today: atmospheric seeing adaptive optics reading: ch. 7 ...reading: ch. 7 (pp. 126–143), bradt,...

12
Today:   Atmospheric Seeing               Adaptive Optics                                                                     Reading: Ch. 7 (pp. 126–143),                                   Bradt, Ch. 5.5  Astronomy 101                                             Lecture # 8

Upload: others

Post on 09-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Today:   Atmospheric Seeing              Adaptive Optics                                                                    Reading: Ch. 7 (pp. 126–143),                                  Bradt, Ch. 5.5  

Astronomy 101                                             Lecture # 8

Page 2: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Contributions to “Seeing”

Image motion and blurring:  Movement of the image centroid due to atmospheric turbulence.

Scintillation: Image intensity fluctuations due to atmospheric turbulence. 

Astronomy 101                                             Lecture # 8

Page 3: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Ideal (no­atmosphere) Case

Astronomy 101                                             Lecture # 8

θmin = 1.22 λ/d

d = telescope diameter

θmin

Page 4: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Optics Refresher

Astronomy 101                                             Lecture # 8

n1

n2

n1 < n2v1 > v2

Velocity of light in matter is: 

   

where n is index of refraction.

Results:     1) Compression of wavefronts 

at larger n;    2) Snell's Law:   

v=cn

n1sin 1=n2sin 2

2

1

Page 5: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

K­band imaging of the galactic center with integration time 0.3 sec.   Images obtained with a Speckle Camera SHARP I  at La Silla, Chile. 

Image Credit: IR and Submillimeter                      Astronomy Group at MPE

Astronomy 101                                             Lecture # 8

Effects of Atmosphere: Speckles

Page 6: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Dependence of “Seeing” on Airmass

Astronomy 101                                             Lecture # 8

Fried's coherence length: 

   

The “seeing” angle:

rc≈0.114 m

550nmcosz

0.6

c≈1' ' sec z0.6

550nm 0.4

Page 7: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

K­band imaging of the galactic center with integration time 0.3 sec.   Images obtained with a Speckle Camera SHARP I  at La Silla, Chile. 

Image Credit: IR and Submillimeter                      Astronomy Group at MPE

Astronomy 101                                             Lecture # 8

Effects of Atmosphere: Speckles

Page 8: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Scintillation

Astronomy 101                                             Lecture # 8

Photometric noise    for point stars:

sec z = airmassd = telescope diameter (m)t = integration time (s)h = elevation above sea               level (m) 

msc≃0.09sec z7/4

d2 /32 t

550nm −7 /12

e−h/8000m

Page 9: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Astronomy 101                                             Lecture # 8

Image Credit: Louise Good, U Hawaii

Page 10: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Palomar Adaptive Optics System

Astronomy 101                                             Lecture # 8

An image of an mV=10 star with and without AO correction. In the equivalent of 1.3 arcsecond visible seeing a corrected K­band image with a FWHM of 0.16 arcseconds (~1.7x the diffraction limit) was achieved.  The laser power was 6 watts and the high order AO wavefront sensor was running at a frame rate of 150Hz. 

Page 11: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Complete Adaptive Optics System

Astronomy 101                                             Lecture # 8

Image Credit: ARC (Australian Research                        Council)

●Sampling System 

●Wavefront Sensing

●Wavefront Correction

Page 12: Today: Atmospheric Seeing Adaptive Optics Reading: Ch. 7 ...Reading: Ch. 7 (pp. 126–143), Bradt, Ch. 5.5 Astronomy 101 Lecture # 8. Contributions to “Seeing” Image motion and

Astronomy 101                                             Lecture # 7

Image of the GC taken with a NIR adaptive optics camera on an 8.2 m VLT (ESO)Image of the GC obtained using 

speckle imaging at La Silla, Chile

Image Credit: IR and Submillimeter Astronomy Group at MPE1”