time stability of the k-band catalog sources · using the allan variance to determine noise floor...

19
Time stability of the K-band catalog sources K. Le Bail (1), A. de Wi1 (2), C. S. Jacobs (3), D. Gordon (1) (1) NVI, Inc., NASA/GSFC (code 61A), Greenbelt, MD, U.-S. (2) SARAO/HartRAO, Krugersdorp, South Africa (3) Jet Propulsion Laboratory, California Inst. Technology/NASA, Pasadena, CA, U.-S. 24 th MeeUng of the European VLBI Group for Geodesy and Astrometry (EVGA) March 17-19 2019, Las Palmas, Gran Canaria, Spain Acknowledgements: Copyright ©2019. All Rights Reserved. U.S. Government sponsorship acknowledged for work done at JPL-Caltech under a contract with NASA. The VLBA is managed by NRAO, funded by the National Science Foundation, and operated under cooperative agreement by Associated Universities. The authors gratefully acknowledge use of the VLBA under the USNO’s time allocation. This work supports USNO’s ongoing research into the celestial reference frame and geodesy. HartRAO is a facility of the National Research Foundation (NRF) of South Africa. The Hobart telescope is operated by the University of Tasmania and this research has been supported by AuScope Ltd., funded under the National Collaborative Research Infrastructure Strategy (NCRIS).

Upload: others

Post on 06-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Time stability of the K-band catalog sources

K.LeBail(1),A.deWi1(2),C.S.Jacobs(3),D.Gordon(1)(1)NVI,Inc.,NASA/GSFC(code61A),Greenbelt,MD,U.-S.

(2)SARAO/HartRAO,Krugersdorp,SouthAfrica(3)JetPropulsionLaboratory,CaliforniaInst.Technology/NASA,Pasadena,CA,U.-S.

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Acknowledgements: Copyright ©2019. All Rights Reserved. U.S. Government sponsorship acknowledged for work done at JPL-Caltech under a contract with NASA. The VLBA is managed by NRAO, funded by the National Science Foundation, and operated under cooperative agreement by Associated Universities. The authors gratefully acknowledge use of the VLBA under the USNO’s time allocation. This work supports USNO’s ongoing research into the celestial reference frame and geodesy. HartRAO is a facility of the National Research Foundation (NRF) of South Africa. The Hobart telescope is operated by the University of Tasmania and this research has been supported by AuScope Ltd., funded under the National Collaborative Research Infrastructure Strategy (NCRIS).

Page 2: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Outline

• K-bandinICRF3• BriefreviewonhowtousetheAllanvariancetodeterminenoisefloorofsourceUmeseries

• NoisefloorofthelatestGSFCK-bandUmeseriessoluUonandcomparisonwiththelatestGSFCS/XUmeseriessoluUonon3differentsets

2/1624thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 3: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

K-band

K-bandinICRF3

3/16

Ksolu'on S/Xsolu'on

Source# 906 4775

Session# 65 6271

ObservaUonperiod

05/2002–11/2018

08/1979–01/2019

Source#(≥10sessions)

354 788

SeeposterP306:A.deWi1etal.,“TheK-band(24GHz)CelesUalReferenceFrame”.

Thispaper:StudyofthelatestGSFCUmeseriessoluUonsforKandS/X.

−80 −60 −40 −20 0 20 40 60 800

20

40

60

80

100

Declination (deg)

Sour

ce n

oise

(µas

)

ICRF3 decimation test − Right Ascension

S/X noise floorK noise floor

−80 −60 −40 −20 0 20 40 60 800

20

40

60

80

100

Declination (deg)

Sour

ce n

oise

(µas

)

ICRF3 decimation test − Declination

S/X noise floorK noise floor

310commonsources

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

0

20

40

60

80

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

S/Xnoisefloor Knoisefloor

0

20

40

60

80

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

S/Xnoisefloor Knoisefloor

Page 4: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

K-band and S/X-band Position time series examples

DifferentwaystolookattheseUmeseries:

•  StandarddeviaUon=>staUcquanUty;

•  NoisefloordeterminedwiththeAllanvariance=>takesintoaccounttheUmevariable.

4/16

1980 1985 1990 1995 2000 2005 2010 2015 2020−1

−0.5

0

0.5

1

RAcosDEC (mas) 0552+398

S/X Standard dev: 1.512 K Standard dev: 0.139

S/XK

1980 1985 1990 1995 2000 2005 2010 2015 2020−1

−0.5

0

0.5

1

DEC (mas) 0552+398

S/X Standard dev: 1.864 K Standard dev: 0.165

S/XK

1980 1985 1990 1995 2000 2005 2010 2015 2020−1

−0.5

0

0.5

1

RAcosDEC (mas) 3C120

S/X Standard dev: 4.686 K Standard dev: 0.166

S/XK

1980 1985 1990 1995 2000 2005 2010 2015 2020−1

−0.5

0

0.5

1

DEC (mas) 3C120

S/X Standard dev: 4.770 K Standard dev: 0.217

S/XK

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 5: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Using the Allan variance to determine noise floor (1/2)

-1 Whitenoise

0 Flickernoise

+1 Randomwalk

5/16

•  TheAllanvarianceisastaUsUcaltoolthatgivesthelevelandtypeofnoiseofUmeseries.

•  IfarethemeasurementsandτthesamplingUme,theAllanvarianceis:

•  Typeofnoisedeterminedbytheslopeofthecurve:€

xi( )i=1,n

σ2 τ( ) =12

xi+1 − xi( )2

log10 σ2( ) = f log10 τ( )( )

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Whitenoise Flickernoise Randomwalk

Page 6: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Realdata:sourcesnotobservedregularly=>difficulUesinstaUsUcaldeterminaUonduetogapsinbetweenobservaUons,numberofobservaUons,…PreprocessingoftheUmeseries.•  Step1:Keepsourceswith10ormoreobservaUons.•  Step2:Averaging(yearlyandmonthly)andinterpolaUon.Thresholdcut-offwheninterpolaUng.

•  Step3:Allanvarianceprocessingforeachsource,eachcoordinate,eachaveragedUmeseries.

•  Step4:NoisefloordeterminaUonforeachsourceandeachcoordinate.WelookatthenoisetypedeterminedbytheslopeoftheAllanvariancecurve:

•  Whitenoiseorflickernoise:thenoiseflooristhelowestAllanvariancevalue.•  Randomwalk:sourcerejected.

6/16

Using the Allan variance to determine noise floor (2/2)

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 7: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 1/3 310 common sources – Period 1979-now

TheKnoisefloorstendtobesmallerthantheS/Xnoisefloors.

7/16

StandarddeviaUonNoisefloordeterminedby

theAllanvariance

500 1000 1500 20000

20

40

60

80

100

120

140

Source standard deviation (µas)

Sour

ce n

umbe

r

RAcos(DEC) − K−band

500 1000 1500 20000

20

40

60

80

100

120

140DEC − K−band

Source standard deviation (µas)

Sour

ce n

umbe

r

500 1000 1500 20000

20

40

60

80

100

120

140

Source standard deviation (µas)

Sour

ce n

umbe

r

RAcos(DEC) − S/X−band

500 1000 1500 20000

20

40

60

80

100

120

140DEC − S/X−band

Source standard deviation (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

10

20

30

40

50

60RAcos(DEC) − K−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

10

20

30

40

50

60DEC − K−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

10

20

30

40

50

60RAcos(DEC) − S/X−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

10

20

30

40

50

60DEC − S/X−band

Source noise floor (µas)

Sour

ce n

umbe

r

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 8: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 1/3 310 common sources – Period 1979-now

Noisefloorcomparisonin

10odeclinaUonbands

8/16

−80 −60 −40 −20 0 20 40 60 800

100

200

300

400

500

Declination (deg)So

urce

noi

se fl

oor (µ

as) RAcos(DEC)

S/X noise floorK noise floor

−80 −60 −40 −20 0 20 40 60 800

100

200

300

400

500

Declination (deg)

Sour

ce n

oise

floo

r (µ

as) DEC

S/X noise floorK noise floor

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 9: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 2/3 87 common sources – Period 11/2016-11/2018

FocusonsameperiodofobservaUon:

November2016toNovember2018.

9/16

1980 1985 1990 1995 2000 2005 2010 2015

S/X sessionsK sessions

Ksolu'on S/Xsolu'on

Source# 901 4728

Session# 44 391

Source#(≥10sessions) 254 431

87commonsources

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 10: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 2/3 87 common sources – Period 11/2016-11/2018

10/16

2016.5 2017 2017.5 2018 2018.5 2019 2019.5−1

−0.5

0

0.5

1

RAcosDEC (mas) 0552+398

S/X Standard dev: 0.347 K Standard dev: 0.158

S/XK

2016.5 2017 2017.5 2018 2018.5 2019 2019.5−1

−0.5

0

0.5

1

DEC (mas) 0552+398

S/X Standard dev: 0.693 K Standard dev: 0.205

S/XK

2016.5 2017 2017.5 2018 2018.5 2019 2019.5−1

−0.5

0

0.5

1

RAcosDEC (mas) 3C120

S/X Standard dev: 0.319 K Standard dev: 0.183

S/XK

2016.5 2017 2017.5 2018 2018.5 2019 2019.5−1

−0.5

0

0.5

1

DEC (mas) 3C120

S/X Standard dev: 0.689 K Standard dev: 0.220

S/XK

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 11: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 2/3 87 common sources – Period 11/2016-11/2018

TheS/XnoisefloorstendtobesmallerthantheKnoisefloors.

11/16

500 1000 1500 20000

5

10

15

20

25

30

35

40

Source standard deviation (µas)

Sour

ce n

umbe

r

RAcos(DEC) − K−band

500 1000 1500 20000

5

10

15

20

25

30

35

40DEC − K−band

Source standard deviation (µas)

Sour

ce n

umbe

r

500 1000 1500 20000

5

10

15

20

25

30

35

40

Source standard deviation (µas)So

urce

num

ber

RAcos(DEC) − S/X−band

500 1000 1500 20000

5

10

15

20

25

30

35

40DEC − S/X−band

Source standard deviation (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15

20RAcos(DEC) − K−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15

20DEC − K−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15

20RAcos(DEC) − S/X−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15

20DEC − S/X−band

Source noise floor (µas)

Sour

ce n

umbe

r

StandarddeviaUonNoisefloordeterminedby

theAllanvariance

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 12: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 2/3 87 common sources – Period 11/2016-11/2018

12/16

−80 −60 −40 −20 0 20 40 60 800

100

200

300

400

500

Declination (deg)So

urce

noi

se fl

oor (µ

as) RAcos(DEC)

S/X noise floorK noise floor

−80 −60 −40 −20 0 20 40 60 800

100

200

300

400

500

Declination (deg)

Sour

ce n

oise

floo

r (µ

as) DEC

S/X noise floorK noise floor

Noisefloorcomparisonin

10odeclinaUonbands

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 13: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 3/3 31 common sources - VLBA sessions

•  UDsessions:24-hourVLBAsessionsatK-band.•  UF001andUG002sessions:24-hourVLBAsessionsatS/Xband.Goals:improvingtheprecisionofICRF3,ICRF3maintenance,andfutureupdatesoftheICRFatradiofrequencies.Approximately3300oftheweakestICRF3sourceswillbere-observedduringthesesessions.

13/16

Ksolu'on S/Xsolu'on

Source# 819 4145

Session# 27 40

Source#(≥10sessions)

149 132

2016.5 2017 2017.5 2018 2018.5 2019 2019.5−1

−0.5

0

0.5

1

RAcosDEC (mas) 0552+398

S/X Standard dev: 0.214 K Standard dev: 0.150

S/XK

2016.5 2017 2017.5 2018 2018.5 2019 2019.5−1

−0.5

0

0.5

1

DEC (mas) 0552+398

S/X Standard dev: 0.209 K Standard dev: 0.209

S/XK

31commonsources

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 14: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 3/3 31 common sources - VLBA sessions

TheKnoisefloorsandtheS/Xnoisefloorsseemtobeequivalent.

14/16

500 1000 1500 20000

5

10

15

Source standard deviation (µas)

Sour

ce n

umbe

r

RAcos(DEC) − K

500 1000 1500 20000

5

10

15DEC − K−band

Source standard deviation (µas)

Sour

ce n

umbe

r

500 1000 1500 20000

5

10

15

Source standard deviation (µas)

Sour

ce n

umbe

r

RAcos(DEC) − S/X−band

500 1000 1500 20000

5

10

15DEC − S/X−band

Source standard deviation (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15RAcos(DEC) − K−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15DEC − K−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15RAcos(DEC) − S/X−band

Source noise floor (µas)

Sour

ce n

umbe

r

100 200 300 400 5000

5

10

15DEC − S/X−band

Source noise floor (µas)

Sour

ce n

umbe

r

StandarddeviaUonNoisefloordeterminedby

theAllanvariance

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 15: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Comparison 3/3 31 common sources - VLBA sessions

15/16

−80 −60 −40 −20 0 20 40 60 800

100

200

300

400

500

Declination (deg)So

urce

noi

se fl

oor (µ

as) RAcos(DEC)

S/X noise floorK noise floor

−80 −60 −40 −20 0 20 40 60 800

100

200

300

400

500

Declination (deg)

Sour

ce n

oise

floo

r (µ

as) DEC

S/X noise floorK noise floor

Noisefloorcomparisonin

10odeclinaUonbands

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 16: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Conclusions

•  K-bandUmestability•  TheK-bandobservaUonshavereachedalevelofstabilityequivalenttothelevelofcurrentS/XobservaUons.

•  ThestrengthoftheS/Xdatasetisinitsbroaddiversityofbaselinesandsessions.

•  WeneedtoconUnuemonitoringtheK-bandobservaUonsandcomparingthestabilityoftheframerealizedbytheK-bandobservaUonswiththeS/Xframe.

16/16

•  ThankstotheVLBA,K-bandobservaUonshaveincreasedgreatlyinthepasttwoyears,prompUngmanystudies.Atthe2019EVGA:

•  BenediktSoja:“IonosphericcalibraUonforK-bandcelesUalreferenceframes”.•  HanaKrásná:“EarthorientaUonparametersesUmatedfromK-bandVLBA

measurements”.•  AlethadeWi1:“TheK-band(24GHz)CelesUalReferenceFrame”.

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 17: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Thank you

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 18: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

And more…

Structure,propermoUon?

1980 1985 1990 1995 2000 2005 2010 2015 2020−1

−0.5

0

0.5

1

RAcosDEC (mas) 3C418

S/X Standard dev: 0.732 K Standard dev: 0.191

S/XK

1980 1985 1990 1995 2000 2005 2010 2015 2020−1

−0.5

0

0.5

1

DEC (mas) 3C418

S/X Standard dev: 0.853 K Standard dev: 0.227

S/XK

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain

Page 19: Time stability of the K-band catalog sources · Using the Allan variance to determine noise floor (1/2) -1 White noise 0 Flicker noise +1 Random walk 5/16 • The Allan variance is

Noise floor comparison Individual sources

StandarddeviaUon

0 500 1000 1500 20000

500

1000

1500

2000

RAcos(DEC)

S/X source standard deviation (µas)

K so

urce

sta

ndar

d de

viat

ion

(µas

)

0 500 1000 1500 20000

500

1000

1500

2000

DEC

S/X source standard deviation (µas)

K so

urce

sta

ndar

d de

viat

ion

(µas

)

0 100 200 300 400 5000

100

200

300

400

500

RAcos(DEC)

S/X source noise floor (µas)

K so

urce

noi

se fl

oor (µ

as)

0 100 200 300 400 5000

100

200

300

400

500

DEC

S/X source noise floor (µas)

K so

urce

noi

se fl

oor (µ

as)

0 100 200 300 400 5000

100

200

300

400

500

RAcos(DEC)

S/X source noise floor (µas)

K so

urce

noi

se fl

oor (µ

as)

0 100 200 300 400 5000

100

200

300

400

500

DEC

S/X source noise floor (µas)

K so

urce

noi

se fl

oor (µ

as)

0 500 1000 1500 20000

500

1000

1500

2000

RAcos(DEC)

S/X source standard deviation (µas)

K so

urce

sta

ndar

d de

viat

ion

(µas

)

0 500 1000 1500 20000

500

1000

1500

2000

DEC

S/X source standard deviation (µas)

K so

urce

sta

ndar

d de

viat

ion

(µas

)

0 500 1000 1500 20000

500

1000

1500

2000

RAcos(DEC)

S/X source standard deviation (µas)

K so

urce

sta

ndar

d de

viat

ion

(µas

)

0 500 1000 1500 20000

500

1000

1500

2000

DEC

S/X source standard deviation (µas)

K so

urce

sta

ndar

d de

viat

ion

(µas

)

NoisefloordeterminedbytheAllanvariance

0 100 200 300 400 5000

100

200

300

400

500

RAcos(DEC)

S/X source noise floor (µas)

K so

urce

noi

se fl

oor (µ

as)

0 100 200 300 400 5000

100

200

300

400

500

DEC

S/X source noise floor (µas)

K so

urce

noi

se fl

oor (µ

as)

(157

/142

sou

rces)

En'reperiod

(310

sou

rces)

(74sources)

2-yrpe

riod

(87sources)

(24/28

sou

rces)

VLBAsession

s(3

1sources)

24thMeeUngoftheEuropeanVLBIGroupforGeodesyandAstrometry(EVGA)March17-192019,LasPalmas,GranCanaria,Spain