tms 2012

30
On the Factors Governing the Sink Strength of Semicoherent fcc-bcc Interfaces Kedarnath Kolluri and Michael Demkowicz Financial Support: Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL, an Energy Frontier Research Center (EFRC) funded by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Acknowledgments: B. P. Uberuaga, A. Kashinath, A. Vattré, X.-Y. Liu, A. Misra, R. G. Hoagland, J. P. Hirth, M. A. Nastasi, and A. Caro

Upload: kedarnath-kolluri

Post on 21-Jul-2015

114 views

Category:

Technology


0 download

TRANSCRIPT

On the Factors Governing the Sink Strength of Semicoherent fcc-bcc Interfaces

Kedarnath Kolluri and Michael Demkowicz

Financial Support:

Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL,

an Energy Frontier Research Center (EFRC) funded by

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

Acknowledgments: B. P. Uberuaga, A. Kashinath, A. Vattré, X.-Y. Liu, A. Misra, R. G. Hoagland, J. P. Hirth, M. A. Nastasi, and A. Caro

• Point defects (lets assume the cascade occurs in bulk)

• arrive at the interface

• reside and move at coherent regions of the interface until either

• emit back into the bulk

• embed into “non coherent” regions of the interface

• dynamics of embedded defects

Predicting interface sink efficiency: Beyond v.1

Cartoon of defect activity in radiation environment

l2bDb

eff

⌫e��E/kT

Ac

Diceff

l2bDb

eff

Ac

Diceff

• Point defects (lets assume the cascade occurs in bulk)

• arrive at the interface

• reside and move at coherent regions of the interface until either

• emit back into the bulk

• embed into “non coherent” regions of the interface

• dynamics of embedded defects UNKNOWN

Cartoon of defect activity in radiation environment

l2bDb

eff

⌫e��E/kT

Ac

Diceff

l2bDb

eff

Ac

Diceff

Predicting interface sink efficiency: Beyond v.1

Interface sink efficiency: Formal definitionCartoon of defect activity in radiation environment

where

M2

µ2

M1

µ1

m13m12

⌘ =JI

JI0

Mi = M bi [M b,I

i

Bulk mobilities

Interface mobilities

Interface free energy

µI

J = �Mrµ rµ = µbI � @F I

@nδ

Interface thickness lets assume 1 as interface is rather sharp

Interface sink efficiency

Cartoon of defect activity in radiation environment

Hence,

Interface free energy plays a crucial role in interface sink strength

Goal: Determine interface free energy

⌘ =M

hµbI� @FI

@n

i

M0µbI ⌘ = 1�@FI

@⇢

µbI

M2

µ2M1

µ1M3

µ3

m13m12

Interface structure evolves

Schematic of free energy of an interface

★ Interface structure evolves as defects interact with the interface

Inte

rface

ene

rgy

(f)

Interfacial density (ρ)

voidphase transformation

structure evolvesf(⇢, . . . )

⌘ = 1�@FI

@⇢

µbI

F I ⌘ �(f(⇢, . . . ),Mi,m)

★ Different interface regions may have different densities

★ Different density region have different free energies

Interface sink efficiency change as structure evolves

Interfacial density (ρ)

Inte

rface

ene

rgy

(f)

µvbulk

µibulk

voidphase transformation

structure evolves

f(⇢, . . . )

F I ⌘ �(f(⇢, . . . ),Mi,m)

⌘ = 1�@FI

@⇢

µbI

M2

µ2M1

µ1M3

µ3

m13m12

Holy grail: Predict sink efficiency as interface structure evolves

Schematic of interface free energyPoint defect activity under radiation

Interfacial density (ρ)

Inte

rface

ene

rgy

(f)

µvbulk

µibulk

voidphase transformation

structure evolves

f(⇢, . . . )

F I ⌘ �(f(⇢, . . . ),Mi,m)

Goal: To determine in the context of interface structure

• Interface free energy (factors that determine the energy functional)

• Point defect mobilities that will determine the interface evolution

⌘(t) = 1�@FI

@⇢

µbI

M2

µ2M1

µ1M3

µ3

m13m12

• Our focus is on

• interfaces of immiscible fcc-bcc semicoherent metal systems

Cu-Nb, Cu-V, Cu-Mo, Cu-Fe, and Ag-V (in both KS and NW)

Methods and model systems

• Atomistic simulations of few interfaces:

Molecular dynamics (at 800 K) and statics, EAM potential, LAMMPS

• Develop insights that may be used to develop figures of merits for

classes of interfaces

(111) fcc(110)

bcc|| 〈110〉

fcc〈111〉

bcc||andKurdjumov-Sachs (KS):

(111) fcc(110)

bcc|| 〈110〉

fcc〈100〉

bcc||andNishiyama-Wassermann (NW):

General features of semicoherent fcc-bcc interfaces

Cu-V

〈110〉Cu〈111〉Nb

〈112〉 Cu〈112〉 Nb

An example of a semicoherent interface

View of the Interface

View of the Interface

View of the Interface

View of the Interface

View of the Interface

View of the Interface

General features of semicoherent fcc-bcc interfaces

Cu-V

〈110〉Cu〈111〉Nb

〈112〉 Cu〈112〉 Nb

An example of a fcc-bcc semicoherent interface

Patterns corresponding to periodic “good” and “bad” regions

General features of semicoherent fcc-bcc interfaces

Cu-V

〈110〉Cu〈111〉Nb

〈112〉 Cu〈112〉 Nb

Interface contains arrays of misfit dislocations separating coherent regions

General features of semicoherent fcc-bcc interfaces

〈110〉Cu〈111〉Nb

〈11

2〉C

u〈

112〉

Nb

Cu-Nb Cu-V

Interface contains arrays of misfit dislocations separating coherent regions

Cu-Nb KS Cu-V KS〈110〉Cu

〈11

2〉C

u1 nm

MDI

• Two sets of misfit dislocations with Burgers vectors

• Misfit dislocation intersections (MDI) where different sets of dislocations meet

General features of semicoherent fcc-bcc interfaces

Defects on misfit dislocations are good traps to point defects

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cu-Nb KS Cu-Fe NW Cu-V KS

1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1 nm 1.4 nm

Form

atio

n en

ergy

(eV

)A

ngle

with

-ve

x ax

is

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cu-Nb KS Cu-Fe NW Cu-V KS

1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1 nm 1.4 nm

Form

atio

n en

ergy

(eV

)A

ngle

with

-ve

x ax

is

Different fcc-bcc semicoherent interfaces with misfit dislocations

Vacancy formation energies (similar trend for interstitials as well)

Interface reconstruction dominated by MDI-point defect interactions

Interface structure evolution depends on MDI interactions with point defects

Form

atio

n en

ergy

(eV

)

Ag-V NW

Cu-Nb KS

Size of point defect cluster at an MDI

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cu-Mo KS

B CA

Interface reconstruction dominated by MDI-point defect interactions

Interface structure evolution depends onMDI interactions with point defects

Form

atio

n en

ergy

(eV

)

Ag-V NW

Cu-Nb KS

Size of point defect cluster at an MDI

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cu-Mo KS

B CA

B’A’

Cu-Nb

A’ B’

Cu-Mo

Interface structure evolution depends on MDI interactions with point defects

Interface reconstruction dominated by MDI-point defect interactionsFo

rmat

ion

ener

gy (e

V)

Ag-V NW

Cu-Nb KS

Size of point defect cluster at an MDI

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cu-Mo KS

B CA

Interface structure evolution depends on MDI interactions with point defects

Interface reconstruction dominated by MDI-point defect interactionsFo

rmat

ion

ener

gy (e

V)

Ag-V NW

Cu-Nb KS

Size of point defect cluster at an MDI

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cu-Mo KS

B CA

C’A’

Ag-V

Holy grail: Predict sink strength as interface structure evolves

Schematic interface free energyPoint defect activity under radiation

⌘ = 1�P

Mi@FI

@⇢PMiµI

i

Interfacial density (ρ)

Inte

rface

ene

rgy

(f)

µvbulk

µibulk

voidphase transformation

structure evolves

f(⇢, . . . )

M2

µ2M1

µ1M3

µ3

m13m12

F I ⌘ �(f(⇢, . . . ),Mi,m)

Goal: To determine

• Interface free energy (or factors)

• point defect mobilities that will determine the interface evolution

Point defect migration along the interface depends on the distance between defects on misfit dislocations

Point defects migrate from MDI to MDI by collective atomic motion

Cu-Nb KS

(a) (b) (c)1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cu-Nb KS Cu-Fe NW Cu-V KS

1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1 nm 1.4 nm

Form

atio

n en

ergy

(eV

)A

ngle

with

-ve

x ax

is

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cu-Nb KS Cu-Fe NW Cu-V KS

1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1 nm 1.4 nm

Form

atio

n en

ergy

(eV

)A

ngle

with

-ve

x ax

is

Point defect migration along the interface depends on the distance between defects on misfit dislocations

Point defects migrate from one dislocation defect to another by collective atomic motion

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cu-Nb KS Cu-Fe NW Cu-V KS

1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1 nm 1.4 nm

Form

atio

n en

ergy

(eV

)A

ngle

with

-ve

x ax

is

1 nm

Cu-V KS

(a) (b) (c)

1 nm

Cu-Fe NW

Point defects migrate along misfit dislocation lines

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cu-Nb KS Cu-Fe NW Cu-V KS

1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1 nm 1.4 nm

Form

atio

n en

ergy

(eV

)A

ngle

with

-ve

x ax

is

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cu-Nb KS Cu-Fe NW Cu-V KS

1 nm

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

50

100

150

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1 nm 1.4 nm

Form

atio

n en

ergy

(eV

)A

ngle

with

-ve

x ax

is

Summary• Interface sink strength is a dynamic, evolving property of the interface

• In semicoherent fcc-bcc interfaces, interface sink strength depends on

– Density of misfit dislocation intersections and other dislocation defects

– The ability of the misfit dislocation intersections to trap point defects

– Point defect transport along the interfaces

• Distance between misfit dislocation defects

• character of the misfit dislocations