tomasz michałek

32
Tomasz Michałek Institute of Fundamental Technological Research Polish Academy of Sciences, Dept. of Mechanics and Physics of Fluids, Poland. HIGH RAYLEIGH NUMBER NATURAL CONVECTION IN A CUBIC ENCLOSURE

Upload: truly

Post on 13-Jan-2016

37 views

Category:

Documents


3 download

DESCRIPTION

Tomasz Michałek. HIGH RAYLEIGH NUMBER NATURAL CONVECTION IN A CUBIC ENCLOSURE. Institute of Fundamental Technological Research Polish Academy of Sciences, Dept. of Mechanics and Physics of Fluids, Poland. Outline. 1. Experimental benchmark - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Tomasz Michałek

Tomasz Michałek

Institute of Fundamental Technological Research

Polish Academy of Sciences, Dept. of Mechanics and Physics of Fluids, Poland.

HIGH RAYLEIGH NUMBER NATURAL CONVECTION IN A CUBIC ENCLOSURE

Page 2: Tomasz Michałek

Outline

1. Experimental benchmark – Sensitivity Analysis Towards Benchmark Definition – Experimental measurements– Results for moderate Ra Numbers– Experimental Benchmark (Ra = 1.5*106, Pr =11.78)

2. Towards high Ra Numbers and transition regime– 2D full velocity & temperature fields – Statistics of velocity fields– Time series of velocities – Validation of computational results

Page 3: Tomasz Michałek

Building credibility to CFD results

Verification Validation

Code/Program verification

Verification of Calculation

Validation ofIdealized problems

•Method of manufactured solution [Roache]

•Analytical solutions

•Numerical benchmarks[Ghia, de Vahl Davis, Le Quere,…]

• Richardson extrapolation (RE)

•Generalized RE[Stern at all.]

• Grid Convergence Index (GCI) [Roache]

sensitivity analysis

• Unit problems

• Benchmark cases

• Simplified/PartialFlow Path

• Actual Hardware[Sindir et al.]

Validation ofactual

configuration

Page 4: Tomasz Michałek

SENSITIVITY ANALYSISParameters and control points

Boundary conditionsTH, TC, Text, Q1, Q2, Q3

Initial conditionsTinit. ,vinit

Material properties,,,,cp

MODEL

COMP. RESULTSINITIAL PARAMETERS

i

NiNii

i

pppFpppFDF

,...,,...,,...,,..., 11

Ni

NiNiid pppF

pppFpppFF

,...,,...,

,...,,...,,...,,...,)(

1

11

SENSITIVITY MEASURESOUTPUT

1. Fundamental parameters for model

2. Precision of measurements necessary to validate

calculations

Page 5: Tomasz Michałek

EXPERIMENTAL SET-UP

light sheet

Page 6: Tomasz Michałek

CAVITY DETAILSControl points for monitoring internal and external temperatures

CENTRAL CROS-SECTION

AL

UM

INIU

M

W

AL

L

AL

UM

INIU

M

W

AL

L

PLEXIGLASS WALL

PLEXIGLASS WALL

T7 T10

T14

T15

Th

TL TP

Tc

TE1 TE2

Page 7: Tomasz Michałek

Particle Image Velocimetry (PIV)

Particle Image Thermometry (PIT)

2D VisualizationPoint temperature measurements

EXPERIMENTAL TECHNIQUES

correlationF(t0)

F(t0+t)

Page 8: Tomasz Michałek

Niiavg v

Nv

..1

1

2

1

..1

2

1

1

Ni

avgiN vvN

ESTIMATION OF EXP. UNCERAINTY UD

2

1

..1

2

11

Niavgi vv

NNs

• PIVAvg. Fields N – length of series

Std. Dev.

Std. Dev. Error

Experimental Data Uncertainty

• PIT

svsvUvUv avgavgDavgDavg 3;3;

sUD 3

Halcrest Inc. B

M100

Temp. range [C] Hue Color UD[C]

5.5 6.4 0.12 0.28 Red 1.0

6.4 6.5 0.28 0.35 Yellow 0.5

6.5 7.5 0.35 0.55 Green 1.0

7.5 9.5 0.55 0.70 Blue 1.5

Page 9: Tomasz Michałek

EXPERIMENTAL BENCHMARK DEFINED Different liquid crystal tracers to cover entire color range

Th = 10 C Tc = 0 C

PIV – velocity

PIT -temperature

Ra = 1.5*106

Pr = 11.78

Page 10: Tomasz Michałek

EXPERIMENTAL BENCHMARK DEFINEDSelected velocity and temperature profiles

2D Temp. Field Temp. along Y = 0.5L Temp. along X = 0.9L

W along Y = 0.5L U along X = 0.5L W along X = 0.9L

Page 11: Tomasz Michałek

EXPERIMENTAL UNCERTAINTY ESTIMATION

Niiavg v

Nv

..1

1

2

1

..1

2

11

Niavgi vv

NNs

smmyxs /18.080,0:3max

N = 40, t = 1s

Mix C

Temp. range [C] Hue Color UD[C]

0.0 3.0 0.11 0.18 Red 1.0

3.0 3.5 0.18 0.25 Yellow 0.5

3.5 3.9 0.25 0.48 Green 0.5

3.9 8.0 0.48 0.66 Blue 3.0

BM

100

5.5 6.4 0.12 0.28 Red 1.0

6.4 6.5 0.28 0.35 Yellow 0.5

6.5 7.5 0.35 0.55 Green 1.0

7.5 9.5 0.55 0.70 Blue 1.5

• PIV

• PITtwo sets of tracers

s

Page 12: Tomasz Michałek

NATURAL CONVECTION Ra ~ 3.0x107

Th

= 1

8.0 C

Tc

= 4

.0 C

Th

= 2

3.2 C

Tc

= 9

.0 C

Ra Pr1 3*107 9.53

2 1.5 *108 7.01

3 1.8*108 7.01

4 4.4*108 5.41

PIV

Page 13: Tomasz Michałek

NATURAL CONVECTION Ra = 1.5x108

Th

= 2

7.3 C

Tc

= 6

.8 C

Th

= 2

7.2 C

Tc

= 6

.8 C

Ra Pr1 3*107 9.53

2 1.5 *108 7.01

3 1.8*108 7.01

4 4.4*108 5.41

PIV PIT with two TLCs

Page 14: Tomasz Michałek

NATURAL CONVECTION Ra = 1.8x108

Th

= 3

6.4 C

Tc

= 1

0.2 C

Th

= 3

6.4 C

Tc

= 1

0.2 C

Ra Pr1 3*107 9.53

2 1.5 *108 7.01

3 1.8*108 7.01

4 4.4*108 5.41

PIV PIT with two TLCs

Page 15: Tomasz Michałek

NATURAL CONVECTION Ra = 4.4x108

Th

= 4

5.8 C

Tc

= 1

4.2 C

Th

= 4

5.8 C

Tc

= 1

4.0 C

Ra Pr1 3*107 9.53

2 1.5 *108 7.01

3 1.8*108 7.01

4 4.4*108 5.41

PIV PIT with two TLCs

Page 16: Tomasz Michałek

Ra = 3.107

Ra = 4.4.108

NATURAL CONVECTION AT HIGH RAYLEIGH NUMBER

control points and area selectedfor velocity measurements

Page 17: Tomasz Michałek

Ra = 4.4x108

Ra = 1.5x108

Ra = 1.8x108

Ra = 3x107

Avg. Horizontal Velocity

N = 150

t = 100 ms

t = 15 sec

HIGH RAYLEIGH NUMBERMean velocity fields

Page 18: Tomasz Michałek

Avg. Vertical Velocity

N = 150

t = 100 ms

t = 15 sec

Ra = 4.4x108

Ra = 1.5x108

Ra = 1.8x108

Ra = 3x107

HIGH RAYLEIGH NUMBERMean velocity fields

Page 19: Tomasz Michałek

Ni

avgiN

N vvN

S..1

3

31

1

Skewness

N = 150

t = 100 ms

t = 15 sec

Ra = 4.4x108

Ra = 1.5x108

Ra = 1.8x108

Ra = 3x107

HIGH RAYLEIGH NUMBERVelocity field statistics

Page 20: Tomasz Michałek

Ni

avgiN

N vvN

K..1

4

41

1

Kurtozis

N = 150

t = 100 ms

t = 15 sec

Ra = 4.4x108

Ra = 1.5x108

Ra = 1.8x108

Ra = 3x107

HIGH RAYLEIGH NUMBERVelocity field statistics

Page 21: Tomasz Michałek

avg

N

vI

2

1

..1

2

1

1

Ni

avgiN vvN

Niiavg v

Nv

..1

1

Turbulence Intensity

N = 150

t = 100 ms

t = 15 sec

Ra = 4.4x108

Ra = 1.5x108

Ra = 1.8x108

Ra = 3x107

HIGH RAYLEIGH NUMBERVelocity field statistics

Page 22: Tomasz Michałek

Ra = 3x107

N=150 t = 100 ms

HIGH RAYLEIGH NUMBERVelocity histogram and time series

Page 23: Tomasz Michałek

Ra = 1.5x108

N=120 t = 100 ms

HIGH RAYLEIGH NUMBERVelocity histogram and time series

Page 24: Tomasz Michałek

Ra = 1.8x108

N=134 t = 100 ms

HIGH RAYLEIGH NUMBERVelocity histogram and time series

Page 25: Tomasz Michałek

Ra = 4.4x108

N=138 t = 100 ms

HIGH RAYLEIGH NUMBERVelocity histogram and time series

Page 26: Tomasz Michałek

• Validation error

• Validation metric

SDE

VALIDATION METHODOLOGY

Stern et all., Comprehensive approach to verification and validation of CFD simulations – Part 1: Methodology and proceduresJournal of Fluids Engineering – Transactions of ASME, 123 (4), pp. 793-802,2001.

5.0222SPDSNDV UUUUE

5.0222SPDSNDV UUUU

sUD 3 SSSU extSN

2

1

..1

2

11

Niavgi vv

NNs

0SPDU

Niiavg v

Nv

..1

1 cfext SSS 33.033.1

In our examples:

for water

Page 27: Tomasz Michałek

VALIDATION : Ra ~ 3 x 107

Experiment Comp. Results FD (SOLVSTR)

Variable D UD S USN E UV

T7 18,22 0,48

17,99 0,07 0,23 0,49

T10 17,76 0,63

17,17 0,07 0,59 0,63

Umin -0,66 0,24

-0,65 0,01 0,01 0,24

Umax 0,69 0,24

0,65 0,01 0,04 0,24

Vmin -2,60 0,24

-2,40 0,09 0,20 0,26

Vmax 2,42 0,24

2,40 0,09 0,02 0,26

VP1 -2,48 0,58

-1,99 0,04 0,49 0,58

VP2 -1,85 0,42

-1,71 0,04 0,14 0,42

UP3 -0,24 0,09

-0,22 0,01 0,02 0,09

VP3 -0,75 0,21

-1,05 0,02 0,30 0,21

UP4 -0,58 0,14

-0,39 0,01 0,19 0,14

UP5 -0,60 0,16

-0,42 0,02 0,18 0,16

FD method (SOLVSTR)

Experiment

VUE Conditiondoes not hold

Page 28: Tomasz Michałek

VALIDATION : Ra ~ 3 x 107

Experiment Comp. Results (Fluent)

Variable D UD S USN E UV

T12 18,67 0,38 18,92 0,02 0,25 0,38

T16 4,05 0,38 3,83 0,02 0,22 0,38

T7 18,22 0,48 18,39 0,02 0,17 0,48

T10 17,76 0,63 17,64 0,02 0,12 0,63

Umin -0,66 0,24 -0,73 0,01 0,07 0,24

Umax 0,69 0,24 0,68 0,01 0,01 0,24

Vmin -2,6 0,24 -2,22 0,05 0,38 0,25

Vmax 2,42 0,24 2,22 0,05 0,20 0,25

VP1 -2,48 0,58 -1,99 0,01 0,49 0,58

VP2 -1,85 0,42 -1,77 0,02 0,08 0,42

UP3 -0,24 0,09 -0,29 0,02 0,05 0,09

VP3 -0,75 0,21 -1,29 0,01 0,54 0,21

UP4 -0,58 0,14 -0,4 0,01 0,18 0,14

UP5 -0,6 0,16 -0,42 0,01 0,18 0,16

FV method (Fluent)

Experiment

VUE Conditiondoes not hold

Page 29: Tomasz Michałek

Experiment Comp. Results (SOLVSTR)

Variable D UD S USN E UV

T7 25,51 0,18 25,64 0,09 0,13 0,20

T10 24,40 0,21 24,57 0,11 0,17 0,24

Umin -1,12 0,76 -1,23 0,04 0,11 0,76

Umax 0,97 0,76 1,23 0,04 0,26 0,76

Vmin -6,11 1,16 -5,29 0,06 0,82 1,16

Vmax 6,19 1,16 5,29 0,06 0,90 1,16

VP1 -4,55 1,59 -3,03 0,02 1,52 1,59

VP2 -3,58 1,28 -2,53 0,07 1,05 1,28

UP3 -0,55 0,24 -0,36 0,02 0,19 0,24

VP3 -1,98 0,75 -1,97 0,06 0,01 0,75

UP4 -0,94 0,45 -0,52 0,01 0,46 0,45

UP5 -1,04 0,40 -0,58 0,02 0,46 0,40

VALIDATION : Ra ~ 1.3 x 108

Experiment

FD method (SOLVSTR)

VUE Conditiondoes not hold

Page 30: Tomasz Michałek

VALIDATION : Ra ~ 1.3 x 108

Experiment

FV method (Fluent)

Experiment Comp. Results (Fluent)

Variable D UD S USN E UV

T12 27,23 0,24 27,27 0,02 0,04 0,24

T16 6,76 0,18 6,58 0,03 0,18 0,18

T7 25,51 0,18 25,40 0,02 0,11 0,18

T10 24,40 0,21 24,69 0,04 0,29 0,21

T15 25,08 0,33 24,82 0,02 0,26 0,33

Umin -1,12 0,76 -1,01 0,01 0,11 0,76

Umax 0,97 0,76 1,01 0,01 0,04 0,76

Vmin -6,11 1,16 -3,65 0,05 2,46 1,16

Vmax 6,19 1,16 3,65 0,05 2,54 1,16

VP1 -4,55 1,59 -2,39 0,01 2,16 1,59

VP2 -3,58 1,28 -2,19 0,02 1,39 1,28

UP3 -0,55 0,24 -0,36 0,02 0,19 0,24

VP3 -1,98 0,75 -1,68 0,01 0,30 0,75

UP4 -0,94 0,45 -0,48 0,01 0,46 0,45

UP5 -1,04 0,40 -0,49 0,01 0,55 0,40VUE

Conditiondoes not hold

Page 31: Tomasz Michałek

CONCLUSIONS

The sensitivity analysis was used to identify fundamental (crucial) parameters for considered configuration.

Uncertainty of experimental data was assessed.

2D Temperature fields, 2D Velocity fields were determined for high Ra numbersin the central cross-section of the box cavity heated from the side.

Validation procedure was performed in order to assess modeling errors.

Velocity fluctuations were observed in these experiments for high Ra number below Rac.

Velocity fluctuations were not reproduced by computational results.

Numerical simulations were performed for Ra = 3x107, 1.3x108 (FV,FD).

These fluctuations were attributed to non-uniformity of thermal boundary conditions along the bottom wall.

Experimental benchmark was defined for moderate Ra numbers. Agreement between computational results and experimental data was achieved.

Page 32: Tomasz Michałek

Thank you for your attention!