title 非線形構造解析技術の社会的普及に関する研究( 本文 ......a s%±0b \ ~ r \...

121
Title 非線形構造解析技術の社会的普及に関する研究( 本文 (Fulltext) ) Author(s) 小林, 卓哉 Report No.(Doctoral Degree) 博士(工学) 乙第075号 Issue Date 2015-12-31 Type 博士論文 Version ETD URL http://hdl.handle.net/20.500.12099/54098 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

Upload: others

Post on 13-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Title 非線形構造解析技術の社会的普及に関する研究( 本文(Fulltext) )

    Author(s) 小林, 卓哉

    Report No.(DoctoralDegree) 博士(工学) 乙第075号

    Issue Date 2015-12-31

    Type 博士論文

    Version ETD

    URL http://hdl.handle.net/20.500.12099/54098

    ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

  • Social Dissemination of Nonlinear Structural Simulation Technologies

    2015 12

  • 1 ······················································································· 1

    2 2.1 ················································································· 6 2.2 ··················································· 7 2.3 Ogden ·········································································· 9 2.4 ······································································ 11 2.5 Ogden ························ 15 2.6 ·············································· 18 2.7 ················································· 21 2.8 ································································ 25 2.9 ·············································· 27 2.10 ····················································································· 27

    3

    3.1 ··············································································· 29 3.2 Maxwell ··························································· 30 3.3 - ····································································· 32 3.4 ····························································· 39 3.5 Maxwell ·· 41 3.6 ·························································· 45 3.7 ··················································································· 47

    4

    4.1 ··············································································· 48 4.2 ············································································ 50 4.3 2 ······················································· 51 4.4 ··················· 54 4.5

    Yamaki ························· 59 4.6

    Esslinger ························ 61 4.7 ····································· 63 4.8 ····················································································· 68

  • 5

    5.1 ··············································································· 69 5.2 ···················································· 71 5.3 ······················································· 72 5.4 ············································································ 74 5.5 ········································ 76 5.6 ··································································· 78 5.7 ····················································································· 81

    6

    6.1 ··············································································· 82 6.2 ···················································· 82 6.3 ····························································· 84 6.4 ·············································· 89 6.5 ·············································· 95 6.6 ················································· 99 6.7 ···················································································· 100

    7 ·························································································· 101

    8 ···················································································· 104

    9 ·························································································· 116

  • 1

    1 (1-1)

    1950 60

    1983(1-2)

  • 2

    3 8

    550

    (1-3)

    (1-4)

  • 3

    FEM

    900

    20 1500

    2 3

    6

    2

    FEM

  • 4

    3

    Maxwell -

    FEM

    4

    5

    6

    6

  • 5

    50

  • 6

    2

    2.1

    O

    Fig.2-1

    Fig.2-1 4 (2-21)

    1939 1940

  • 7

    FEM

    2.2

    %

    1940 (2-1)

    2

    (1)

    (2)

    0

  • 8

    Hyperelastic (2-2), (2-3), (2-4)

    2-1

    Fig.2-2

    2-2

    Fig.2-2

  • 9

    2-2

    2-3

    2-4 2-3 2-5

    2-4

    2-5

    2-5

    (2-2)

    2.3 Ogden Fig.2-3 Ogden

    Neo-Hookean Mooney(2-2), (2-7)

    Fig.2-3

    Valanis Landel(2-5), (2-6)

    2-6

  • 10

    1

    (2-8) Ogden N(2-9), (2-10), (2-11)

    2-7

    Ogden Treloar(2-12)

    2-7 2-7

    2-5

    2-8

    Fig.2-3

  • 11

    2.4

    2.4.1 Simple Tension

    2-4

    2-9

    2-8

    2-10

    2-10

    2-11

    2-12

    Fig.2-4 FEM

    1

    Ogden 2-7

  • 12

    2-12 -

    2-1

    2-12

    2-13

    2-14

    Mooney(2-7) 2-14

    Ogden

    2-15

    2-14

    2-15

    Fig.2-4

  • 13

    2.4.2 Pure Shear

    Fig.2-5

    2-16

    2-17

    2-8

    2-18

    2-18 2-19

    Fig.2-5

  • 14

    2-20

    2-19

    2-20

    Fig.2-5 Ogden Treloar(2-12) FEM

    75mm 5mm

    2.4.3 Equi-Biaxial Tension

    Fig.2-6

    Ogden(2-6), (2-8), (2-12)

    Fig.2-6

    (1) Ogden

    Valanis 2-6

    (2)

    (3) 2-21

  • 15

    2-21

    2-8

    2-22

    2-22 1= 1=

    2-23

    2-24

    2.5 Ogden FEM 1940

    Mooney(2-13) Mooney Hencky 1993

    Love 1920

    2-25

    , Mooney 2

    200%

  • 16

    Mooney Treloar(2-14)

    2-26

    G

    Neo-Hookean Mooney

    Mooney Neo-Hookean

    Treloar

    Rivlin (2-15) 1950

    Mooney-Rivlin

    2-27

    2-28

    Rivlin Mooney Treloar

    Mooney 2-25

    2-29

    Rivlin Green (2-16), (2-17)

  • 17

    2-30

    2-31

    Cauchy-Green

    2-32

    2-28

    Mooney-Rivlin

    Arruda-Boyce (2-20)

    Ogden

    .

    2-29 Mooney-Rivlin

  • 18

    Ogden

    Ogden(2-9), (2-18)

    Mooney-Rivlin

    Ogden

    Ogden

    Arruda-Boyce

    Excel Ogden

    Ogden

    FEM

    2.6 Fig2-7 3

    Ogden 2-7

    (2-12) (2-20) (2-24) Fig.2-8(a)

    Fig.2-3

    (2-9) (2-16) (2-21) Fig.2-8(b)

    Fig.2-8(a)

    2 1.5

    3 3

    Fig.2-8(a) 3

    2.9

  • 19

    JIS

    K6251,K6254 K6254

    2.4.3

    FEM

    Fig.2-7

    (a) (b)

    Fig.2-8

  • 20

    Fig.2-9 Ogden

    3 2-12 2-20 2-24

    1.5 50

    Fig.2-8(b)

    1 3

    FEM Ogden

    Ogden 2 3

    Fig.2-9

    ( 1 0.69, 1= 0.186, 2 -1.07, 2=0.0460, 3 4.14, 3= 0.000643)

    2-12

    2-20

    2-24

  • 21

    (1) 10%

    0.5 FEM 0.48 0.49

    JIS

    0.5

    (2) 50 100 Neo-Hookean

    1

    100 -

    (3) Arruda-Boyce

    FEM

    (4) (2-18) 3

    2-29 Mooney

    0.05 0.1

    Williams(2-19) 0.2

    2.7

  • 22

    JIS

    JIS

    FEM

    JIS FEM

    3

    JIS K 6251

    1

    JIS K 6254

    JIS K 6254

    Fig.2-10 Fig.2-12 Ogden

    2-7

    Ogden 2-13

    2-33

    Fig.2-13 Excel

    FEM

  • 23

    -

    JIS K 6254

    Fig.2-12

    10%

    Ogden FEM

    Ogden

    2-14

    Fig.2-10 3 JIS K 6251

    Fig.2-11 1 JIS K 6254

    Fig.2-12 JIS K 6254

  • 24

    2-34

    2-7

    Fig.2-14 Fig.2-13 2-34

    Ogden 2-33 2-34

    -

    Fig.2-15

    100% 1

    10% 40%

    Fig.2-14

    Fig.2-13

    Fig.2-13

  • 25

    2.8

    (2-16) Ogden (2-9)

    Fig.2-16 ,

    2 2-24

    2-35

    2-36 2-35 2-37

    , 2-36, 2-37

    2-24 2-37 2-38

    Fig.2-15

  • 26

    2-38

    =100mm, =1mm Ogden 2-7

    Fig.2-17 2-38

    2

    2 FEM

    Fig.2-17 FEM Abaqus Marc

    Fig.2-16 3

    Fig.2-16 Fig.2-17

  • 27

    2.9 2.2 2.7 Excel

    Fig.2-18

    Ogden

    Abaqus Marc LS-DYNA

    2.10

    1940

    1970 Ogden

    Fig.2-18Ogden

  • 28

    FEM 1980

    FEM

    3 Excel

    40

  • 29

    3

    3.1

    Hooke 1678 Newton 1687

    (3-1) 1835

    elastic after-effect

    Weber

  • 30

    Maxwell 1868

    viscoelastic fluid

    Kelvin 1875

    viscoelastic solid

    1950 1980 FEM

    (3-20)

    3.2 Maxwell FEM Fig.3-1

    Maxwell (3-2), (3-6) Maxwell

    Maxwell

    3-1

    3-1

    3-2

  • 31

    Maxwell

    Fig.3-2 0

    ( )

    FEM Maxwell

    10 20 Maxwell

    1

    10

    20

    Fig.3-1 Maxwell Fig.3-2 Maxwell

  • 32

    3.3 - 3.3.1

    50

    Thermo-rheological Simplicity

    Fig.3-3

    10 1000sec

    Fig.3-3 109 Pa

    109 Pa

    Fig.3-3 1/1000

    Fig.3-3

    1013 poise

  • 33

    1940 1950

    Fig.3-3 Fig.3-3

    0.01sec

    109sec 30

    10 1000sec 0.01sec

    30 Fig.3-3

    Fig.3-3

    3-3

    Fig.3-3

  • 34

    -

    WLF

    WLF

    WLF Williams Landel Ferry

    3-4

    50

    3-4

    Fig.3-4 a 3-4 260

    a WLF ( =260 K) b ( =260 K)

    Fig.3-4 -

  • 35

    Fig.3-4 3-5 260

    3-5

    Fig.3-4 b

    3-5

    3.3.2

    -

    RSA TA (3-7)

    30 5 1mm

    -40 60 =233 333

    = 3.16 10 31.6 100 0.5 16Hz

    JIS(3-8) RSA

  • 36

    0.1 1%

    storage modulus E' loss

    modulus E" Fig.3-5 =3.16 10 31.6 100

    E'

    E"

    Fig.3-5

  • 37

    3.3.3

    Fig.3-5

    Fig.3-5

    3-3

    3-3 3-6

    [K] 0[K]

    3-6

    -

    WLF Fig.3-5

    3-4

    3-6

    Fig.3-5

    Fig.3-6

    3-4

    3-4

    g

    g -40 -14

    g -14 WLF

  • 38

    b Tg -14 ( )a Tg -40 ( )Fig.3-6

    -

    WLF 3-4 1 2

    g g

    tan = /

    Fig.3-5 g -10 -20 Excel g

    Fig.3-6 g

    (3-9)

  • 39

    3.4

    1950 hereditary

    integral

    1 106sec

    10-6 1sec

    loss tangent

    Fig.3-7

  • 40

    Maxwell

    Fig.3-7

    3-9

    Fig.3-7

    3-7

    3-8

  • 41

    3-2 3-8

    Maxwell

    3-10

    3-11

    Fig.3-6 b

    3-10 3-11

    Maxwell

    3.5 Maxwell (3-10), (3-11),

    (3-20) 3-10 3-11

    Maxwell 3

    (1) i

    (2) Maxwell

    (3)

    (1)

    Maxwell

    FEM

  • 42

    (2) Maxwell

    10 20

    Maxwell

    2 Maxwell

    2 Maxwell

    = 100Pa

    1 = 100Pa 1 = 1sec

    Fig.3-8

    Maxwell

    Maxwell

    10

    Maxwell 10

    Fig.3-8 2

  • 43

    (3)

    Emri(3-12)

    3-12

    Fig.3-9

    Fig.3-10 b

    Fig.3-6 b

    Maxwell

    Fig.3-11

    Optimization

    Fig. 3-6 b 12

    Maxwell 12

    e i i Maxwell

    Abaqus MSC.Marc LS-DYNA

  • 44

    Fig.3-9

    (a) ( ) (b)

    Fig.3-10

    Fig.3-11Maxwell

    E E

  • 45

    3.6 (3-13)

    Fig.3-12 200 150 5.3

    mm 2

    610Hz 1 720Hz 2

    Fig.3-13 (3-14), (3-16)

    t =0.22mm t

    =1.44mm t =0.12mm

    Fig.3-14

    20Hz 20kHz tan

    Abaqus Abaqus Maxwell

    *VISCOELASTIC

    Fig.3-15

    (3-17), (3-19)

  • 46

    Fig.3-12

    Fig.3-13 (3-14)

    (a) (b)

    Fig.3-14

  • 47

    3.7

    Maxwell

    1920(3-1), (3-5)

    1950 60

    (3-21)

    FEM 1980

    FEM

    Maxwell

    -

    Excel

    110

    Fig.3-15 FEM

    (a) (b)

  • 48

    4.1

    -

  • 49

    FEM

    (4-1), (4-2)

    (4-3) Yamaki (4-4) 1

    2 2 1

    Esslinger(4-5), (4-6)

    (4-7)

  • 50

    4.2

    Abaqus(4-8) ADINA ANSYS Marc FEM

    FEM

    Abaqus 4-1

    4-2

    4-1

    4-2

    * = /

    1 ~ 10 %

    4-1

    Abaqus

    dissipated energy fraction

    2.E-4

    dissipated energy fraction c

  • 51

    dissipated energy fraction 2.E-4

    1/100 ~ 1/1,000

    4.3 2 2 (4-9) Fig.4-1

    2

    4-3 1

    2 Fig.4-1

    4-4

    4-3

    4-4

    = 1000 mm, = 100 mm

    100 mm2

    2.E5 MPa

    1 N

    Fig.4-1

  • 52

    Fig.4-2

    Fig.4-2

    Fig.4-3 a

    Fig.4-3 b

    Fig.4-2 b

    Fig.4-3 b 200mm

    Fig.4-4 Abaqus/Standard

    HHT Newmark- Fig.4-4 a

    100 ~ 300 mm

    p

    U2

    U1

    1 2x

    yW W

    HH

    y

    x

    W

    U1

    p

    U2

    W

    1 2

    Fig.4-1 2

  • 53

    Abaqus/Standard HHT

    Fig.4-4 b

    1

    0 0 Fig.4-4

    a(4-10)

    Fig.4-3 b Fig.4-4 b

    4-1 4-2

    Fig.4-2 2

    (a (b

  • 54

    4.4

    (b

    -15

    -10

    -5

    0

    5

    10

    15

    0 100 200 300

    Load

    pro

    porti

    onal

    ity fa

    ctor

    1

    Displacement U2 [mm]

    Theory

    Abaqus, Artificial damping

    U2 [mm]

    Abaqus

    (a

    Fig.4-3 2

    -15

    -10

    -5

    0

    5

    10

    15

    0 100 200 300

    Load

    pro

    porti

    onal

    ity fa

    ctor

    a

    Displacement U2 [mm]

    Theory Abaqus, Implicit dynamic

    U2 [mm]

    Abaqus

    (a (b

    Fig.4-4 2

    0.0E+00

    5.0E+05

    1.0E+06

    1.5E+06

    2.0E+06

    0 100 200 300

    Ener

    gy [N

    mm

    ]

    Displacement U2 [mm]

    Theory

    Strain energy

    External work

    Kinematic energy

    U2 [mm]

    [Nm

    m]

    0.0E+00

    5.0E+05

    1.0E+06

    1.5E+06

    2.0E+06

    0 100 200 300

    Ener

    gy [N

    mm

    ]

    Displacement U2 [mm]

    Theory

    Strain energy

    External work

    Artificial dampingenergy

    U2 [mm]

    [Nm

    m]

  • 55

    4-5

    4-5

    4-5

    4-5 10 60% (4-12)

    2 4-5

    (4-14)

    (4-15)

    Yamaki (4-4) 4-5 1

    2

    4-5

    4-5

    4-5

    Yamaki

  • 56

    5.4 5.6

    [MPa]

    [mm]

    [mm]

    [mm]

    Batdorf parameter

    [mm]

    [N]

    [N]

    [N]

    [MPa]

    [MPa]

    [MPa]

    Fig.4-5 Karman Tsien(4-12), (4-15)

    =26

    4-5

    1

  • 57

    1

    1

    2

    Yamaki (4-4)

    Mylar DuPont PET Mylar

    =5560 MPa =0.3

    Batdorf parameter Z

    4-6

    Fig.4-6 a Z =500 =100mm =0.247mm =113.9mm

    =0.606mm

    FEM

    Diamond buckling pattern

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    00 2 4 6 8 10 12 14 16 18 20

    Axial Shortening /t

    Axi

    al S

    tress

    r/Et

    n=26

    n=20 n=15

    n=13n=12

    n=11n=10 r/t=1000

    Fig. 4-5 Karman Tsien(4-12) , (4-15)

  • 58

    Fig.4-6 a =2 =10

    =2 Two-tier diamond pattern

    =2 (4-6)

    Two-tier diamond pattern

    Fig.4-6 b

    Fig.4-6 a

    =1

    One-tier mode

    Yamaki

    Fig.4-6 b

    1

    900N 4-5

    1290N 30% (4-3)

    Yamaki 0.247mm 10%

    (a (b

    Fig. 4-6 Yamaki (4-4)

    Axi

    al L

    oad

    P[N

    ]

    n=12

    Asymmetric

    1000

    Axial Shortening [mm]

    800

    600

    400

    200

    0 1.00.80.60.40.2

    n=11 n=10n=9

    Z=500

    Symmetric

    n=11n=10

    n=9n=8 n=7

    wrt. cross-section atmid-length of cylindrical shell.

  • 59

    1

    =12

    =11 2

    2

    =9

    4.5 Yamaki FEM Abaqus 6.8 Yamaki

    Fig.4-7 Abaqus

    S4R

    80 400

    Fig.4-8 4-5

    1.01 1.04 100

    FEM

    Koiter Circle (4-14), (4-16)

    Hunt (4-17) 4-7

    Yamaki (4-4) Esslinger (4-18)

    Timoshenko (4-12)

    Fig. 4-7 Yamaki

  • 60

    4-7

    Fig.4-9 FEM

    =18 FEM

    4-7

    FEM 1 Fig.4-8 Fig.4-9

    =13 =0

    4-8 (4-12) FEM =13 4-8

    4-7 =0

    4-8

    FEM Fig.4-9

    Fig. 4-9

    02468

    101214161820

    0 2 4 6 8 10 12 14Number of axial half-waves m

    Num

    ber o

    f circ

    umfe

    rent

    ial

    full-

    wav

    es n

    Hunt et al.Abaqus

    1st Mode(m=13, n=0)

    77th Mode(m=4, n=17) 63rd Mode

    (m=10, n=15)

    Fig. 4-8

  • 61

    4.6 Esslinger Fig.4-10 Esslinger (4-5), (4-6) (4-2)

    Abaqus S4R

    0.3( ) (4-2), (4-7) Yamaki

    Mylar =5400 MPa

    100mm 330mm 0.254mm

    1 msec

    A 0.33msec 1

    B

    0.83msec C 1.3msec

    =18 (4-12)

    D 2.8msec

    E 24msec =9

    =2 "two-tier

    diamond pattern"

    1

    (4-19)

    Esslinger 5200

    (4-12) Esslinger

    0.039mm/sec (4-6)

    Yamaki(4-4)

    Singer(4-6)

    Mylar

  • 62

    Fig.4-10 C (1.3msec)

    18

    800Hz

    msec

    Fujii (4-13)

    FEM

    Fig.4-10

  • 63

    4.7 (4-20)

    Mylar

    Mylar

    2%

    100°C

    Fig.4-11 (4-11) DMA

    tan TA Instruments RSA

    30°C 200°C

    2°C/min 3.16, 10, 31.6,

    100 rad/sec

    Fig.4-11 70°C

    - WLF WLF

    Mylar

    3

    4-9

    Maxwell

    Maxwell 4-10

  • 64

    4-10

    4-10 Fig.4-11

    4-11 4-12

    Fig.4-11(4-11)

    4-11

    4-12

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    1.E+01

    1.E+02

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    1.E+09

    1.E+10

    0 50 100 150 200

    tan

    [-]

    E',E

    '' [P

    a]

    [deg.C]

    E'E''tan

    6070

    80E'

    Fig.4-11 Mylar

  • 65

    Fig.4-11

    60°C 70°C = 80°C 3

    Fig.4-12 a Fig.4-12 c

    4-10

    4-9 -

    4-9

    Fig.4-12

    a Fig.4-12 c 300sec

    1sec 300sec

    3

    Fig.4-13 80mm

    100mm 0.30mm

    5mm 300sec

    3

    Fig.4-14

    60°C

    Yamaki (4-4) 1

    2 =8 =6

  • 66

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    1.E+09

    1.E+10

    1E-01 1E+02 1E+05 1E+08 1E+11

    Rel

    axat

    ion

    Mod

    ulus

    [Pa]

    a

    Time [sec]

    T = 60 deg.C

    [sec]

    [Pa]

    (a 60 °C;

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    1.E+09

    1.E+10

    1E-09 1E-06 1E-03 1E+00 1E+03

    Rel

    axat

    ion

    Mod

    ulus

    [Pa]

    a

    Time [sec]

    T = 80 deg.C

    [sec]

    [Pa]

    (c 80 °C;

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    1.E+09

    1.E+10

    1E-05 1E-02 1E+01 1E+04 1E+07

    Rel

    axat

    ion

    Mod

    ulus

    [Pa]

    a

    Time [sec]

    T = 70 deg.C

    [sec]

    [Pa]

    (b 70 °C;

    Fig.4-12 Mylar Fig.4-13 Mylar

    (a 60 °C;

    (b 70 °C;

    (c 80 °C;

  • 67

    70°C =8 Fig.4-12

    b 2

    2 Fig.4-13 b

    80°C Fig.4-12(c

    2

    Fig.4-14

    =8

    Fig.4-12 3

    0

    10

    20

    30

    40

    50

    0

    100

    200

    300

    400

    500

    0 1 2 3 4 5

    ( 80

    deg.

    C )

    [N]

    a

    ( 60

    70 d

    eg.C

    ) [N

    ] a

    [mm]

    Exp. 60 deg.C FEM 60 deg.C

    Exp. 70 deg.C FEM 70 deg.C

    Exp. 80 deg.C FEM 80 deg.C

    (a) 60 deg.C ( )

    (b) 70 deg.C ( )

    (c) 80 deg.C ( )

    n = 8 n = 6n = 7

    Fig.4-14 Mylar

  • 68

    1sec

    (4-2)

    4.8

    FEM

  • 69

    5

    5.1 1985

    1994

    1981

    8 (5-1), (5-2)

    FBR

    FBR

    500 100

    FBR

    Fig.5-1 1

    600~800mm 10mm

    529

    10Hz

  • 70

    Fig.5-1 1

  • 71

    5.2 Fig.5-2 FFTF 1980 CRBRP 1983

    (5-3), (5-4)

    711.2mm 9.5mm 914.4mm 12.7mm

    Fig.5-2 150

    21/4Cr-1Mo

    CRBRP (5-6)

    Fig.5-2 FFTF (5-4)

  • 72

    5.3

    FBR

    2

    Fig.5-3 2

    a b

    b

    Fig.5-3 Fig.5-4

  • 73

    a FB FB/DB

    D B Fig.5-4

    FBR

    b

    FBR

    (5-7)

    Fig.5-4

    FB

    Fig.5-5

    D = 914.4 mm t = 12.7 mm 1

    2

    SUS304 2

    Fig.5-5

  • 74

    I 2 1.E8 mm4

    30,000 kg/mm 3.E5 N/mm

    7.5 mm (5-1)

    2 M48

    4.5 mm

    5000 kg

    5000 kg

    Fig.5-3 b

    5.4 FEM

    MARC K3.2(5-5) Fig.5-6

    500 100

    1990 CONVEX

    C202 2

    9

  • 75

    Gap

    3 Gap Gap

    7.5 mm

    7.5 mm

    1

    FEM

    Fig.5-6

    FB=5000+5000 kg

    Fig.5-6 Gap

    Gap 4.5 mm

    7.5 mm 2 19.5 mm

    5000 kg Gap 5000

    kg

    Fig.5-6 FEM

  • 76

    5.5

    Fig.5-7

    20 FB=5000+5000 kg

    200

    FW=5000 kg

    Fig 5-6 Table 5-1

    FB 5000 kg FW

    360 10 kg/mm2

    510 5 kg/mm2

    360 500 140

    FS=15,000

    kg 3 Fig.5-6

    +FS FS 1

    360

    Table 5-1

    SUS304 425

    200,000

    Table 5-1 FBR SUS304

    Blackburn

  • 77

    Fig.5-7

    Table 5-1

    Temp.

    [ ]

    Young’s

    Modulus

    [kg/mm2]

    Poisson’s

    Ratio

    [ ]

    Coef. of Therm.

    Expansion

    [ -1]

    Yield

    Stress

    [kg/mm2]

    Hardening

    Slope

    [kg/mm2]

    20 19900 0.26 1.52E-5 24.5 300

    360 17500 0.29 1.92E-5 15.5 300

    510 16100 0.30 2.03E-5 14.3 300

    5 1.59E-3 2.16E-8 3.04E-13

    10 2.18E-3 4.08E-6 2.87E-10

    CREEP LAW

  • 78

    5.6

    (1)

    Fig.5-8

    200

    365

    16 kg/mm2

    Fig.5-3 b

    500

    Fig.5-8

    (2)

    Fig.5-9

    6 kg/mm2

    5000

  • 79

    kg 450

    Fig.5-9

    (3)

    Fig.5-10

    Fig.5-11 0.02%

    3 kg/mm2

    - 86,000 kg/mm

    30,000 kg/mm

    Fig.5-12 200,000

    0,006%

  • 80

    Fig.5-10

    Fig.5-11

    Fig.5-12 200,000

  • 81

    5.7

    30

    1(5-2)

    FEM

    6

  • 82

    6

    6.1

    (6-1)

    6.2 Fig.6-1(6-2)

    1950 60 20

    ISO 1947

    JIS 1949 JIS

    6(6-3)

    1970 IBM

    FEM

    1983 (6-4)

  • 83

    Design by Analysis (6-5), (6-6)

    80 UNIX EWS UNIX

    Macintosh

    (6-7)

    (6-8)

    CAE (6-9) 70

    (6-10)

    Fig.6-1

  • 84

    Fig.6-1

    20 20 40

    FEM NASTRAN 1968 (6-11) 2002

    MSC (6-12)

    FEM

    ABAQUS 2005(6-13)

    6.3

    EASIT2 (6-14)

    Fig.6-2 Fig.6-5 EASIT2 Engineering Analysis and

    Simulation Innovation Transfer

    e.on EADS Renault

    2011 NAFEMS 28,000

    50 1,094

    CAE 20 (6-15)

    120

    EASIT2

    6.3.1

    Fig.6-2

    Fig.6-2 a

    50%

    Fig.6-2 b

    30

  • 85

    (6-16)

    organizational capability(6-17)

    (6-18)

    80%

    10 10% 10(6-19)

    3 8(6-20) 550

    (6-21)

    Fig.6-2

    6.3.2

    Fig.6-3 Fig.6-3 a

    5 80 20

    30%

    Fig.6-3 b

    CAE

    20 10%

  • 86

    (6-22), (6-23)

    (6-17)

    (6-24), (6-25)

    (6-26)

    1930

    Fig.6-2 a Fig.6-3 a

    (a) EASIT2 (b) CAE

    Fig.6-2

    (a) EASIT2 (b) CAE

    Fig.6-3

  • 87

    6.3.3

    Fig.6-4

    65%

    FEM Abaqus

    15 2 SIMULIA Learning Community(6-27)

    Boeing NASTRAN MSC(6-28)

    EASIT2

    pool (6-14)

    pool

    FEM(6-29), (6-30), (6-31) FEM

    (a) EASIT2 (b) CAE

    Fig.6-4

  • 88

    (6-32) NAFEMS ASME(6-33) (6-25)

    (6-34), (6-35)

    6.3.4

    Fig.6-5 8 4

    1.4

    Fig.6-5

    3

    Fig.6-5

    3

    (a) EASIT2 (b) CAE

    Fig.6-5

  • 89

    (6-36)

    Divide and conquer Divide and rule

    (6-37)

    (6-38) Fig.6-5 a

    (6-1), (6-24), (6-39), (6-40), (6-47)

    6.4 6.4.1 Public Understanding of Science

    Fig.6-1

    (6-25)

    (6-16)

    ISO9000 (6-41)

    (6-39)

    Fig.6-6 knowing how

    knowing that knowing why (6-42),

    (6-43) (6-25)

    (6-1)

  • 90

    (6-38), (6-44)

    Fig.6-5 b

    (6-25)

    (6-44)~(6-48)

    ASME Communicating to a Non-Technical

    Audience(6-49)

    (6-50) PUS Public Understanding of Science (6-39)

    6.4.2

    2~3(6-51)

    (6-52)

    Fig.6-6 (6-25)

  • 91

    Fig.6-1 1960

    (6-53)

    (6-22)

    social

    constructivism

    (6-44)

    1920

    facts suggest verification(6-37) facts

    suggest

    6.4.3 facts

    Fig.6-7 ASME V&V Verification & Validation(6-54) (6-55)

    abstraction Fig.6-7

    Abstraction abs- trahere(6-56) (6-4)

    1666

    1768 1830 (6-37) , (6-57)

    1838–1916

  • 92

    (6-57)

    V&V Fig.6-7

    Validation

    facts(6-58)

    Fig.6-8(6-59) 1626–1697

    Fig.6-7 ASME V&V 10-2006, Guide for Verification and Validation in Computational Solid Mechanics(6-54), (6-55)

  • 93

    Fig.6-8 (6-59)

    Fig.6-7 Preliminary

    calculations

    6.4.4 suggest

    V&V Fig.6-7(6-33)

    (6-1), (6-60)

    V&V

    Fig.6-9 Abaqus(6-61)

    10 2.5 5,000

    1

    20 5,000 1

    CAE(6-16) Fig.6-10(6-62)

    NG

  • 94

    NG NG

    CAE

    (6-32), (6-63)

    CAE(6-64)

    Fig.6-9 Abaqus (1998-2011)

    Fig.6-10 CAE (6-62)

  • 95

    CAE

    Fig.6-9

    Abaqus FEM

    (6-65)

    FEM

    (6-66)

    Fig.6-10

    (6-67)

    2 300 400

    (6-68) (6-1), (6-60), (6-40)

    6.5 6.5.1

    Fig.6-11(6-69)

    a t1

    Fig.6-11 b

    t2

  • 96

    t2’

    1m 100m

    10m

    (6-38), (6-63)

    6.5.2

    Fig.6-12 2013 NAFEMS(6-70)

    Engineering phase 45% Engineering(6-56)

    Fig.6-11 (6-69)

    (a) (b)

  • 97

    Fig.6-13 2002

    NIST (6-71)

    Fig.6-12 Fig.6-13

    Fig.6-12 (6-70).

    Fig.6-13 (6-71)

  • 98

    (6-66)

    ASME

    V&V

    6.5.3

    Fig.6-11 (6-7),

    (6-71), (6-72) Fig.6-14 Fig.6-12 Engineering

    phase Fig.6-14 R&D

    V&V R&D

    R&D

    V&V

    3D-CAD(6-73)

    Fig.6-5

    (6-74)

    (6-5) FEM

    (6-33) (6-75)

    R&D

    FOA(6-76)

    1DCAE(6-77) (6-78)

  • 99

    6.6 7 bookish

    (6-36) 4 (6-79)

    (6-60), (6-80), (6-81), (6-82)

    Fig.6-7 V&V conceptual

    model conceptio(6-83) Philipp

    Frank 1884 1966(6-84)

    (6-81)

    ASME 2012 V&V

    Fig.6-14

  • 100

    concept

    suggest(6-85) Regulatory science

    Concept early I have no idea.

    idea

    concept

    (6-86)

    1885 1962(6-87)

    6.7

    (6-88)

    Improve our society, because

    fast is never fast enough(6-89).

  • 101

    5

    1.

    Ogden

    FEM

    2.

    1950

    1960

    FEM

    Maxwell -

    FEM

  • 102

    3.

    Yamaki Esslinger FEM

    4.

    5.

  • 103

    (7-1)

    in situ in vivo(7-2) 1960

  • 104

    1 (1-1) S. P. Timoshenko, , , , , , 1977, p.1.

    (1-2) , , 3 , , , 1983.

    (1-3) , , 9 / , 2008, pp. 49 62 .

    (1-4) , ,

    , Vol.14, No.1, 2009, pp. 1970 1973.

    2 (2-1) , ], , , 1996.

    (2-2) J. T. Oden, , , , , 1980.

    (2-3) , (3), , , 1986.

    (2-4) , , , , , 1995.

    (2-5) K. C. Valanis and R. F. Landel, Journal of Applied Physics, Vol. 38, 1967, p.2997. (2-6) , , Vol. 45, No. 2, 1972, p.207.

    (2-7) K. J. Bathe, Finite Element Procedures, Prentice Hall, USA, 1996.

    (2-8) D. F. Jones and L.R.G. Treloar, Journal of Physics. Vol. D, No. 8, 1975, p.1285.

    (2-9) R. W. Ogden, Proceedings of the Royal Society of London A, 326, p.565, 1972.

    (2-10) R. W. Ogden, Rubber Chemistry and Technology, Vol. 59, 1986, p. 361.

    (2-11) R. W. Ogden, Non-linear Elastic Deformations, Dover Publications, USA, 1997.

    (2-12) L. R. G. Treloar, Transactions of the Faraday Society, Vol. 40, 1944, p. 59.

    (2-13) M. Mooney, Journal of Applied Physics, Vol. 11, 1940, p. 582.

    (2-14) L. R. G. Treloar, Transactions of the Faraday Society, 39, p.241, 1943.

    (2-15) R.S. Rivlin and D. W. Sauders, Philosophical Transactions of the Royal Society A, No.

    243, 1951, p. 251.

    (2-16) A. E. Green and W. Zerna, Theoretical Elasticity, Oxford at The Clarendon Press, UK,

    1954.

    (2-17) A. E. Green and J. E. Adkins, Elastic Deformations and Non-Linear Continuum

    Mechanics, Oxford at The Clarendon Press, UK, 1960. (2-18) Ogden , Mech D&A News, Vol. 1999-4,

    , 1999.

  • 105

    (2-19) , Mech D&A News, Vol. 2001-2, , 2001.

    (2-20) E. M. Arruda and M. C. Boyce, Journal of the Mechanics and Physics of Solids, Vol. 41,

    No. 2, 1993, p. 389. (2-21) , 2001

    3 (3-1) , 1975, pp. 1 8

    (3-2) ( Maxwell ) Mech D&A News

    Vol. 2005-2 2005.

    (3-3) (3-3) (3-6) Vol.

    6 1987, pp. 20 48

    (3-4) , 1995

    (3-5) , 1997

    (3-6) , 2000

    (3-7) http://www.tainstruments.co.jp/

    (3-8) JIS K7244-1-2006 - - 1

    (3-9) 2 - Mech D&A News

    Vol. 2005-3 2005.

    (3-10)

    A Vol. 72, No. 723 2006, p. 109

    (3-11)

    Vol. 25 2007, p.65.

    (3-12) I. Emri and N. W. Tschoegl, Rheologica Acta, Vol. 32, 1993, p. 311. (3-13)

    306-20085070 2008.

    (3-14) TMRREAL SCHILD, , http://www.sekisui.co.jp/search/detail-2758.html

    (3-15) , 1992

    (3-16) , 2008

    (3-17)

    No.16-06 2006, p. 15

    (3-18) JIS G 0602(1993)

    (3-19) JIS , C

    Vol. 59, No. 566 1993, p. 2921.

  • 106

    (3-20) T. Kobayashi, M. Sato and Y. Mihara, Application of Thermo-Viscoelastic Laminated Plate Theory to Predict Warpage of Printed Circuit Boards, Viscoelasticity - From Theory

    to Biological Applications, ISBN: 978-953-51-0841-2, InTech, 2012.

    (3-21) W.G. Knauss, Aspects of Linear and Nonlinear Viscoelasticity A partially historical

    perspective, The 9th International Conference on the Mechanics of Time Dependent

    Materials, May 27–30, 2014, Montreal, Canada.

    4 (4-1) ,

    , A Vol. 77, No. 776, pp. 582 589 2011.

    (4-2) T. Kobayashi, Y. Mihara, and F. Fujii, Path-Tracing Analysis for Post-buckling Process

    of Elastic Cylindrical Shells under Axial Compression, Thin-Walled Structures, Vol.61,

    2012, pp. 180–187. (4-3) J. G. Teng, and J. M. Rotter, Buckling of Thin Met-al Shells, Spon Press, UK,

    2004.

    (4-4) N. Yamaki, Elastic Stability of Circular Cylindrical Shells, North-Holland, Netherlands,

    1984.

    (4-5) M. Esslinger, Hochgeschwindigkeitsaufnahmen von Beulvorgang dunnwandiger,

    axialbelasteter Zylinder, Der Stahlbau, Vol.39, No.3, 1970, pp. 73-76.

    (4-6) J. Singer, J. Arbocz and T. Weller, Buckling Experiments: Experimental Methods in

    Buckling of Thin-Walled Structures, Vol.2, John Wiley & Sons, New York, 2002, p.635.

    (4-7) A. Sadowski, and J. M. Rotter, Modelling and Behaviour of Cylindrical Shell Structures

    with Helical Features, Computers and Structures, Vol.133, 2014, pp. 90–102.

    (4-8) Abaqus Users Manual, Version 6.13, Dassault Systems Simulia Corp., USA, 2013. (4-9) , , 2005, pp.14-16.

    (4-10) http://www.mech-da.co.jp/demo/demo2.html .

    (4-11) T. Kobayashi, M. Sato and Y. Mihara, Application of Thermo-Viscoelastic Laminated

    Plate Theory to Predict Warpage of Printed Circuit Boards, Viscoelasticity - From Theory

    to Biological Applications, ISBN: 978-953-51-0841-2, InTech, 2012.

    (4-12) S. P. Timoshenko, and J. M. Gere, Theory of Elastic Stability, 2nd ed., McGraw-Hill,

    New York, 1961, p.465/eq. (j), p.472/Fig. 11-8.

    (4-13) F. Fujii, H. Noguchi and E. Ramm, Static Path Jumping to Attain Postbuckling

    Equilibria of a Compressed Circular Cylinder, Computational Mechanics. Vol.26, No.3,

    2000, pp. 259-266.

  • 107

    (4-14) W. T. Koiter, On the Stability of Elastic Equilibrium, PhD Thesis, Delft, 1945, English Translation in NASA TT F-10, 833, 1967.

    (4-15) T. H. Karman and H. S. Tsien, The Buckling of Thin Cylindrical Shells under Axial

    Compression, Journal of the Aeronautical Science, Vol.8, 1941, pp.303-312.

    (4-16) S. Yamada and J. G. A. Croll, Contributions to Understanding the Behavior of Axially

    Compressed Cylinders, Journal of Applied Mechanics, Transactions of the ASME, Vol.66,

    1999, pp.299-309.

    (4-17) G. W. Hunt, G. J. Lord and M. A. Peletier, Cylindrical Shell Buckling: A

    Characterization of Localization and Periodicity, Discrete and Continuous Dynamical

    Systems, Series B, Vol.3-4, 2003, pp.505-518.

    (4-18) M. Esslinger and B. Geier, Gerechnete Nachbeullasten als untere Grenze der

    experimentallen axialen Beullasten von Kreiszylindern, Der Stahlbau, Vol.41, No. 12,

    1972, pp.353-359. (4-19) http://www.mech-da.co.jp/demo/demo1.html .

    (4-20)

    A2( ), Vol.70, No.2 ( Vol.17), 2014, pp.

    I_419-I_428.

    5

    (5-1) Takaya Kobayashi and Motoharu Tateishi, Hot Clamp Design for LMFBR Piping

    Systems, Journal of Pressure Vessel Technology, Transactions of the ASME, Vol.115, 1993, pp. 47 52.

    (5-2) 1983 PNC-TJ202-83-10 (II) , , PNC-TJ202-83-10, 1983,

    http://jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/PNC-TJ202-83-10.pdf

    (5-3) M. J. Anderson, L. L. Hyde, S. E. Wagner and L. K. Severud, Insulated Pipe Clamp Design, ASME Effects of Piping Restraints on Piping Integrity, PVP-40, 1980, pp.

    153-166.

    (5-4) G. L. Jones and A. K. Dhalla, Classification of Clamp Induced Stress in Thin-Walled

    Pipe, Journal of Pressure Vessel Technology, 81-PVP-17, 1981, pp. 1-10.

    (5-5) MARC Analysis Research Co., MARC User Information Manual, Rev. K.3., 1988.

    (5-6) J. J. Marsault and J. M. Stephan, New Design of Supporting Device for Large Diameter

    Thin Pipes, Transactions of the International Conference on Structural Mechanics in

  • 108

    Reactor Technology, Vol. 9, No. E, 1987, pp. 265-270.

    (5-7) W. C. Young, Roark's Formulas for Stress and Strain, 6th Edition, McGraw-Hill Book

    Co., 1989, Table 30, Cases 7 and 8.52.

    6 (6-1) E. H. , , , , , 1962, p. 14, p. 69, p.85, p.88, p.

    107, p.112, p.118, p. 175. (6-2) , , 25 ,

    25 , , 2009. .

    (6-3) , 6 , , , 1977. 3 5 .

    (6-4) , , 3 6 , , , 1983 2008.

    (6-5) , , , , 2013, pp. 181 186.

    (6-6) , , , Vol.9,

    No.1, 2010, pp. 1 12.

    (6-7) , 3

    , , , 2000, pp. 44 46.

    (6-8) , , , , , , 1983.

    (6-9) , Jason (Jack) Lemon , , , , Vol.12,

    No.2, 2007, pp. 1585 1586.

    (6-10) , , COE

    , MMRC Discussion Paper 74, 2006, pp. 1 12.

    (6-11) R. H. MacNeal, CAE , , Vol.11, No.1, 2006, pp. 51 54.

    (6-12) Federal Trade Commission, MSC. Software Settles FTC Charges by Divesting Nastran

    Software,2002,

    http://www.ftc.gov/news-events/press-releases/2002/08/mscsoftware-settles-ftc-charges-di

    vesting-nastran-software.

    (6-13) Dassault Systèmes, Dassault Systèmes (DS) to Acquire ABAQUS Inc. to Create

    Next-Generation Solutions for 3D Realistic Simulation, 2005, http://www.3ds.com/

    press-releases/single/dassault-systemes-ds-to-acquire-abaqus-inc-to-create-next-generati

    on-solutions-for-3d-realistic/

    (6-14) EASIT2 Industry Needs Survey Report, Engineering Analysis and Simulation

    Innovation Transfer, 2011, http://www.easit2.eu/?page_id=12 (6-15) CAE , 20 CAE CAE

  • 109

    10 , CAE 20 , 2011,

    http://www.jancae.org/study/20/ (6-16) , , , , 2013, p.

    7, p.64 , p. 267 .

    (6-17) R. R. Nelson, S. G. Winter, An Evolutionary Theory of Economic Change, Harvard University Press, Cambridge, 1985, , , ,

    , 2007, p. 75, p. 95.

    (6-18) , 2014 4 ,

    2014,

    https://www.keidanren.or.jp/policy/2014/080_kekka.pdf. (6-19) , , COE

    MMRC Discussion Paper No. 74, 2006.

    (6-20) , , 2014,

    http://www.jama.or.jp/industry/industry/industry_1g1.html. (6-21) , 1 8,000

    , , No.14-07, 2014.

    (6-22) , , , , 2008, pp. iii v,

    p. 3. (6-23) CAE , ,

    , , 20011.

    (6-24) , , , , , 2003, p. 18, p. 97.

    (6-25) , , 1 , , , 2005, , p. 23, p.

    97 101, p.107.

    (6-26) , , , 6-2008, , , 2008, p.20.

    (6-27) 2014 SIMULIA Community Conference, May 20–22, 2014, Providence, USA. (6-28) 2004

    (6-29) B. Charlès, Virtual world for sustainable innovation, ECCM 2010, IV European

    Conference on Computational Mechanics, May 16-21, 2010, Paris, France. (6-30) , CAE , Mech D&A News, Vol.2010-1,

    , 2010.

    (6-31) , CAE , 21 CAE , , 2012,

    http://www.jancae.org/study/21/03_03.html (6-32) , ,

  • 110

    , Vol.14, No.1, 2009, pp. 1970 1973. (6-33) , , , , , ,

    V&V, , , 2013, pp. 21 39 .

    (6-34) ,

    , PrimeShip-HULL for Harmonised CSR, 2015,

    http://www.classnk.or.jp/hp/ja/activities/csrh/software/

    (6-35) Lloyd's Register Marine, ShipRight, 2014,

    http://www.lr.org/en/marine/software/shipright.aspx (6-36) , , , , ,

    1979, pp. 7 14.

    (6-37) Rupert Clendon Lodge, An Introduction to Modern Logic [1920], Cornell University Library, Ithaca, 2009, p. 199, p. 202, pp. 208 229. pp. 264 266, “The method of induction

    consisted of approximately three phases:' — (1) analysis and simplification of the problem,

    (2) construction of some hypothesis on the basis of the simplifying analysis, and (3)

    determination of the mental model thus suggested, by careful comparison with the facts. This last stage is sometimes known as Verification.”

    (6-38) M , , , ,

    , , 1979, pp. 32 40.

    (6-39) , , , , , , 2002, p.4 , pp.

    8 19 , pp. 77 84 .

    (6-40) , , ,

    , , 1989, pp. 16 19, p. 48, p.307, pp. 390 394.

    (6-41) JISQ 9000 : 2006 (ISO 9000 : 2005), 3.2.10, :

    , 3.2.10, :

    , 2006.

    (6-42) , , , , 1996, pp. 119 120.

    (6-43) , , , , , , ,

    1987, p. 27. (6-44) , , 9 / , 2008, pp. 49 62 , pp. 221 222 .

    (6-45) , , , , ,

    , 5-2008, , , 2008, p.6.

    (6-46) , , 4 , 1992.

    (6-47) , , 8 , 1986. p.227 , p. 267 , p. 317

    (6-48) , , XII , 1971.

  • 111

    (6-49) ASME, Communicating to a Non-Technical Audience, https://www.asme.org/products/courses/communicating-to-a-nontechnical-audience

    (6-50) Virginia Tech Nuclear Engineering Program,

    http:// www.ictas.vt.edu/communication/pdf/final_NSEL.pdf (6-51) S. P. Timoshenko, D. H. Young, , , , , , ,

    1967, p. ix. (6-52) , , , , 1966, p. 1, p. 279.

    (6-53) , , ,

    Vol.45, No.3, 1996, pp. 292 303. (6-54) ASME V&V 10-2006, Guide for Verification and Validation in Computational Solid Mechanics,

    ASME, New York, 2006.

    (6-55) , ASME V&V , 13 CAE , , 2008,

    http://www.jancae.org/study/13/04.html

    (6-56) Oxford Advanced Learner's Dictionary, Oxford University Press, 8th edition, Oxford,

    2010. (6-57) , , , 1987, p.122, p.218.

    (6-58) , , 7

    , Mechanical Design 2014, , 2014.

    (6-59) Redi's Experiment, San Diego Miramar College,

    http://faculty.sdmiramar.edu/dtrubovitz/micro/history/Redi.html

    (6-60) Geoffrey Barraclough, History in a Changing World, Blackwell Publishers, Oxford, 1957, p. 14, , , , , , 1964, pp. 10 13, p.

    29., p. 59, p. 96.

    (6-61) Abaqus Users Manual, Version 6.11, Dassault Systems Simulia Corp., USA, 2011. (6-62) CAE

    , 5 , Mechanical Design 2012, , 2012.

    (6-63) , , , , , 2002, p. 19, p.

    131. (6-64) , CAE, 10 CAE , ,

    http://www.jancae.org/study/10/02.html (6-65) , , , , 15,

    , , 2008, p.44.

    (6-66) Theodore Levitt, Marketing Myopia, Harvard Business Review, 1960, pp. 53 54,

    , , , ,1983, pp. 70 73.

  • 112

    (6-67) , , , , , 2010, p. 31. (6-68) , , , , , , 1967,

    p.94. (6-69) , YKK , ,

    , 2001 (6-70) Paul Newton, The NAFEMS Simulation Capability Survey 2013, NAFEMS,

    ISBN 978-1-874376-94-1, p. 8.

    (6-71) L. M. Branscomb, P. E. Auerswald, Between Invention and Innovation, An Analysis of

    Funding for Early-Stage Technology Development, NIST GCR 02–841, National Institute

    of Standards and Technology, 2002, p. 36,

    http://www.atp.nist.gov/eao/gcr02-841/gcr02-841.pdf (6-72) , , , 2014,

    http://www8.cao.go.jp/cstp/gaiyo/sip/140205ws/sip_sasaki0205.pdf

    (6-73) H. Yamaoka (Toyota Motor Corporation), 2008 Abaqus Users' Conference Keynote

    Lecture, Dassault Systèmes, Newport, USA, 2008. (6-74) ,

    , , M03, 2007.

    (6-75) , V&V , 18 CAE , , 2010,

    http://www.jancae.org/study/18/index.html (6-76) , CAE, R&D , Vol.35, No.4,

    2000, pp. 1 8.

    (6-77) , 1DCAE , , 2013.

    (6-78) NHK ZERO,3D , 2013 4 14 ,

    http://www.nhk.or.jp/zero/contents/dsp422.html, , OPTISHAPE-TS,

    http://optishape-ts.seesaa.net/article/355065893.html

    (6-79) , JST 2008 , , ,

    2008. (6-80) , , , , , 1998, p. 49. Social statics

    (6-81) , , , 2002, 9/p. 82, p. 375, 14/p. 43, p.253, p.281, p.

    428, 15/p. 346. (6-82) , , , , 2007, p.32.

    (6-83) (1928 2014), ASME V&V , 2012 6 .

    (6-84) Philipp Frank, Contemporary Science and the Contemporary World View, Science and

  • 113

    the Modern Mind (Edited by G. Holton), Beacon Press, Boston, 1958, p. 54, “All you can know is a world dissolved by analyzing intellect into an abstraction.”

    (6-85) , ASME V&V symposium 2013 , HQC , III

    1 , 2013, pp. 10 13, http://www.jsces.org/research/hqc/documents.html

    (6-86) 2013 SIMULIA Community Conference, May 22–24, 2013, Vienna, Austria

    .

    (6-87) , - , , 11-2005, , , 2005,

    p.19. (6-88) , 2010

    (6-89) Dale Berry, Customer’s Use of Realistic Simulation to Improve Our Society, 2009

    SIMULIA Customer Conference, Dassault Systèmes, London, UK, 2009.

    7 (7-1) , 1988 p.86

    (7-2) , , , , , , 1967,

    p.17.

    (1) Takaya Kobayashi and Motoharu Tateishi, Hot Clamp Design for LMFBR Piping Systems,

    Journal of Pressure Vessel Technology, ASME, Vol.115, 1993, pp.47-52. 1 6

    (2) Takaya Kobayashi, Yasuko Mihara and Fumio Fujii, Path-tracing Analysis for

    Post-buckling Process of Elastic Cylindrical Shells under Axial Compression, Thin-Walled Structures, Vol.61, 2012, pp. 180 187. 5

    (3)

    A2( ), Vol.70, No.2 ( Vol.17), 2014, pp. I_419-I_428.

    4 5

    (1) , , , ,

    : Journal of JSEM, Vol.4, No.4, 2004, pp. 315-320

  • 114

    (2) , , , , , A , Vol.72, No.723, 2006, pp. 1703-1710

    (3) , , , , ,

    (3) : PBT

    Vol.19, No.9, 2007, pp. 575-581

    (4) , , ,

    : : Journal of JSEM, Vol.7, No.4, 2007, pp. 387-392

    (5) Masato Tanaka, Hirohisa Noguchi, Masaki Fujikawa, Masami Sato, Shuya Oi, Takaya

    Kobayashi, Kenji Furuichi, Sonoko Ishimaru and Chisato Nonomura, Development of

    Large Strain Shell Elements for Woven Fabrics with Application to Clothing Pressure

    Distribution Problem, CMES, Vol.62, No.3, 2010, pp. 265-290.

    (6) , , , , , , , ,

    , A , Vol.76, No.763, 2010, pp. 274-282

    (7) , , , ,

    , A , Vol.77, No.776, 2011, pp. 582-589.

    (8)

    , A , Vol.79, No.808,

    2013, pp. 1791-1806

    (1) 1999 Poster Award The Polymer Processing Society

    Kenichi Funaki Chisato Nonomura (Toyobo), Takaya Kobayashi Yoichi Watanabe

    (Mechanical Design & Analysis Corporation), Sigeo Mita and Kuniaki Shoji (Tokyo

    University of Marine Science and Technology), Development of New Material Protective Device against Ship Collisions The 15th annual meeting of the Polymer Processing

    Society, 's Hertogenbosch, The Netherlands, 1999.

    (2) 2002

  • 115

    Mate2002 2002

    (3) 2003

    Mate2003 2003

    (4) 2005 Co-Authoring the Outstanding Technical Paper from the Computer Technology

    Technical Committee ASME

    Takaya Kobayashi and Tomotaka Ogasawara Post-Buckling Analyses of Elastic

    Circular Cylindrical Shells Under Axial Compression ASME 2005 Pressure Vessels and

    Piping Conference Denver, Colorado, USA 2005.

    (5) 2011 Best Conference Paper, ICTWS

    Takaya Kobayashi, Yasuko Mihara and Fumio Fujii, Path-Tracing Analysis for Postbuckling Process of Elastic Cylindrical Shells under Axial Compression

    International Conference on Thin-Walled Structures - ICTWS2011, pp.945-952, 2011,

    Timisoara, Romania.

    (6) 2015

    (7) 2015

    20

    (1) Takaya Kobayashi, Masami Sato and Yasuko Mihara, Application of Thermo-Viscoelastic

    Laminated Plate Theory to Predict Warpage of Printed Circuit Boards, Viscoelasticity -

    From Theory to Biological Applications, ISBN: 978-953-51-0841-2, InTech, 2012.

  • 116

    CAE 2001

    2008

    10

    2013

  • 117