today’s outline - november 11, 2015phys.iit.edu/~segre/phys405/15f/lecture_21.pdftoday’s outline...

171
Today’s Outline - November 11, 2015 C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 1 / 19

Upload: others

Post on 04-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Today’s Outline - November 11, 2015

• Chapter 3 problems

• Chapter 4 problems

• Stern-Gerlach problem

• Additional Chapter 4 problems:5,7,9,15,18,29,31,38

• Solid state systems

Midterm Exam 2: Monday, November 16, 2015, Room 204 Stuart Buildingcovers through Chapter 4

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 23, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 1 / 19

Page 2: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Today’s Outline - November 11, 2015

• Chapter 3 problems

• Chapter 4 problems

• Stern-Gerlach problem

• Additional Chapter 4 problems:5,7,9,15,18,29,31,38

• Solid state systems

Midterm Exam 2: Monday, November 16, 2015, Room 204 Stuart Buildingcovers through Chapter 4

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 23, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 1 / 19

Page 3: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Today’s Outline - November 11, 2015

• Chapter 3 problems

• Chapter 4 problems

• Stern-Gerlach problem

• Additional Chapter 4 problems:5,7,9,15,18,29,31,38

• Solid state systems

Midterm Exam 2: Monday, November 16, 2015, Room 204 Stuart Buildingcovers through Chapter 4

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 23, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 1 / 19

Page 4: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Today’s Outline - November 11, 2015

• Chapter 3 problems

• Chapter 4 problems

• Stern-Gerlach problem

• Additional Chapter 4 problems:5,7,9,15,18,29,31,38

• Solid state systems

Midterm Exam 2: Monday, November 16, 2015, Room 204 Stuart Buildingcovers through Chapter 4

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 23, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 1 / 19

Page 5: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Today’s Outline - November 11, 2015

• Chapter 3 problems

• Chapter 4 problems

• Stern-Gerlach problem

• Additional Chapter 4 problems:5,7,9,15,18,29,31,38

• Solid state systems

Midterm Exam 2: Monday, November 16, 2015, Room 204 Stuart Buildingcovers through Chapter 4

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 23, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 1 / 19

Page 6: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Today’s Outline - November 11, 2015

• Chapter 3 problems

• Chapter 4 problems

• Stern-Gerlach problem

• Additional Chapter 4 problems:5,7,9,15,18,29,31,38

• Solid state systems

Midterm Exam 2: Monday, November 16, 2015, Room 204 Stuart Buildingcovers through Chapter 4

Homework Assignment #10:Chapter 4:33,47,49; Chapter 5:1,2,5due Monday, November 23, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 1 / 19

Page 7: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.6

Show that Q = d2/dφ2 is hermitian

〈f |Qg〉 =

∫ 2π

0f ∗

d2g

dφ2dφ = f ∗

dg

∣∣∣∣2π0

−∫ 2π

0

df ∗

dg

dφdφ

= f ∗dg

∣∣∣∣2π0

− df ∗

dφg

∣∣∣∣2π0

+

∫ 2π

0

d2f ∗

dφ2gdφ

=

∫ 2π

0

d2f ∗

dφ2gdφ = 〈Qf |g〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 2 / 19

Page 8: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.6

Show that Q = d2/dφ2 is hermitian

〈f |Qg〉 =

∫ 2π

0f ∗

d2g

dφ2dφ

= f ∗dg

∣∣∣∣2π0

−∫ 2π

0

df ∗

dg

dφdφ

= f ∗dg

∣∣∣∣2π0

− df ∗

dφg

∣∣∣∣2π0

+

∫ 2π

0

d2f ∗

dφ2gdφ

=

∫ 2π

0

d2f ∗

dφ2gdφ = 〈Qf |g〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 2 / 19

Page 9: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.6

Show that Q = d2/dφ2 is hermitian

〈f |Qg〉 =

∫ 2π

0f ∗

d2g

dφ2dφ = f ∗

dg

∣∣∣∣2π0

−∫ 2π

0

df ∗

dg

dφdφ

= f ∗dg

∣∣∣∣2π0

− df ∗

dφg

∣∣∣∣2π0

+

∫ 2π

0

d2f ∗

dφ2gdφ

=

∫ 2π

0

d2f ∗

dφ2gdφ = 〈Qf |g〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 2 / 19

Page 10: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.6

Show that Q = d2/dφ2 is hermitian

〈f |Qg〉 =

∫ 2π

0f ∗

d2g

dφ2dφ = f ∗

dg

∣∣∣∣2π0

−∫ 2π

0

df ∗

dg

dφdφ

= f ∗dg

∣∣∣∣2π0

− df ∗

dφg

∣∣∣∣2π0

+

∫ 2π

0

d2f ∗

dφ2gdφ

=

∫ 2π

0

d2f ∗

dφ2gdφ = 〈Qf |g〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 2 / 19

Page 11: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.6

Show that Q = d2/dφ2 is hermitian

〈f |Qg〉 =

∫ 2π

0f ∗

d2g

dφ2dφ = f ∗

dg

∣∣∣∣2π0

−∫ 2π

0

df ∗

dg

dφdφ

= f ∗dg

∣∣∣∣2π0

− df ∗

dφg

∣∣∣∣2π0

+

∫ 2π

0

d2f ∗

dφ2gdφ

=

∫ 2π

0

d2f ∗

dφ2gdφ

= 〈Qf |g〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 2 / 19

Page 12: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.6

Show that Q = d2/dφ2 is hermitian

〈f |Qg〉 =

∫ 2π

0f ∗

d2g

dφ2dφ = f ∗

dg

∣∣∣∣2π0

−∫ 2π

0

df ∗

dg

dφdφ

= f ∗dg

∣∣∣∣2π0

− df ∗

dφg

∣∣∣∣2π0

+

∫ 2π

0

d2f ∗

dφ2gdφ

=

∫ 2π

0

d2f ∗

dφ2gdφ = 〈Qf |g〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 2 / 19

Page 13: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11

Find the momentum space wave function, Φ(p, t), for a particle in theground state of the harmonic oscillator. What is the probability that ameasurement of p on a particle in this state would yield a value outsidethe classical range?

The ground state of the harmonic oscillator is

Ψ0(x , t) =(mωπ~

)14e−mωx

2/2~e−iωt/2

Φ(p, t) =1√2π~

(mωπ~

)14e−iωt/2

∫ ∞−∞

e−ipx/~e−mωx2/2~ dx

=1√2π~

(mωπ~

)14e−iωt/2

√2π~mω

e−p2/2mω~

=

(1

πmω~

)14

e−p2/2mω~e−iωt/2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 3 / 19

Page 14: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11

Find the momentum space wave function, Φ(p, t), for a particle in theground state of the harmonic oscillator. What is the probability that ameasurement of p on a particle in this state would yield a value outsidethe classical range?

The ground state of the harmonic oscillator is

Ψ0(x , t) =(mωπ~

)14e−mωx

2/2~e−iωt/2

Φ(p, t) =1√2π~

(mωπ~

)14e−iωt/2

∫ ∞−∞

e−ipx/~e−mωx2/2~ dx

=1√2π~

(mωπ~

)14e−iωt/2

√2π~mω

e−p2/2mω~

=

(1

πmω~

)14

e−p2/2mω~e−iωt/2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 3 / 19

Page 15: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11

Find the momentum space wave function, Φ(p, t), for a particle in theground state of the harmonic oscillator. What is the probability that ameasurement of p on a particle in this state would yield a value outsidethe classical range?

The ground state of the harmonic oscillator is

Ψ0(x , t) =(mωπ~

)14e−mωx

2/2~e−iωt/2

Φ(p, t) =1√2π~

(mωπ~

)14e−iωt/2

∫ ∞−∞

e−ipx/~e−mωx2/2~ dx

=1√2π~

(mωπ~

)14e−iωt/2

√2π~mω

e−p2/2mω~

=

(1

πmω~

)14

e−p2/2mω~e−iωt/2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 3 / 19

Page 16: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11

Find the momentum space wave function, Φ(p, t), for a particle in theground state of the harmonic oscillator. What is the probability that ameasurement of p on a particle in this state would yield a value outsidethe classical range?

The ground state of the harmonic oscillator is

Ψ0(x , t) =(mωπ~

)14e−mωx

2/2~e−iωt/2

Φ(p, t) =1√2π~

(mωπ~

)14e−iωt/2

∫ ∞−∞

e−ipx/~e−mωx2/2~ dx

=1√2π~

(mωπ~

)14e−iωt/2

√2π~mω

e−p2/2mω~

=

(1

πmω~

)14

e−p2/2mω~e−iωt/2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 3 / 19

Page 17: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11

Find the momentum space wave function, Φ(p, t), for a particle in theground state of the harmonic oscillator. What is the probability that ameasurement of p on a particle in this state would yield a value outsidethe classical range?

The ground state of the harmonic oscillator is

Ψ0(x , t) =(mωπ~

)14e−mωx

2/2~e−iωt/2

Φ(p, t) =1√2π~

(mωπ~

)14e−iωt/2

∫ ∞−∞

e−ipx/~e−mωx2/2~ dx

=1√2π~

(mωπ~

)14e−iωt/2

√2π~mω

e−p2/2mω~

=

(1

πmω~

)14

e−p2/2mω~e−iωt/2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 3 / 19

Page 18: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11

Find the momentum space wave function, Φ(p, t), for a particle in theground state of the harmonic oscillator. What is the probability that ameasurement of p on a particle in this state would yield a value outsidethe classical range?

The ground state of the harmonic oscillator is

Ψ0(x , t) =(mωπ~

)14e−mωx

2/2~e−iωt/2

Φ(p, t) =1√2π~

(mωπ~

)14e−iωt/2

∫ ∞−∞

e−ipx/~e−mωx2/2~ dx

=1√2π~

(mωπ~

)14e−iωt/2

√2π~mω

e−p2/2mω~

=

(1

πmω~

)14

e−p2/2mω~e−iωt/2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 3 / 19

Page 19: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum

p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 20: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω

→ p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 21: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 22: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 23: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp

= 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 24: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 25: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp

= 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 26: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 27: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 28: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx

= 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 29: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1)

= 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 30: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.11 (cont.)

The maximum classical momentum p2

2m= E = 1

2~ω → p =√mω~

the probablity of finding the system outside the maximum classical limits

P =

∫ −√mω~−∞

|Φ|2 dp +

∫ ∞√mω~|Φ|2 dp = 2

∫ ∞√mω~|Φ|2 dp

= 1− 2

∫ √mω~0

|Φ|2 dp = 1− 2√πmω~

∫ √mω~0

e−p2/mω~ dp

substituting z ≡ p/√mω~ and dp =

√mω~ dz

P = 1− 2√π

∫ 1

0e−z

2dx = 1− erf(1) = 1− 0.843 = 0.16

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 4 / 19

Page 31: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

An operator A, representing observable A has two normalized eigenstatesψ1 and ψ2, with eigenvalues a1 and a2, respectively. Operator B,representing observable B has two normalized eigenstates φ1 and φ2, witheigenvalues b1 and b2. The eigenstates are related by

ψ1 = 15(3φ1 + 4φ2) ψ2 = 1

5(4φ1 − 3φ2)

(a) Observable A is measured, and the value a1 is obtained. What is thestate of the system immediately after this measurement?

(b) If B is now measured, what are the possible results, and what are theirprobabilities?

(c) Right after the measurement of B, A is measured again. What is theprobability of getting a1?

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 5 / 19

Page 32: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 33: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 34: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 35: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 36: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 37: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉

= 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 38: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉

+ 1625b2〈φ2|φ2〉 = 9

25b1 + 1625b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 39: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉

= 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 40: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 41: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 42: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 43: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 44: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 45: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 46: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 3.27

ψ1 = 15(3φ1 + 4φ2)

ψ2 = 15(4φ1 − 3φ2)

φ1 = 15(3ψ1 + 4ψ2)

φ2 = 15(4ψ1 − 3ψ2)

(a) Since the expectation value measured is a1, the system must be in thecorresponding eigenstate ψ1

(b) The probabilities can be obtained by taking the expectation value of Bwith the state ψ1

〈φ1|Bψ1〉 = 925b1〈φ1|φ1〉+ 16

25b2〈φ2|φ2〉 = 925b1 + 16

25b2

(c) We have to consider two cases just after B is measured

the system is in state φ1 with prob-ablity 9

25 and then we measure

the system is in state φ2 with prob-ablity 16

25 and then we measure

Pa1(φ1) = 925

Pa1(φ2) = 1625

Pa1(total) = 925 ·

925 + 16

25 ·1625

= 337625 = 0.5392

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 6 / 19

Page 47: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 48: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 49: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 50: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ

=4π

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 51: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 52: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr

=4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 53: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 54: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr

=4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 55: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr

=4

a33!(a

2

)4

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 56: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.Express your answer in terms of the Bohr radius.

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1.

(a) The ground state of the hydrogen atom is

ψ =1√πa3

e−r/a

〈rn〉 =1

πa3

∫rne−2r/ar2 sin θ dr dθ dφ =

πa3

∫ ∞0

rn+2e−2r/a dr

〈r〉 =4

a3

∫ ∞0r3e−2r/a dr =

4

a3

(a2

)3

∫ ∞0r2e−2r/a dr

=4

a3

(a2

)23 · 2

∫ ∞0re−2r/a dr =

4

a3

(a2

)33!

∫ ∞0e−2r/a dr =

4

a33!(a

2

)4C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 7 / 19

Page 57: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a

⟨r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 58: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr

=4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 59: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5

= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 60: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 61: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes

∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 62: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ

= sinφ∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 63: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 64: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 65: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state

⟨x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 66: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

〈r〉 =4

a33!(a

2

)4=

3

2a⟨

r2⟩

=4

a3

∫ ∞0

r4e−2r/a dr =4

a34!(a

2

)5= 3a2

(b) In terms of r we can write x = r sin θ cosφ so the integral over φbecomes ∫ 2π

0cosφ dφ = sinφ

∣∣∣2π0

= 0 −→ 〈x〉 = 0

Since r2 = x2 + y2 + z2, and by symmetry, all three directions are identicalfor this spherical state ⟨

x2⟩

=1

3

⟨r2⟩

= a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 8 / 19

Page 67: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

) (1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 68: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

) (1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 69: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

) (1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 70: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

) (1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 71: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

) (1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 72: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

)

(2

2 · 41 · 3 · 5

) (1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 73: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

)

(1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 74: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

) (1

2· 2π

)

= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 75: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.13 (cont.)

(c) The wavefunction for n = 2, l = 1,m = 1 is

ψ211 = R21Y11 = − 1√

πa

1

8a2re−r/2a sin θe iφ

⟨x2⟩

=1

πa

1

(8a2)2

∫(r2e−r/a sin2 θ)(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

=1

64πa5

∫ ∞0r6e−r/a dr

∫ π

0sin5 θ dθ

∫ 2π

0cos2 φ dφ

=1

64πa5(6!a7

) (2

2 · 41 · 3 · 5

) (1

2· 2π

)= 12a2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 9 / 19

Page 76: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 77: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 78: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr

=4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 79: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr

= p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 80: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 81: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]

=8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 82: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)

dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 83: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0

−→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 84: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0

−→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 85: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.14

What is the most probable value of r , in the ground state of hydrogen?

ψ =1√πa3

e−r/a

P = |ψ|24πr2dr =4

a3e−2r/ar2dr = p(r)dr

dp

dr=

4

a3

[2re−2r/a + r2

(−2

ae−2r/a

)]=

8r

a3e−2r/a

(1− r

a

)dp

dr= 0 −→ 1− r

a= 0 −→ r = a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 10 / 19

Page 86: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 87: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]

−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 88: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 89: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 90: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2

−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 91: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 92: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2

−→ a(Z ) =4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 93: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2

=a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 94: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 95: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 96: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 97: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16

A hydrogenic atoms consists of a single electron orbiting a nucleus with Zprotons. Determine the Bohr energies En(Z ), E1(Z ), the Bohr radius, andthe Rydberg constant. Where in the electromagnetic spectrum would theLyman series fall for Z = 2 and Z = 3?

E1 = −

[m2

2~2

(e2

4πε0

)2]−→ E1(Z ) = −

[m2

2~2

(Ze2

4πε0

)2]

= Z 2E1

En =E1

n2−→ En(Z ) = Z 2En

a ≡ 4πε0~2

me2−→ a(Z ) =

4πε0~2

mZe2=

a

Z

R ≡ m

4πc~3

(e2

4πε0

)2

−→ R(Z ) =m

4πc~3

(Ze2

4πε0

)2

= Z 2R

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 11 / 19

Page 98: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 99: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)

= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 100: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 101: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)

= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 102: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 103: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 104: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 105: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 106: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 107: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 108: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 109: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 110: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 111: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 112: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 113: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.16 (cont.)

The Lyman energies are those for transitions n = 2→ 1 and n =∞→ 1which depend on Z as follows

∆E2→1 = Z 2E1

(1

4− 1

)= Z 2 · 10.2 eV

∆E∞→1 = Z 2E1

(1

∞− 1

)= Z 2 · 13.6 eV

for Z = 2

∆E2→1 = 40.8 eV

λ2→1 = 30.3 nm

∆E∞→1 = 54.4 eV

λ∞→1 = 22.8 nm

for Z = 3

∆E2→1 = 91.8 eV

λ2→1 = 13.5 nm

∆E∞→1 = 122.4 eV

λ∞→1 = 10.1 nm

all these are in the ultraviolet regime

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 12 / 19

Page 114: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55

The electron in a hydrogen atom occupies the combined spin and positionstate

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)and let ~J ≡ ~L + ~S

(a) If you measured L2, what values might you get, and what is theprobability of each?

Repeat for (b) Lz , (c) S2, (d) Sz , (e) J2, (f) Jz .

(g) If you measured the position of the particle, what is the probabilitydensity for finding it at r , θ, φ?

(h) If you measured both the Z component of the spin and the distancefrom the origin, what is the probability density for finding the particle withspin up and at a radius r?

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 13 / 19

Page 115: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 116: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1)

= ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 117: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 118: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 119: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 120: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 121: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 122: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1)

= ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 123: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 124: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 125: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 126: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

R21

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)(a) L2

Both terms have l = 1 so the mea-sured value of L2 is, with P = 1

〈L2〉 = ~2l(l + 1) = ~2[1(2)] = 2~2

(b) Lz

One term has m = 0 and the otherhas m = 1 so we will have

〈Lz〉 = 0, P = 13

〈Lz〉 = ~, P = 23

(c) S2

Both terms have s = 12

so the mea-sured value of S2 is, with P = 1

〈S2〉 = ~2s(s + 1) = ~2[ 12( 32)] = 3

4~2

(d) Sz

One term has m = 12

and the otherhas m = − 1

2so we will have

〈Sz〉 = 12~, P = 1

3

〈Sz〉 = − 12~, P = 2

3

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 14 / 19

Page 127: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum

(√1/3Y 0

1 χ+ +√

2/3Y 11 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 128: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)

√13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 129: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 130: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable

√13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 131: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable

√13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 132: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 133: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 134: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 135: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2

; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 136: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 137: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(e) Rewriting the angular and spin portion of the wave function with thefirst bra-ket corresponding to the angular momentum(√

1/3Y 01 χ+ +

√2/3Y 1

1 χ−

)√

13|1 0〉 | 1

212〉+

√23|1 1〉 | 1

2−1

2〉

convert to eigenfunctions of J2 andJz using the 1×1/2 Clebsch-Gordantable √

13

[√23| 32

12〉 −

√13| 12

12〉]

+√

23

[√13| 32

12〉+

√23| 12

12〉]

2√

23| 32

12〉+ 1

3| 12

12〉

for j = 32 , P = 8

9 , 〈J2〉 = 154 ~

2 ; for j = 12 , P = 1

9 , 〈J2〉 = 34~

2

(f) both states have mj = 12 , P = 1, 〈Jz〉 = 1

2~

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 15 / 19

Page 138: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}=

1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 139: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}

=1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 140: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}

=1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 141: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (χ†+χ−) + Y 1∗1 Y 0

1 (χ†−χ+)]

+2

3|Y 1

1 |2(χ†−χ−)

}

=1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 142: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (χ†+χ−) + Y 1∗1 Y 0

1 (χ†−χ+)]

+2

3|Y 1

1 |2(χ†−χ−)

}

=1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 143: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}

=1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 144: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}=

1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 145: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}=

1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]

=1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 146: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}=

1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ)

=1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 147: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(g) The probability density is simply |ψ|2

|ψ|2 = |R21|2{

1

3|Y 0

1 |2(χ†+χ+)

+

√2

3

[Y 0∗1 Y 1

1 (���χ†+χ−) + Y 1∗

1 Y 01 (���χ†−χ+)

]+

2

3|Y 1

1 |2(χ†−χ−)

}=

1

3|R21|2

(|Y 0

1 |2 + 2|Y 11 |2)

=1

3· 1

24· 1

a3· r

2

a2e−r/a

[3

4πcos2 θ + 2

3

8πsin2 θ

]=

1

3 · 24a5r2e−r/a · 3

4π(cos2 θ + sin2 θ) =

1

96πa5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 16 / 19

Page 148: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(h) For a spin up particle only, the probability density becomes

1

3|R21|2

∫|Y 0

1 |2 sin2 θ dθdφ =1

3|R21|2 =

1

72a5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 17 / 19

Page 149: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(h) For a spin up particle only, the probability density becomes

1

3|R21|2

∫|Y 0

1 |2 sin2 θ dθdφ

=1

3|R21|2 =

1

72a5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 17 / 19

Page 150: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(h) For a spin up particle only, the probability density becomes

1

3|R21|2

∫|Y 0

1 |2 sin2 θ dθdφ =1

3|R21|2

=1

72a5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 17 / 19

Page 151: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Problem 4.55 – solution

(h) For a spin up particle only, the probability density becomes

1

3|R21|2

∫|Y 0

1 |2 sin2 θ dθdφ =1

3|R21|2 =

1

72a5r2e−r/a

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 17 / 19

Page 152: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 153: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 154: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 155: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 156: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)

0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 157: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)

0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 158: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣

0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 159: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ

→ λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 160: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ → λ2 = 1

→ λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 161: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem

A beam of atoms with spin quantum number 12 and zero orbital angular

momentum passes through a Stern-Gerlach magnet whose magnetic fieldis along a direction D at an angle θ to the z axis. The emerging beamwith spins along D is passed through a second Stern-Gerlach magnet withits field along the z axis. What is the ratio of the spin “up” and spin“down” atoms after the second magnet?

First compute the spin operatoralong D

The corresponding Pauli spin ma-trix is thus

Solving the eigenvalue equation

SD = cos θSz + sin θSx

σD =

(cos θ sin θsin θ − cos θ

)0 = det

∣∣∣∣ cos θ − λ sin θsin θ − cos θ − λ

∣∣∣∣0 = −(cos2 θ − λ2)− sin2 θ → λ2 = 1 → λ = ±1

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 18 / 19

Page 162: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction

(cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ

=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 163: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)

α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ

=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 164: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα

α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ

=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 165: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ

=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 166: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ

=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 167: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 168: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 169: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 170: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19

Page 171: Today’s Outline - November 11, 2015phys.iit.edu/~segre/phys405/15F/lecture_21.pdfToday’s Outline - November 11, 2015 Chapter 3 problems Chapter 4 problems Stern-Gerlach problem

Stern-Gerlach problem (cont.)

Let’s calculate the eigenspinors of the σD operator in terms of the spinorsin the z direction(

cos θ sin θsin θ − cos θ

)(αβ

)= λ

(αβ

)α cos θ + β sin θ = λα α sin θ − β cos θ = λβ

α

β=

sin θ

λ− cos θ=λ+ cos θ

sin θ

Choosing the eigenvalue λ = +1 (since the first magnet produces a beampolarized in the D direction), the ratio of spin up to spin down after thesecond magnet is simply(

α

β

)2

=

(sin θ

1− cos θ

)2

=

(2 sin θ

2 cos θ21− cos2 θ2 + sin2 θ

2

)2

=cos2 θ2sin2 θ

2

C. Segre (IIT) PHYS 405 - Fall 2015 November 11, 2015 19 / 19