φ(t) + o(ak).

and φk,m verifyφk,0 = φ

φk,m = −m∑l=1

Dl[φk,m−l],and Dmφ(t) =

1

m! 2m

(tmφ′

)(2m−1)(t).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 24 / 57

Page 58: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsAcoustic Time-reversal : Pre-processing TR-scheme Reconstructions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Test with a = 0.0005. Left to Right : Without correction, with correction & k = 1, with correction& k = 4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Test with a = 0.001. Left to Right : Without correction, with correction & k = 1, with correction& k = 4.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 25 / 57

Page 59: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal

ProblemFind supp

f(x)

given

g0(y, t) := u0(y, t) : (y, t) ∈ ∂Ω× [0, T ]

such that :(

∂tt − Lλ,µ)u0(x, t) = ∂tδ0(t)f(x), (x, t) ∈ Rd × R,

u0(x, t) = 0, ∂tu0(x, t) = 0, x ∈ Rd, t 0,

for T sufficiently large and

Lα,β [u] = (α+ β)∇∇ · u− β∆u.

Elastic TR-functionalConsider

I(x) :=

∫ T

0vs(x, T )ds,

where vs(x, t) is the adjoint elastic wave :∂ttvs(x, t)− Lλ,µvs(x, t) = ∂tδs(t)g0(x, T − s)δ∂Ω(x), ∀(x, t) ∈ Rd × R,vs(x, t) = 0, ∂tvs(x, t) = 0 ∀x ∈ Rd, t s.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 26 / 57

Page 60: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal

ProblemFind supp

f(x)

given

g0(y, t) := u0(y, t) : (y, t) ∈ ∂Ω× [0, T ]

such that :(

∂tt − Lλ,µ)u0(x, t) = ∂tδ0(t)f(x), (x, t) ∈ Rd × R,

u0(x, t) = 0, ∂tu0(x, t) = 0, x ∈ Rd, t 0,

for T sufficiently large and

Lα,β [u] = (α+ β)∇∇ · u− β∆u.

Elastic TR-functionalConsider

I(x) :=

∫ T

0vs(x, T )ds,

where vs(x, t) is the adjoint elastic wave :∂ttvs(x, t)− Lλ,µvs(x, t) = ∂tδs(t)g0(x, T − s)δ∂Ω(x), ∀(x, t) ∈ Rd × R,vs(x, t) = 0, ∂tvs(x, t) = 0 ∀x ∈ Rd, t s.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 26 / 57

Page 61: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Integral formulation and Green’s Tensors

Integral formulation

I(x) := <e

1

∫Rd

∫Rω2

[∫∂Ω

G(x, y)G(y, z)dσ(y)

]dωf(z) dz

We have defined G(x, y) := G0(x− y) such that G0(x− y) is the fundamental solutionof the Navier equation i.e.(

Lλ,µ + ω2)G0(x) = −δ0(x)I, x ∈ Rd.

It can be expressed as

G0(x) =1

µκ2s

(κ2sG

s0(x)I +∇x∇x

(Gs0 − G

p0

)(x)), x ∈ Rd,

where

- [∆ + κ2α]Gα0 (x) = −δ(x),

- κ2p = ω2(λ+ 2µ)−1,

- κ2s = ω2µ−1

- α = p, s.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 27 / 57

Page 62: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Integral formulation and Green’s Tensors

Integral formulation

I(x) := <e

1

∫Rd

∫Rω2

[∫∂Ω

G(x, y)G(y, z)dσ(y)

]dωf(z) dz

We have defined G(x, y) := G0(x− y) such that G0(x− y) is the fundamental solutionof the Navier equation i.e.(

Lλ,µ + ω2)G0(x) = −δ0(x)I, x ∈ Rd.

It can be expressed as

G0(x) =1

µκ2s

(κ2sG

s0(x)I +∇x∇x

(Gs0 − G

p0

)(x)), x ∈ Rd,

where

- [∆ + κ2α]Gα0 (x) = −δ(x),

- κ2p = ω2(λ+ 2µ)−1,

- κ2s = ω2µ−1

- α = p, s.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 27 / 57

Page 63: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Helmholtz-Kirchhoff identities

Let Gp and Gs be the pressure and shear modes of G such that G(x) = Gp(x) + Gs(x).Then

Proposition (Elastic H.K.-identities)

For all x, z ∈ Ω, we have

1.

∫∂Ω

[∂G(x, y)

∂νG(y, z)− G(x, y)

∂G(y, z)

∂ν

]dσ(y) = 2i=m

G(x, z)

.

2.

∫∂Ω

[∂Gα(x, y)

∂νGα(y, z)− Gα(x, y)

∂Gα(y, z)

∂ν

]dσ(y) = 2i=m

Gα(x, z)

.

3.

∫∂Ω

[∂Gs(x, y)

∂νGp(y, z)− Gs(x, y)

∂Gp(y, z)

∂ν

]dσ(y) = 0.

where α = p, s and the co-normal derivative in the outward unit normal direction n isdefined by

∂u

∂ν:= λ(∇ · u)n + µ

(∇uT + (∇uT )T

)n.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 28 / 57

Page 64: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Helmholtz-Kirchhoff identities

Let Gp and Gs be the pressure and shear modes of G such that G(x) = Gp(x) + Gs(x).Then

Proposition (Elastic H.K.-identities)

For all x, z ∈ Ω, we have

1.

∫∂Ω

[∂G(x, y)

∂νG(y, z)− G(x, y)

∂G(y, z)

∂ν

]dσ(y) = 2i=m

G(x, z)

.

2.

∫∂Ω

[∂Gα(x, y)

∂νGα(y, z)− Gα(x, y)

∂Gα(y, z)

∂ν

]dσ(y) = 2i=m

Gα(x, z)

.

3.

∫∂Ω

[∂Gs(x, y)

∂νGp(y, z)− Gs(x, y)

∂Gp(y, z)

∂ν

]dσ(y) = 0.

where α = p, s and the co-normal derivative in the outward unit normal direction n isdefined by

∂u

∂ν:= λ(∇ · u)n + µ

(∇uT + (∇uT )T

)n.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 28 / 57

Page 65: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Helmholtz-Kirchhoff identities II

Proposition

If n = y − x and |x− y| 1 then

∂Gα

∂ν(x, y) = iωcαGα(x, y) + o

(|x− y|1−d/2

), α = p, s.

where cs =õ and cp =

√λ+ 2µ are shear and pressure wave speeds.

LemmaLet Ω ⊂ Rd be a ball with large radius (w.r.t. wavelength). Then, for all x, z ∈ Ω sufficientlyfar from the boundary ∂Ω, we have

1. <e∫

∂ΩGα(x, y)Gα(y, z)dσ(y)

'

1

ωcα=m

Gα(x, z)

, α = p, s.

2. <e∫

∂ΩGs(x, y)Gp(y, z)dσ(y)

' 0

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 29 / 57

Page 66: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Helmholtz-Kirchhoff identities II

Proposition

If n = y − x and |x− y| 1 then

∂Gα

∂ν(x, y) = iωcαGα(x, y) + o

(|x− y|1−d/2

), α = p, s.

where cs =õ and cp =

√λ+ 2µ are shear and pressure wave speeds.

LemmaLet Ω ⊂ Rd be a ball with large radius (w.r.t. wavelength). Then, for all x, z ∈ Ω sufficientlyfar from the boundary ∂Ω, we have

1. <e∫

∂ΩGα(x, y)Gα(y, z)dσ(y)

'

1

ωcα=m

Gα(x, z)

, α = p, s.

2. <e∫

∂ΩGs(x, y)Gp(y, z)dσ(y)

' 0

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 29 / 57

Page 67: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Analysis of TR-functional

For x far from ∂Ω,

I(x) = <e

1

∫Rd

∫Rω2

[∫∂Ω

G(x, y)G(y, z)dσ(y)

]dωf(z) dz

'

cs + cp

cscp

1

∫Rd

∫Rω=m

(Gp + Gs

)(x, z)

dωf(z) dz

+cs − cpcscp

1

∫Rd

∫Rω=m

(Gp − Gs

)(x, z)

dωf(z) dz

'cs + cp

2cscpf(x) +

cs − cp2cscp

∫Rd

B(x, z)f(z)dz.

The operator B(x, z) :=1

∫Rω=m

(Gp − Gs

)(x, z)

dω, is not diagonal.

The reconstruction mixes the components of f when cs 6= cp.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 30 / 57

Page 68: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Analysis of TR-functional

For x far from ∂Ω,

I(x) = <e

1

∫Rd

∫Rω2

[∫∂Ω

G(x, y)G(y, z)dσ(y)

]dωf(z) dz

'

cs + cp

cscp

1

∫Rd

∫Rω=m

(Gp + Gs

)(x, z)

dωf(z) dz

+cs − cpcscp

1

∫Rd

∫Rω=m

(Gp − Gs

)(x, z)

dωf(z) dz

'cs + cp

2cscpf(x) +

cs − cp2cscp

∫Rd

B(x, z)f(z)dz.

The operator B(x, z) :=1

∫Rω=m

(Gp − Gs

)(x, z)

dω, is not diagonal.

The reconstruction mixes the components of f when cs 6= cp.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 30 / 57

Page 69: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Reconstructions using I

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Left to Right : Initial data, reconstruction with (λ, µ) = (1, 1), with (λ, µ) = (10, 1).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 31 / 57

Page 70: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Weighted TR-functional

Let Ψ and Φ be the divergence and the curl free functions respectively such that

I = ∇×Ψ +∇Φ.

Define the weighted time-reversal functional by

I := cs∇×Ψ + cp∇Φ.

= <e

1

∫Rd

∫Rω2

[∫∂Ω

(csGs(x, y) + cpGp(x, y)

)G(y, z)

]f(z)

'1

∫Rd

∫R−iω

[∂G(x, y)

∂νG(y, z)− G(x, y)

∂G(y, z)

∂ν

]dωf(z) dz

'1

∫Rd

∫Rω=m

G(x, z)

dωf(z) dz

Theorem

Let x ∈ Ω be sufficiently far (w.r.t. wavelength) from the boundary ∂Ω. Then, I(x) ' f(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 32 / 57

Page 71: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Weighted TR-functional

Let Ψ and Φ be the divergence and the curl free functions respectively such that

I = ∇×Ψ +∇Φ.

Define the weighted time-reversal functional by

I := cs∇×Ψ + cp∇Φ.

= <e

1

∫Rd

∫Rω2

[∫∂Ω

(csGs(x, y) + cpGp(x, y)

)G(y, z)

]f(z)

'1

∫Rd

∫R−iω

[∂G(x, y)

∂νG(y, z)− G(x, y)

∂G(y, z)

∂ν

]dωf(z) dz

'1

∫Rd

∫Rω=m

G(x, z)

dωf(z) dz

Theorem

Let x ∈ Ω be sufficiently far (w.r.t. wavelength) from the boundary ∂Ω. Then, I(x) ' f(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 32 / 57

Page 72: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Weighted TR-functional

Let Ψ and Φ be the divergence and the curl free functions respectively such that

I = ∇×Ψ +∇Φ.

Define the weighted time-reversal functional by

I := cs∇×Ψ + cp∇Φ.

= <e

1

∫Rd

∫Rω2

[∫∂Ω

(csGs(x, y) + cpGp(x, y)

)G(y, z)

]f(z)

'1

∫Rd

∫R−iω

[∂G(x, y)

∂νG(y, z)− G(x, y)

∂G(y, z)

∂ν

]dωf(z) dz

'1

∫Rd

∫Rω=m

G(x, z)

dωf(z) dz

Theorem

Let x ∈ Ω be sufficiently far (w.r.t. wavelength) from the boundary ∂Ω. Then, I(x) ' f(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 32 / 57

Page 73: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Reconstructions using I :

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Reconstruction with (λ, µ) = (1, 1). Left to Right : Initial data, I(x), I(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 33 / 57

Page 74: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Reconstructions using I

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Reconstruction with (λ, µ) = (10, 1). Left to Right : Initial data, I(x), I(x).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 34 / 57

Page 75: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Visco-elastic media

Consider for visco-elastic moduli (ηλ, ηµ)(∂tt − Lλ,µ − ∂tLηλ,ηµ

)ua(x, t) = ∂tδ0(t)f(x), (x, t) ∈ Rd × R,

ua(x, 0) = 0, ∂tua(x, 0) = 0, x ∈ Rd, t s.

Define

vs,a,ρ(x, t) = −1

∫|ω|≤ρ

∫∂Ω

iωG−a(x, y)ga(y, T − s)dσ(y)

e−iω(t−s)dω

where (Lλ,µ ± iωLηλ,ηµ + ω2

)G∓a(x, y) = −δy(x)I, x, y ∈ Rd.

Define

Ia,ρ(x) :=

∫ T

0vs,a,ρ(x, T )ds

Finally, for Ψ and Φ the divergence and curl free components of Ia,ρ, let

Ia,ρ(x) := cp∇Φ + cs∇×Ψ

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 35 / 57

Page 76: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Visco-elastic media

Consider for visco-elastic moduli (ηλ, ηµ)(∂tt − Lλ,µ − ∂tLηλ,ηµ

)ua(x, t) = ∂tδ0(t)f(x), (x, t) ∈ Rd × R,

ua(x, 0) = 0, ∂tua(x, 0) = 0, x ∈ Rd, t s.

Define

vs,a,ρ(x, t) = −1

∫|ω|≤ρ

∫∂Ω

iωG−a(x, y)ga(y, T − s)dσ(y)

e−iω(t−s)dω

where (Lλ,µ ± iωLηλ,ηµ + ω2

)G∓a(x, y) = −δy(x)I, x, y ∈ Rd.

Define

Ia,ρ(x) :=

∫ T

0vs,a,ρ(x, T )ds

Finally, for Ψ and Φ the divergence and curl free components of Ia,ρ, let

Ia,ρ(x) := cp∇Φ + cs∇×Ψ

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 35 / 57

Page 77: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Visco-elastic media

Consider for visco-elastic moduli (ηλ, ηµ)(∂tt − Lλ,µ − ∂tLηλ,ηµ

)ua(x, t) = ∂tδ0(t)f(x), (x, t) ∈ Rd × R,

ua(x, 0) = 0, ∂tua(x, 0) = 0, x ∈ Rd, t s.

Define

vs,a,ρ(x, t) = −1

∫|ω|≤ρ

∫∂Ω

iωG−a(x, y)ga(y, T − s)dσ(y)

e−iω(t−s)dω

where (Lλ,µ ± iωLηλ,ηµ + ω2

)G∓a(x, y) = −δy(x)I, x, y ∈ Rd.

Define

Ia,ρ(x) :=

∫ T

0vs,a,ρ(x, T )ds

Finally, for Ψ and Φ the divergence and curl free components of Ia,ρ, let

Ia,ρ(x) := cp∇Φ + cs∇×Ψ

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 35 / 57

Page 78: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Proposition

Let Ω ⊂ Rd be a ball with large radius. Then,

<e∫

∂ΩGs−a(x, y)Gpa(y, z)dσ(y)

' 0

<e∫

∂ΩGp−a(x, y)Gsa(y, z)dσ(y)

' 0

for all x, z ∈ Ω sufficiently far from the boundary ∂Ω w.r.t. wavelength

TheoremFor all x ∈ Ω sufficiently far from the boundary ∂Ω, we have

Ia,ρ(x) = Iρ(x) + o(ν2s/c

2s + ν2

p/c2p)

whereIρ(x)

ρ→∞−→ I(x) ' f(x),

νs and νp are shear and bulk viscosities and

Iρ(x) =

∫∂Ω

∫ T

0∂t[csGs(x, y, t) + cpGp(x, y, t)

]Sρg0(y, ·)

(t)dt dσ(y)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 36 / 57

Page 79: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Proposition

Let Ω ⊂ Rd be a ball with large radius. Then,

<e∫

∂ΩGs−a(x, y)Gpa(y, z)dσ(y)

' 0

<e∫

∂ΩGp−a(x, y)Gsa(y, z)dσ(y)

' 0

for all x, z ∈ Ω sufficiently far from the boundary ∂Ω w.r.t. wavelength

TheoremFor all x ∈ Ω sufficiently far from the boundary ∂Ω, we have

Ia,ρ(x) = Iρ(x) + o(ν2s/c

2s + ν2

p/c2p)

whereIρ(x)

ρ→∞−→ I(x) ' f(x),

νs and νp are shear and bulk viscosities and

Iρ(x) =

∫∂Ω

∫ T

0∂t[csGs(x, y, t) + cpGp(x, y, t)

]Sρg0(y, ·)

(t)dt dσ(y)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 36 / 57

Page 80: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Inverse Source ProblemsElastic Time-reversal : Visco-elastic Weighted TR Reconstructions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Reconstruction with (λ, µ) = (1, 1) and a = 0.0002. Left to Right : Initial data, without correction

using I(x), correction using Ia,ρ with ρ = 15, with ρ = 20.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 37 / 57

Page 81: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source Localization

Noise Source Localization

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 38 / 57

Page 82: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationStatement of the Problem

Let p0 satisfy the wave equation1

c2(x)

∂2

∂t2p0(x, t)−∆p0(x, t) = n(x, t), (x, t) ∈ Rd × R

p0(x, t) = 0, and∂

∂tp0(x, t) = 0, x ∈ Rd, t 0, d = 2, 3.

n is compactly supported in a bounded smooth domain Ω.

n is a stationary Gaussian process with mean zero and covariance

〈n(x, t)n(y, s)〉 = F (t− s)K(x)δ(x− y).

ProblemFind suppn given

p0(y, t) : (y, t) ∈ ∂Ω× [0, T ]

for sufficiently large T .

- 〈·〉 : Statistical average,

- c : Positive, smooth and boundedfunction,

- F : Time covariance function,

- K : Spatial support of n.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 39 / 57

Page 83: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationStatement of the Problem

Let p0 satisfy the wave equation1

c2(x)

∂2

∂t2p0(x, t)−∆p0(x, t) = n(x, t), (x, t) ∈ Rd × R

p0(x, t) = 0, and∂

∂tp0(x, t) = 0, x ∈ Rd, t 0, d = 2, 3.

n is compactly supported in a bounded smooth domain Ω.

n is a stationary Gaussian process with mean zero and covariance

〈n(x, t)n(y, s)〉 = F (t− s)K(x)δ(x− y).

ProblemFind suppn given

p0(y, t) : (y, t) ∈ ∂Ω× [0, T ]

for sufficiently large T .

- 〈·〉 : Statistical average,

- c : Positive, smooth and boundedfunction,

- F : Time covariance function,

- K : Spatial support of n.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 39 / 57

Page 84: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationStatement of the Problem

Let p0 satisfy the wave equation1

c2(x)

∂2

∂t2p0(x, t)−∆p0(x, t) = n(x, t), (x, t) ∈ Rd × R

p0(x, t) = 0, and∂

∂tp0(x, t) = 0, x ∈ Rd, t 0, d = 2, 3.

n is compactly supported in a bounded smooth domain Ω.

n is a stationary Gaussian process with mean zero and covariance

〈n(x, t)n(y, s)〉 = F (t− s)K(x)δ(x− y).

ProblemFind suppn given

p0(y, t) : (y, t) ∈ ∂Ω× [0, T ]

for sufficiently large T .

- 〈·〉 : Statistical average,

- c : Positive, smooth and boundedfunction,

- F : Time covariance function,

- K : Spatial support of n.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 39 / 57

Page 85: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationCross-correlation based functional

Imaging functional

I(zS) :=

∫R

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

(ω2

c2(x)+ ∆

)G0(x, y, ω) = −δ(x− y), x, y ∈ Rd.

The statistical cross-correlation C0 is defined by

C0(x, y, τ) = 〈p0(x, t)p0(y, t+τ)〉 =1

∫R

[ ∫ΩG0(x, z, ω)G0(y, z, ω)K(z)dz

]F (ω)e−iωτ .

TheoremFunctional I gives K up to a smoothing operator, that is

I(zS) '∫

ΩQ(zS , z)K(z)dz, where

Q(zS , z) =

∫R

F (ω)

ω2=m

G0(zS , z, ω)

2dω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 40 / 57

Page 86: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationCross-correlation based functional

Imaging functional

I(zS) :=

∫R

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

(ω2

c2(x)+ ∆

)G0(x, y, ω) = −δ(x− y), x, y ∈ Rd.

The statistical cross-correlation C0 is defined by

C0(x, y, τ) = 〈p0(x, t)p0(y, t+τ)〉 =1

∫R

[ ∫ΩG0(x, z, ω)G0(y, z, ω)K(z)dz

]F (ω)e−iωτ .

TheoremFunctional I gives K up to a smoothing operator, that is

I(zS) '∫

ΩQ(zS , z)K(z)dz, where

Q(zS , z) =

∫R

F (ω)

ω2=m

G0(zS , z, ω)

2dω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 40 / 57

Page 87: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationCross-correlation based functional

Imaging functional

I(zS) :=

∫R

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

(ω2

c2(x)+ ∆

)G0(x, y, ω) = −δ(x− y), x, y ∈ Rd.

The statistical cross-correlation C0 is defined by

C0(x, y, τ) = 〈p0(x, t)p0(y, t+τ)〉 =1

∫R

[ ∫ΩG0(x, z, ω)G0(y, z, ω)K(z)dz

]F (ω)e−iωτ .

TheoremFunctional I gives K up to a smoothing operator, that is

I(zS) '∫

ΩQ(zS , z)K(z)dz, where

Q(zS , z) =

∫R

F (ω)

ω2=m

G0(zS , z, ω)

2dω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 40 / 57

Page 88: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationWeighted imaging functional

Consider the power spectral density F(ω) =

∫∂Ω

C0(x, x, ω)dσ(x).

F(ω) =1

∆ω

∫ ω+∆ω/2

ω−∆ω/2F(ω′)dω′ ' F (ω)

∫Ω

1

ω=m

G0(z, z, ω)

K(z)dz

Moving frequency window ∆ω should be large than 1/T and smaller than noisebandwidth.

Imaging functional

IW (zS) :=

∫R

W (ω)

F(ω)

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Theorem

IW (zS) '∫

ΩQW (zS , z)

K(z)

K0dz, with K0 =

1

∫ΩK(z)dz and

QW (zS , z) =W (ω)

ω2=m

G0(zS , z, ω)

2dω =

116W (ω)

ω2 J20 (ω|z|)dω, d = 2

116π2

W (ω)

ω2 sinc2(ω|z|)dω, d = 3.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 41 / 57

Page 89: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationWeighted imaging functional

Consider the power spectral density F(ω) =

∫∂Ω

C0(x, x, ω)dσ(x).

F(ω) =1

∆ω

∫ ω+∆ω/2

ω−∆ω/2F(ω′)dω′ ' F (ω)

∫Ω

1

ω=m

G0(z, z, ω)

K(z)dz

Moving frequency window ∆ω should be large than 1/T and smaller than noisebandwidth.

Imaging functional

IW (zS) :=

∫R

W (ω)

F(ω)

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Theorem

IW (zS) '∫

ΩQW (zS , z)

K(z)

K0dz, with K0 =

1

∫ΩK(z)dz and

QW (zS , z) =W (ω)

ω2=m

G0(zS , z, ω)

2dω =

116W (ω)

ω2 J20 (ω|z|)dω, d = 2

116π2

W (ω)

ω2 sinc2(ω|z|)dω, d = 3.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 41 / 57

Page 90: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationWeighted imaging functional

Consider the power spectral density F(ω) =

∫∂Ω

C0(x, x, ω)dσ(x).

F(ω) =1

∆ω

∫ ω+∆ω/2

ω−∆ω/2F(ω′)dω′ ' F (ω)

∫Ω

1

ω=m

G0(z, z, ω)

K(z)dz

Moving frequency window ∆ω should be large than 1/T and smaller than noisebandwidth.

Imaging functional

IW (zS) :=

∫R

W (ω)

F(ω)

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Theorem

IW (zS) '∫

ΩQW (zS , z)

K(z)

K0dz, with K0 =

1

∫ΩK(z)dz and

QW (zS , z) =W (ω)

ω2=m

G0(zS , z, ω)

2dω =

116W (ω)

ω2 J20 (ω|z|)dω, d = 2

116π2

W (ω)

ω2 sinc2(ω|z|)dω, d = 3.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 41 / 57

Page 91: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationWeighted imaging functional

Consider the power spectral density F(ω) =

∫∂Ω

C0(x, x, ω)dσ(x).

F(ω) =1

∆ω

∫ ω+∆ω/2

ω−∆ω/2F(ω′)dω′ ' F (ω)

∫Ω

1

ω=m

G0(z, z, ω)

K(z)dz

Moving frequency window ∆ω should be large than 1/T and smaller than noisebandwidth.

Imaging functional

IW (zS) :=

∫R

W (ω)

F(ω)

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Theorem

IW (zS) '∫

ΩQW (zS , z)

K(z)

K0dz, with K0 =

1

∫ΩK(z)dz and

QW (zS , z) =W (ω)

ω2=m

G0(zS , z, ω)

2dω =

116W (ω)

ω2 J20 (ω|z|)dω, d = 2

116π2

W (ω)

ω2 sinc2(ω|z|)dω, d = 3.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 41 / 57

Page 92: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationWeighted imaging functional

Consider the power spectral density F(ω) =

∫∂Ω

C0(x, x, ω)dσ(x).

F(ω) =1

∆ω

∫ ω+∆ω/2

ω−∆ω/2F(ω′)dω′ ' F (ω)

∫Ω

1

ω=m

G0(z, z, ω)

K(z)dz

Moving frequency window ∆ω should be large than 1/T and smaller than noisebandwidth.

Imaging functional

IW (zS) :=

∫R

W (ω)

F(ω)

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Theorem

IW (zS) '∫

ΩQW (zS , z)

K(z)

K0dz, with K0 =

1

∫ΩK(z)dz and

QW (zS , z) =W (ω)

ω2=m

G0(zS , z, ω)

2dω =

116W (ω)

ω2 J20 (ω|z|)dω, d = 2

116π2

W (ω)

ω2 sinc2(ω|z|)dω, d = 3.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 41 / 57

Page 93: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationWeighted imaging functional : Remarks

A potential candidate for W should be

W (ω) =

|ω|31|ω|<ωmax

, d = 2

ω21|ω|<ωmax, d = 3.

based on the closure formulae [Abramowitz 65]∫R+

ωJ20 (ω|z|)dω =

1

|z|δ(z),

and ∫R+

ω2sinc2(ω|z|)dω =1

|z|2δ(z),

where 1 denotes the characteristic function.

IW can seen as an application of I on filtered data p0(x, t) where

p0(x, ω) :=

√W (ω)

F(ω)p0(x, ω).

where (−ωmax, ωmax) is the estimated support of F(ω)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 42 / 57

Page 94: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationWeighted imaging functional : Remarks

A potential candidate for W should be

W (ω) =

|ω|31|ω|<ωmax

, d = 2

ω21|ω|<ωmax, d = 3.

based on the closure formulae [Abramowitz 65]∫R+

ωJ20 (ω|z|)dω =

1

|z|δ(z),

and ∫R+

ω2sinc2(ω|z|)dω =1

|z|2δ(z),

where 1 denotes the characteristic function.

IW can seen as an application of I on filtered data p0(x, t) where

p0(x, ω) :=

√W (ω)

F(ω)p0(x, ω).

where (−ωmax, ωmax) is the estimated support of F(ω)

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 42 / 57

Page 95: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationAnalogy with time-reversal

I(zS) =

∫R

∫∂Ω

∫∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω

=

∫R

∫∂Ω

∫∂Ω

G0(x, zS , ω)G0(y, zS , ω)p0(x, ω)p0(y, ω)dσ(x)dσ(y)dω

=

∫R

∣∣∣ ∫∂Ω

G0(x, zS , ω)p0(x, ω)dσ(x)∣∣∣2dω

= 2π

∫ T

0v(zS , t)2dt,

v is the adjoint wave expressed in the form

v(x, t) =

∫ T

0vs(x, t)ds, with

∂2

∂t2vs(x, t)−∆vs(x, t) = δ(t− s)p0(x, T − s)δ∂Ω(x), ∀(x, t) ∈ Rd × (0, T ),

vs(x, t) = 0,∂

∂tvs(x, t) = 0 ∀x ∈ Rd, t < s.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 43 / 57

Page 96: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationAnalogy with time-reversal

I(zS) =

∫R

∫∂Ω

∫∂Ω

G0(x, zS , ω)G0(y, zS , ω)C0(x, y, ω)dσ(x)dσ(y)dω

=

∫R

∫∂Ω

∫∂Ω

G0(x, zS , ω)G0(y, zS , ω)p0(x, ω)p0(y, ω)dσ(x)dσ(y)dω

=

∫R

∣∣∣ ∫∂Ω

G0(x, zS , ω)p0(x, ω)dσ(x)∣∣∣2dω

= 2π

∫ T

0v(zS , t)2dt,

v is the adjoint wave expressed in the form

v(x, t) =

∫ T

0vs(x, t)ds, with

∂2

∂t2vs(x, t)−∆vs(x, t) = δ(t− s)p0(x, T − s)δ∂Ω(x), ∀(x, t) ∈ Rd × (0, T ),

vs(x, t) = 0,∂

∂tvs(x, t) = 0 ∀x ∈ Rd, t < s.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 43 / 57

Page 97: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationReconstructions

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Top : point sources. Bottom : extended sources.Left to Right : K(x) ; I ; IW withW (ω) = |ω|31|ω|<ωmax .

T = 8, ωmax = 1000, Nx = 28, and Nt = 211.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 44 / 57

Page 98: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationEstimation of power spectral density

−500 −400 −300 −200 −100 0 100 200 300 400 5000

0.5

1

1.5

2

2.5

3

3.5

ω

F(ω) estimated F(ω) estimated and denoised F(ω) exact

F (ω) = exp

(−π ω2

ω2max

)with ωmax = 1000.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 45 / 57

Page 99: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationEstimation of power spectral density

−500 −400 −300 −200 −100 0 100 200 300 400 5000

0.5

1

1.5

2

2.5

3

ω

F(ω) estimated F(ω) estimated and denoised F(ω) exact

F (ω) = 1|ω|≤100 exp

(−π ω2

ω2max

).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 45 / 57

Page 100: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationSpatially correlated sources

Let n be a stationary Gaussian process with mean zero and covariance function

〈n(x, t)n(y, s)〉 = F (t− s)Γ(x, y)

where Γ characterizes spatial support and covariance of the sources.

C0(x, y, τ) =1

∫R

[ ∫∫Ω×Ω

G0(x, z, ω)G0(y, z′, ω)Γ(z, z′)dz dz′]F (ω)e−iωτdω.

J(zS , zS′) :=

∫R

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS′, ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Proposition

J(zS , zS′) :=

∫∫Ω×Ω

∫R

F (ω)

ω2=m

G(z, zS , ω)

=m

G(z′, zS

′, ω)dω︸ ︷︷ ︸

Ψ(zS ,zS′,z,z′)

Γ(z, z′) dz dz′.

In 3D homogeneous media, Ψ(zS , zS′, z, z′) = ψ(zS − z, zS′ − z′) with

ψ(z, z′) =1

16π2

∫RF (ω)sinc(ω|z|)sinc(ω|z′|)dω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 46 / 57

Page 101: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationSpatially correlated sources

Let n be a stationary Gaussian process with mean zero and covariance function

〈n(x, t)n(y, s)〉 = F (t− s)Γ(x, y)

where Γ characterizes spatial support and covariance of the sources.

C0(x, y, τ) =1

∫R

[ ∫∫Ω×Ω

G0(x, z, ω)G0(y, z′, ω)Γ(z, z′)dz dz′]F (ω)e−iωτdω.

J(zS , zS′) :=

∫R

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS′, ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Proposition

J(zS , zS′) :=

∫∫Ω×Ω

∫R

F (ω)

ω2=m

G(z, zS , ω)

=m

G(z′, zS

′, ω)dω︸ ︷︷ ︸

Ψ(zS ,zS′,z,z′)

Γ(z, z′) dz dz′.

In 3D homogeneous media, Ψ(zS , zS′, z, z′) = ψ(zS − z, zS′ − z′) with

ψ(z, z′) =1

16π2

∫RF (ω)sinc(ω|z|)sinc(ω|z′|)dω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 46 / 57

Page 102: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationSpatially correlated sources

Let n be a stationary Gaussian process with mean zero and covariance function

〈n(x, t)n(y, s)〉 = F (t− s)Γ(x, y)

where Γ characterizes spatial support and covariance of the sources.

C0(x, y, τ) =1

∫R

[ ∫∫Ω×Ω

G0(x, z, ω)G0(y, z′, ω)Γ(z, z′)dz dz′]F (ω)e−iωτdω.

J(zS , zS′) :=

∫R

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS′, ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Proposition

J(zS , zS′) :=

∫∫Ω×Ω

∫R

F (ω)

ω2=m

G(z, zS , ω)

=m

G(z′, zS

′, ω)dω︸ ︷︷ ︸

Ψ(zS ,zS′,z,z′)

Γ(z, z′) dz dz′.

In 3D homogeneous media, Ψ(zS , zS′, z, z′) = ψ(zS − z, zS′ − z′) with

ψ(z, z′) =1

16π2

∫RF (ω)sinc(ω|z|)sinc(ω|z′|)dω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 46 / 57

Page 103: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationSpatially correlated sources

Let n be a stationary Gaussian process with mean zero and covariance function

〈n(x, t)n(y, s)〉 = F (t− s)Γ(x, y)

where Γ characterizes spatial support and covariance of the sources.

C0(x, y, τ) =1

∫R

[ ∫∫Ω×Ω

G0(x, z, ω)G0(y, z′, ω)Γ(z, z′)dz dz′]F (ω)e−iωτdω.

J(zS , zS′) :=

∫R

∫∫∂Ω×∂Ω

G0(x, zS , ω)G0(y, zS′, ω)C0(x, y, ω)dσ(x)dσ(y)dω.

Proposition

J(zS , zS′) :=

∫∫Ω×Ω

∫R

F (ω)

ω2=m

G(z, zS , ω)

=m

G(z′, zS

′, ω)dω︸ ︷︷ ︸

Ψ(zS ,zS′,z,z′)

Γ(z, z′) dz dz′.

In 3D homogeneous media, Ψ(zS , zS′, z, z′) = ψ(zS − z, zS′ − z′) with

ψ(z, z′) =1

16π2

∫RF (ω)sinc(ω|z|)sinc(ω|z′|)dω.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 46 / 57

Page 104: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationSpatially correlated sources II

Correlated point sources : Γ(z, z′) =

Ns∑i,j=1

ρijδ(z − zi)δ(z − zj)

- Find zi from I(zS) 'Ns∑i,j=1

ρij

∫R

F (ω)

ω2=m

G(z, zS , ω)

2dω.

- Estimate ρij from

J(zi, zj) = ρij

∫R=m

G(zi, zi, ω)

=m

G(zj , zj , ω)

dω ' ρij

1

16π

∫RF (ω)dω.

ρ =

1 1/

√2 1/

√2 0

1/√

2 1 0 0

1/√

2 0 1 00 0 0 1

ρ =

1.000 0.733 0.701 0.0610.733 1.000 0.049 0.0610.701 0.049 1.000 0.0300.061 0.061 0.030 1.000

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 47 / 57

Page 105: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationSpatially correlated sources II

Correlated point sources : Γ(z, z′) =

Ns∑i,j=1

ρijδ(z − zi)δ(z − zj)

- Find zi from I(zS) 'Ns∑i,j=1

ρij

∫R

F (ω)

ω2=m

G(z, zS , ω)

2dω.

- Estimate ρij from

J(zi, zj) = ρij

∫R=m

G(zi, zi, ω)

=m

G(zj , zj , ω)

dω ' ρij

1

16π

∫RF (ω)dω.

ρ =

1 1/

√2 1/

√2 0

1/√

2 1 0 0

1/√

2 0 1 00 0 0 1

ρ =

1.000 0.733 0.701 0.0610.733 1.000 0.049 0.0610.701 0.049 1.000 0.0300.061 0.061 0.030 1.000

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 47 / 57

Page 106: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationCorrelated point sources : Reconstruction

z1

z2

z3

z4

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z1

z2

z3

z4

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Top : K(z) (left), IW with W (ω) = |ω|31|ω|<ωmax (middle), and z → JW (z1, z) (right).Bottom : z → JW (z2, z) (left),z → JW (z3, z) (middle), and z → JW (z4, z) (right).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 48 / 57

Page 107: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Noise Source LocalizationExtended correlated sources : Reconstruction

z1

z2

z3

z4

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z1

z2

z3

z4

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

z2

z3

z4

z1

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Top : K(z) (left), IW with W (ω) = |ω|31|ω|<ωmax (middle), and z → JW (z1, z) (right).Bottom : z → JW (z2, z) (left),z → JW (z3, z) (middle), and z → JW (z4, z) (right).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 49 / 57

Page 108: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal Cavity

Time Reversal Cavity

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 50 / 57

Page 109: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal CavitySpherical Dielectric Inclusion

D = z + δB with permittivity ε and permeability µ0, radiated by an electric dipole at y with

direction e.

Let Gee (resp. Gme) be the electric-electric (resp. magnetic-electric) Green’s functionfor the Maxwell’s equations in R3 i.e. for all (x, t) ∈ R3 × R

∇×Gee(x, t) = −µ0∂Gme

∂t(x, t),

∇×Gme(x, t) = ε0∂Gee

∂t(x, t) + Iδ0 (x) δ0 (t) ,

Let Ey(x, t) := −Gee(x− y, t) · e,

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 51 / 57

Page 110: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal CavitySpherical Dielectric Inclusion

D = z + δB with permittivity ε and permeability µ0, radiated by an electric dipole at y with

direction e.

Let Gee (resp. Gme) be the electric-electric (resp. magnetic-electric) Green’s functionfor the Maxwell’s equations in R3 i.e. for all (x, t) ∈ R3 × R

∇×Gee(x, t) = −µ0∂Gme

∂t(x, t),

∇×Gme(x, t) = ε0∂Gee

∂t(x, t) + Iδ0 (x) δ0 (t) ,

Let Ey(x, t) := −Gee(x− y, t) · e,

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 51 / 57

Page 111: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal CavitySpherical Dielectric Inclusion

D = z + δB with permittivity ε and permeability µ0, radiated by an electric dipole at y with

direction e.

Let Gee (resp. Gme) be the electric-electric (resp. magnetic-electric) Green’s functionfor the Maxwell’s equations in R3 i.e. for all (x, t) ∈ R3 × R

∇×Gee(x, t) = −µ0∂Gme

∂t(x, t),

∇×Gme(x, t) = ε0∂Gee

∂t(x, t) + Iδ0 (x) δ0 (t) ,

Let Ey(x, t) := −Gee(x− y, t) · e,

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 51 / 57

Page 112: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal CavityElectromagnetic Scattering

Consider the following scattering problem

∇×(

1

ε0∇×E

)+ µ0

∂2E

∂t2= −µ0δye

∂δ0

∂t, (R3 \D)× R,

∇×(

1

ε∇×E

)+ µ0

∂2E

∂t2= 0, D × R,

1

ε0(∇×E)+ × ν =

1

ε(∇×E)− × ν, ∂D × R,

µ0E+ · ν = µ0E− · ν, ∂D × R,

E(x, t) = 0 =∂E

∂t(x, t), t 0,

Lemma (Asymptotic expansion of the scattered field

Let x, y be sufficiently far from z, and ωc = O(δ−α), then

Sωc [E−Ey ](x, t) = δ3

∫R

∂tSωc [Gee](x− z, t− τ) ·M(ε, B)Sωc [Ey ](z, τ − t0) dτ +O(δ4−3α)

M =3(ε−ε0)(ε+2ε0)

|B|I is the polarization tensor associated with D [Ammari 07].

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 52 / 57

Page 113: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal CavityElectromagnetic Scattering

Consider the following scattering problem

∇×(

1

ε0∇×E

)+ µ0

∂2E

∂t2= −µ0δye

∂δ0

∂t, (R3 \D)× R,

∇×(

1

ε∇×E

)+ µ0

∂2E

∂t2= 0, D × R,

1

ε0(∇×E)+ × ν =

1

ε(∇×E)− × ν, ∂D × R,

µ0E+ · ν = µ0E− · ν, ∂D × R,

E(x, t) = 0 =∂E

∂t(x, t), t 0,

Lemma (Asymptotic expansion of the scattered field

Let x, y be sufficiently far from z, and ωc = O(δ−α), then

Sωc [E−Ey ](x, t) = δ3

∫R

∂tSωc [Gee](x− z, t− τ) ·M(ε, B)Sωc [Ey ](z, τ − t0) dτ +O(δ4−3α)

M =3(ε−ε0)(ε+2ε0)

|B|I is the polarization tensor associated with D [Ammari 07].

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 52 / 57

Page 114: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal CavityElectromagnetic Scattering

ProblemSuppose we are given the tangential component of E on a sphere S for t ∈ [0, t0]. Let Etr bethe field obtained by re-emitting time reversed data. Find Etr and the location z of D.

Theorem

Etr(x, t) ' −δ3

∫RqT (z, τ) ·

∂t

[Sωc [Gee(x− z, t0 − τ − t)−Gee(x− z, t− t0 + τ)]

]dτ,

Etr(x, ω) ∝ δ3qT (z, τ) ·(ω2

c2I +∇∇

)sinc

(ωc|x− z|

),

where

q(z, τ) = ε0M(ε, B) ·∂

∂tSωc [Ey ](z, τ).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 53 / 57

Page 115: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Time Reversal CavityElectromagnetic Scattering

ProblemSuppose we are given the tangential component of E on a sphere S for t ∈ [0, t0]. Let Etr bethe field obtained by re-emitting time reversed data. Find Etr and the location z of D.

Theorem

Etr(x, t) ' −δ3

∫RqT (z, τ) ·

∂t

[Sωc [Gee(x− z, t0 − τ − t)−Gee(x− z, t− t0 + τ)]

]dτ,

Etr(x, ω) ∝ δ3qT (z, τ) ·(ω2

c2I +∇∇

)sinc

(ωc|x− z|

),

where

q(z, τ) = ε0M(ε, B) ·∂

∂tSωc [Ey ](z, τ).

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 53 / 57

Page 116: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Conclusion, Perspectives and Open Questions

Conclusion, Perspectives andOpen Questions

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 54 / 57

Page 117: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Conclusion, Perspectives and Open Questions

- Presented time reversal techniques for wave imaging.

- Proposed and analysed, adjoint, pre-processing and weighted TR techniques tocompensate for the attenuation effects.

- Derived Helmholtz-Kirchhoff identities for elastic, visco-elastic and attenuatingacoustic media.

- Variable attenuation correction.

- Time reversal in composite and inhomogeneous media.

- Limited view problem and virtual sources in scattering media.

- Time reversal with a few transducers : lower bound on the number oftransducers for stable reconstructions.

- Coherent interferometric techniques for clutter media and imaging in thepresence of measurements noise (elasticity case).

- Topological derivative based imaging techniques and their analogy with TR.

- Universe of applications.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 55 / 57

Page 118: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Conclusion, Perspectives and Open Questions

- Presented time reversal techniques for wave imaging.

- Proposed and analysed, adjoint, pre-processing and weighted TR techniques tocompensate for the attenuation effects.

- Derived Helmholtz-Kirchhoff identities for elastic, visco-elastic and attenuatingacoustic media.

- Variable attenuation correction.

- Time reversal in composite and inhomogeneous media.

- Limited view problem and virtual sources in scattering media.

- Time reversal with a few transducers : lower bound on the number oftransducers for stable reconstructions.

- Coherent interferometric techniques for clutter media and imaging in thepresence of measurements noise (elasticity case).

- Topological derivative based imaging techniques and their analogy with TR.

- Universe of applications.

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 55 / 57

Page 119: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Related Publications 1

H. Ammari, E. Bretin, J. Garnier, A. Wahab, Noise source localization inan attenuating medium, SIAM Journal on Applied Mathematics,72(1) :(2012), pp. 317-336.

H. Ammari, E. Bretin, J. Garnier, A. Wahab, Time reversal algorithms inviscoelastic media, Submitted to European Journal of Applied Mathematics,(33 pages).

H. Ammari, E. Bretin, J. Garnier, A. Wahab, Time reversal in attenuatingacoustic media, Contemporary Mathematics, vol. 548, pp. 151-163 AmericanMathematical Society 2011.

S. Gdoura, D. Lesselier, A. Wahab, Time reversal and scattering by asmall 3-D dielectric inclusion in lossy media, in preparation

1. Preprints are available at www.cmap.polytechnique.fr/∼wahab

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 56 / 57

Page 120: Time Reversal Techniques in Wave Imaging and Applicationswahab/documents/NUST12.pdf · [Gallot 11, Passive elastography]. Biomedical Imaging- [Ammari 11, Elastography], [Burgholzer

Thank You !

Questions ?

A. Wahab (CMAP, LPMA) Time Reversal in Wave Imaging NUST, April 18, 2012 57 / 57