ting zhu, yu gu , tian he, zhi -li zhang

30
eShare: A Capacitor-Driven Energy Storage and Sharing Network for Long-Term Operation(Sensys 2010) Ting Zhu, Yu Gu, Tian He, Zhi-Li Zhang Department of Computer Science and Engineering, University of Minnesota, Twin Cities Presenter: Junction Date: 2010.10.28 2010/10/28 1

Upload: alia

Post on 22-Feb-2016

45 views

Category:

Documents


0 download

DESCRIPTION

eShare : A Capacitor-Driven Energy Storage and Sharing Network for Long-Term Operation( Sensys 2010). Ting Zhu, Yu Gu , Tian He, Zhi -Li Zhang Department of Computer Science and Engineering, University of Minnesota, Twin Cities Presenter: Junction Date: 2010.10.28. Outline. Motivation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

1

eShare: A Capacitor-Driven Energy Storage and Sharing Network for

Long-Term Operation(Sensys 2010)Ting Zhu, Yu Gu, Tian He, Zhi-Li ZhangDepartment of Computer Science and Engineering, University of Minnesota, Twin Cities

Presenter: Junction Date: 2010.10.28

2010/10/28

Page 2: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

2

Outline•Motivation•System Overview•Evaluation•Conclusion & Contribution

2010/10/28

Page 3: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

3

Outline•Motivation•System Overview•Evaluation•Conclusion & Contribution

2010/10/28

Page 4: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

4

Motivation• Energy sharing locally consumed

▫ Allow energy to efficiently and quantitatively flow back and forth among multiple energy storage systems

• Application:▫ Greenhouse Application (ClimateMinder’s GrowFlex

Technology)

▫ Wearable Computing Application (UbiComp 2008)

Battery/solar-powered(backup Bettery 6-

8months)

Environmental conditions:

Soil moistureLeafwetness

Ambient temperatureIrrigation/vents control

Harvesting power from 6 body

locations

Locations ?Wrist: 115 ±106

mWArm: 1.01 ±0.46

mW wired

2010/10/28

Page 5: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

5

Batteries v.s. Capacitors• Requirements of energy sharing

▫ Fast▫ Highly efficient▫ Quantitatively controllable

• Limitation of batteries▫ Low charge efficiency (6%)▫ Limited charge current▫ Inaccurate remaining energy prediction

• Capacitors▫ High charge efficiency (90%)▫ Have more than 1 million recharge cycles ( > 10 years)▫ Can be charged very quickly

2010/10/28

Page 6: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

6

Ultra-Capacitors

• Leakage▫ Physical size and remaining energy ↑, The leakage power ↑

3000F capacitor: first 48hrs29% of total energy leaked

away

2010/10/28

Page 7: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

7

Outline•Motivation•System Overview

▫Hardware Layer▫Control Layer▫Energy Sharing Layer

•Evaluation•Conclusion & Contribution

2010/10/28

Page 8: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

8

System Overview

1.Remaining energy inside ultra-capacitors2. Samples the harvesting power

1. calculate the energy

leakage rate2. Forward leakage

info, remaining/harvest

pw

Leakage model & energy supply/demand => control discharge/charge state

Decide the most efficient routes for energy distribution

Control energy exchange between neighboring nodes

2010/10/28

Page 9: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

9

Outline•Motivation•System Overview

▫Hardware Layer▫Control Layer▫Energy Sharing Layer

•Evaluation•Conclusion & Contribution

2010/10/28

Page 10: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

10

Hardware Layer• Single v.s. capacitor array

▫ Slow boot-up time▫ High remaining energy▫ Inflexibility in fine-grained control (A/D converter)

• Requirements▫ Generality▫ Simplicity▫ Stability

2010/10/28

Page 11: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

11

Outline•Motivation•System Overview

▫Hardware Layer▫Control Layer▫Energy Sharing Layer

•Evaluation•Conclusion & Contribution

2010/10/28

Page 12: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

12

Control Layer• Charging & discharging

▫ Minimize leakage -> improve efficiency• Energy Leakage Model

2010/10/28

Page 13: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

13

Charging• Basic Alternative Charging Control

• Adaptive Charging Control▫ Based on the charge current

2010/10/28

Page 14: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

14

Discharging• Serial connected capacitors

▫ different voltage combination -> different remaining energy levels

• The less energy remain, the more energy share

▫ Adaptively discharged: higher leakage power first▫ Until voltage value reaches the calculated min voltage▫ Excluded from discharging

2010/10/28

Page 15: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

15

Outline•Motivation•System Overview

▫Hardware Layer▫Control Layer▫Energy Sharing Layer

Energy Access Protocol Energy Network Protocol

•Evaluation•Conclusion & Contribution

2010/10/28

Page 16: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

16

Outline•Motivation•System Overview

▫Hardware Layer▫Control Layer▫Energy Sharing Layer

Energy Access Protocol Energy Network Protocol

•Evaluation•Conclusion & Contribution

2010/10/28

Page 17: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

17

Energy Access Protocol• Directly connect through power cord

▫ Not through DC/DC converter▫ Consumes large amount of power

• Protocol▫ Receiver-initiated▫ Both receiver and sender can terminate

transmission

monitor monitor

2010/10/28

Page 18: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

18

Outline•Motivation•System Overview

▫Hardware Layer▫Control Layer▫Energy Sharing Layer

Energy Access Protocol Energy Network Protocol

•Evaluation•Conclusion & Contribution

2010/10/28

Page 19: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

19

• Finding the minimum energy loss path▫ Transfer Efficiency (eij)▫ Energy Sharing Efficiency (ESEij)

• Energy optimal sharing among devices

Energy Network Protocol

For node a:E = 100JESEac = 0.9, ESEad = 0.81, ESEab = 0.72

c -> a 80J => 80 * 0.9 = 72, E = 100 – 72 = 28Jd -> a ? =>28/0.81 = 34.6J E = 28 – 28 = 0

2010/10/28

Page 20: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

20

Outline•Motivation•System Overview•Evaluation

▫Evaluation of Efficient Control▫Evaluation of Energy Sharing

•Conclusion & Contribution

2010/10/28

Page 21: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

21

Outline•Motivation•System Overview•Evaluation

▫Evaluation of Efficient Control▫Evaluation of Energy Sharing

•Conclusion & Contribution

2010/10/28

Page 22: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

22

Evaluation of Effective Control• Baseline & metrics

▫ No Efficient Control (NEC)▫ Remaining energy & Voltage

• Implementation▫ MICAz node (TinyOS & NesC)▫ (a) indoor

56 hours

2 Ultra-Capacitors

100F & 400F

NEC / EC

48.7J

Charging control selects the lowest leakage power to store energy -> low

energy leaked away

48.7J = MICAz 1% duty cycle more than 16hrs

2010/10/28

Page 23: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

23

Evaluation of Effective Control• Implementation

▫ (b) Mobile Phone Discharging

▫ (c) Outdoor Energy Harvesting

EC: 19 hrs (17.3% service time of the

NEC)

872.8J (14.4% more)

2010/10/28

Page 24: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

24

Outline•Motivation•System Overview•Evaluation

▫Evaluation of Efficient Control▫Evaluation of Energy Sharing

•Conclusion & Contribution

2010/10/28

Page 25: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

25

Evaluation of Energy Sharing• Evaluation of Energy Access Protocol

▫ One-to-One Many-to-One2.5V 1.6V

1.2V

0.4V

Energy sharing: 1 ~ 3.1(s)

2.37V2.35V1.71V

0.64V

113J => MICAz 1% duty cycle

38hrs

Energy sharing: 1 ~ 2.3(s)

2.378V

2.35V

2010/10/28

Page 26: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

26

Evaluation of Energy Sharing• Evaluation of Energy Network Protocol

▫ oil pipeline monitoring▫ climate monitoring and control in greenhouses

NES (No Energy Sharing) LES (Local Energy Sharing): with direct connected neighbors

(baseline) GES (Global Energy Sharing) Network Lifetime Wasted Energy

Energy leaked away inside the capacitor array Energy consumption of the energy sharing control and

communication Energy loss when energy flows from on device to the other

2010/10/28

Page 27: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

27

Experiments46m

21m

•2 days (48hrs)•Collected energy pattern -> for simulation input•Randomly generated working pattern• Mean duty cycle = 5%

2010/10/28

Page 28: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

28

Performance Analysis• Simulation Results

LES Control: 0.406J

GES Control: 0.7836J

A/D converterNegative >

Positive

2010/10/28

Page 29: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

29

Outline•Motivation•System Overview•Evaluation•Conclusion & Contribution

2010/10/28

Page 30: Ting Zhu, Yu  Gu ,  Tian  He,  Zhi -Li Zhang

30

Conclusion & Contribution• First Ultra-capacitor based energy router for sharing

energy among embedded sensor devices• By energy sharing the network lifetime is extended

▫ Efficient Control (Charge & Discharge) Using an array of capacitors to minimize leakage based on leakage

model▫ Energy Sharing (Supply & Demand)

Collaboration between data networks and energy networks for efficient energy management

Energy access protocol -> share energy among neighboring devices Energy network protocol -> optimally distribute energy among

network Quantitatively control the amount of energy transferred

• No experiments with real system deployment

2010/10/28