today: calculating ccd gain aperture vs. psf …astronomy 101 lecture # 6 airmass = sec −0.0018167...

23
Today:   Calculating CCD gain               Photometry                          Aperture vs. PSF Photometry                           Photometric Filters                          Effects of Atmosphere – Airmass                          Differential vs. Absolute Photometry                          Photometry of Extended Sources                          SNR and Exposure Time                   Reading: Ch. 7 (pp. 125–132), 10 Astronomy 101                                          Lecture # 6

Upload: others

Post on 18-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Today:   Calculating CCD gain              Photometry                         Aperture vs. PSF Photometry                          Photometric Filters                         Effects of Atmosphere – Airmass                          Differential vs. Absolute Photometry                         Photometry of Extended Sources                         SNR and Exposure Time

                  Reading: Ch. 7 (pp. 125–132), 10

Astronomy 101                                          Lecture # 6

Page 2: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

PhotometryDirect measure of integrated flux (counts per unit time 

per unit area ) received from a celestial target.●

    F = specific flux from a target     S = transmission function that describes

           ­ Filter passband           ­ CCD response           ­ Atmospheric transmission  

F=∫0

F⋅S

d

Astronomy 101                                          Lecture # 6

Page 3: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Magnitudes and Fluxes

m1−m2=2.5 log10 F2

F1 ● Bolometric  Magnitude:●

●Color Magnitude: mV ,1−mV ,2=2.5 log10 FV , 2

FV ,1

Astronomy 101                                          Lecture # 6

Page 4: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

How do we measure F?

●Main Methods:● 1. Aperture photometry●    2. Point­spread­function (PSF) ●           fitting

F=∫0

F⋅S

d

Astronomy 101                                          Lecture # 6

Page 5: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Aperture Photometry

Main stellar     aperture

Astronomy 101                                          Lecture # 6

Background   annulus

m=C−2.5 log10 [ N star−N sky ]

Page 6: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

PSF PhotometryStars too close together to do a simple aperture count.

Need to do PSF fitting: modeling the radial “shape” of each stellar image.

Astronomy 101                                          Lecture # 6

Page 7: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

PSF PhotometryAiry Pattern: Ideal PSF

Astronomy 101                                          Lecture # 6

Slide Credit: Don Hoard

Page 8: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

PSF Photometry

Real PSFs are considerably more complicated.

Astronomy 101                                          Lecture # 6

Page 9: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

PSF Photometry

Real PSFs are considerably more complicated.

Example: Hubble images of quasars from Bahcall et al.

Slide Credit: Don Hoard

Page 10: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

PSF Photometry

Slide Credit: Don Hoard

Page 11: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

How do we determine S?

●Main Contributions:●      1. CCD response●      2. Filter bandpass●      3. Atmospheric Transmission

F=∫0

F⋅S

d

Astronomy 101                                          Lecture # 6

Page 12: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

CCD Quantum Efficiency

●From Apogee Instruments

Astronomy 101                                          Lecture # 6

Page 13: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

Wide­Band Photometric Filters

Page 14: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

Medium­Band Filters

Page 15: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

Narrow­Band Filters

Page 16: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Atmospheric Transmission Astronomy 101                                          Lecture # 6

Page 17: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

mobs=mstar 0 sec

Astronomy 101                                          Lecture # 6

Airmass= sec−0.0018167 sec−1−0.002875 sec−12−0.0008083 sec −13

A better approximation:  

Airmass Correction

Page 18: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

How do we invert this equationto determine F

?

●Main Methods:● 1. Differential Photometry●    2. Absolute Photometry

F=∫0

F⋅S

d

Astronomy 101                                          Lecture # 6

●Converting from instrumental magnitude to apparent   magnitude.

Page 19: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

m1= I1−I 2m2

mi=calibrated magnitude of star iI i=instrumental magnitude of star i

Differential Photometry

Slide Credit: Don Hoard

Page 20: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6Absolute Photometry

What if there are no calibrated stars in the same CCD frame as your target?

● Make separate observations of standard stars on the same night. Examples of star catalogs include

Landolt 1992, AJ, 104, 340 Stetson http://cadcwww.hia.nrc.ca/cadcbin/wdb/astrocat/stetson/query ● Standard star observations must span a range of airmasses (typically 1–

2.5) and a range of colors the same as that of science targets. ● Obtain observations of standard stars and targets in at least 2 filters. ● Use standard star observations to derive coefficients for the

“transformation equations” which can then be utilized to calibrate instrumental magnitudes of science targets.

Slide Credit: Don Hoard

Page 21: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

Transformation Equations

B – V = (b–v) Tbv + Kbv X + Zbv

 V – R = (v–r) Tvr + Kvr X + Zvr

 R – I = (r–i) Tri + Kri X + Zri

 V – I = (v–i) Tvi + Kvi X + Zvi

 R = r Tr + Kr X + Zr

 V = v Tv + Kv X + Zv

B, V, R, I = calibrated magnitudesb, v, r, i = instrumental magnitudesX = airmassT = color transformation coefficientsK = atmospheric extinction coefficientsZ = zero point corrections

Use IRAF package digiphot.photcal to solve for transformation coefficients and apply calibration to data.

Slide Credit: Don Hoard

Page 22: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Magnitude to Flux Conversion

FX = f

, X 10−m

X/2.5

FX=FX W X

Specific flux in the center of band X:

Total flux in band X:

Page 23: Today: Calculating CCD gain Aperture vs. PSF …Astronomy 101 Lecture # 6 Airmass = sec −0.0018167 sec −1 −0.002875 sec −1 2 −0.0008083 sec −1 3 A better approximation:

Astronomy 101                                          Lecture # 6

SNR and Exposure Time

SNR=SN=

N star

N starnN skyN DN R2

Poisson Noise Limited:

Background Limited:

SN≈

N star

N star

= N star∝ F star t

SN≈

N star

n N sky

∝Fstar

Fsky

t