topic 4

35
TOPIC 4 Filters Design

Upload: valmai

Post on 24-Jan-2016

64 views

Category:

Documents


0 download

DESCRIPTION

TOPIC 4. Filters Design. 0 dB. Rp dB. -3 dB. - Ax dB. fc. fx. Rp dB. 0 dB. -3 dB. - Ax dB. fx. fc. Basic Filters 1. Lowpass. P assband: 0 — fc (Hz) Stopband: fx — ∞ (Hz). 3 dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: TOPIC  4

TOPIC 4

Filters Design

Page 2: TOPIC  4

Basic Filters1

3dB (Cutoff ) Frequency : fc (Hz)Maximum Passband Attenuation : 3dBPassband Ripple : Rp (dB)Stopband Frequency : fx (Hz)Minimum Stopband Attenuation : Ax

0dB-3dB

-Ax dB

fc fx

Rp dB

0dB

-3dB

-Ax dB

fcfx

Rp dB

Lowpass

Highpass

Passband: 0 — fc (Hz)Stopband: fx—∞ (Hz)

Passband: fc—∞ (Hz)Stopband: 0 — fx (Hz)

Page 3: TOPIC  4

Basic of Filters0dB-3dB

-Ax dB

fo fUx

Rp dB

fLx fLp fHp

Lower passband edge = fLp

Upper passband edge = fHp

Lower stopband edge = fLx

Upper stopband edge = fUx

Passband Bandwidth = fHp - fLp

Passband Ripple = Rp dBMaximun Passband Attenuation = 3dBMinimum Stopband Attenuation = AxCenter Frequency = fo = fHp fLp

0dB

-3dB

-Ax dB

fo fUx

Rp dB

fLxfLp fHp

Bandstop

Bandpass

Lower passband edge = fLp

Upper passband edge = fHp

Lower stopband edge = fLx

Upper stopband edge = fUx

Stopband Bandwidth = fUx - fLx

Passband Ripple = Rp dBMaximun Passband Attenuation = 3dBMinimum Stopband Attenuation = AxCenter Frequency = fo = fHp fLp

Page 4: TOPIC  4

Technical Parameters of FilterIL: RF insertion loss

0dB

-3dB

-Ax dB

fo fUx

Rp dB

fLx fLp fHp

IL dB

BW

Rejectio

n

Q = f0 / BW

Rp: Ripple in the passband

BW: Difference between upper and lower freqencies at which the attenuation is 3 dB

SF: Describing the sharpness of the response with the ratio between the Ax dB and the 3 dB bandwiths

Rejection: it is parameter according to the specification of a filter

Qulity factor Q: Another parameter describing filter selectivity

Page 5: TOPIC  4

微波网络综合法设计滤波器

• 微波网络综合法设计滤波器时,将整个滤波器看成是多级二端口网络的级联,实际中这些二端口网络是串连电感并联电容。

• 一般先设计低通原型滤波器,实际的低通高通带通带阻滤波器可由低通原型变换得到。

Page 6: TOPIC  4

微波网络综合法设计滤波器• 由转移参量可以得到整个滤波器的频率响应特性。

S21= 2 / ( a + b + c + d ) 或 L = 10 log 1 / |S21|2 = 10 log |( a+b+c+d )/2|2

1 01 1 1 0

1/ 10 1 0 1 1

11

11

G

L

G G LL

L

A B R R

RC D j C

R R j C R RR

j CR

• 使频率响应满足指定的响应特性得到串连电感并联电容的大小。

Page 7: TOPIC  4

典型滤波器响应• 实际的滤波器响应有以下几种:

最大平坦响应(Butterwoth响应)

等波纹响应(Chebyshev响应)

椭圆函数响应

线性相位响应

Page 8: TOPIC  4

典型滤波器响应最大平坦响应 (butterwoth 响应 )

L = 1 + k2 ( ω /ωc )2N

式中 N 是滤波器阶数, ωc是截止频率,通带为 (0 , ωc ) ,通带边缘损耗为 1 + k2,常选为 -3 dB ,故 k = 1 。 带外衰减随频率增加而单调增加, ω>>ωc 时 , L ≈ ( ω /ωc )2N, 所以衰减以每 10 倍频 20N dB 的速率上升。

Page 9: TOPIC  4

典型滤波器响应等波纹响应 (Chebyshev 响应 )

L = 1 + k2 [ TN( ω /ωc ) ]2

因为 x<1 时 , |TN(x)|<1 故通带内波纹为 1 + k2,常选为 -3 dB ,故 k = 1 。 带外衰减随频率增加而单调增加, ω>>ωc 时 , 由 TN(x) 函数性质得到 L ≈ k2/4 ( 2ω /ωc )2N, 所以衰减也以每 10 倍频 20N dB 的速率上升。但其衰减比最平坦响应大 22N/4

式中 TN(x) 是 Chebyshev 函数,其多项式表示为 T1(x) = x T2(x) = 2x2 - 1 T3(x) = 4x3 - 3x T4(x) = 8x4 - 8x2 + 1 • • •

Page 10: TOPIC  4

Chebyshev Low-Pass Filters Response

Page 11: TOPIC  4

Comparison of Frequency response between Butterworht and Chebyshev Filters

where

B(3, ): attennuation response of 3-order butterworth-type

T( 0.25, 3, ) ): attennuation response of 3-order chebyshev-type with ripple of 0.25dB T( 0.5, 5, ) ): attennuation response of 5-order chebyshev-type with ripple of 0.5dB T(1, 7, ) ): attennuation response of 7-order chebyshev-type with ripple of 1dB

Comparison between Butterworht and Chebyshev Filters

Page 12: TOPIC  4

典型滤波器响应 椭圆滤波器( elliptic filter )是利用椭圆函数( elliptic functio

n )的双周期函数性质设计的。

就低通滤波器而言,如将巴特沃思滤波器与切比雪夫滤波器的幅频特性加以比较,它们具有以下特点:

① 在巴特沃思滤波器中,无论是通带还是阻带均表现为单调衰减,并且不产生波纹;

② 在切比雪夫滤波器中,通带内产生波纹,但阻带则为单调衰减; ③ 切比雪夫滤波器的截止特性比巴特沃思滤波器更为陡峭。

因而可以这样设想,如果在通带和阻带两方面都允许波纹存在,就能得到截止特性比切比雪夫滤波器更为陡峭的滤波器。基于这种思路的滤波器,就是由 W.Cauer 提出的椭圆滤波器。

Page 13: TOPIC  4

典型滤波器响应

其中, 为 的分式有理多项式,其零点全部在通带 <1 内,极点全部落在阻带 >1 内,具有如下形式

)(Cn

))((

))(()(

24

222

2

23

221

2

BCn

其中 为零衰减频率, 为无穷衰减频率,零衰减频率的个数与无穷衰减频率的个数相等。

1 3 2 4

这种衰减特性与契比雪夫滤波器衰减特性相比,有如下特点: ( 1 )通带内仍有契比雪夫滤波器响应的等波纹特性; ( 2 )阻带内增加了有限频率上的极点,也呈现等波纹特性;( 3 )过渡段区域的斜率更为陡峭。

210lg 1 ( )LA Cn

椭圆函数滤波器的衰减特性为:

Page 14: TOPIC  4

椭圆函数滤波器响应

Page 15: TOPIC  4

典型滤波器响应线性相位响应 Φ(ω) = A ω[ 1 + p (ω /ωc )2N]

式中 Φ(ω) 滤波器电压转移函数的相位, p 为常数。

通常良好的截止响应特性与良好的相位响应是一对矛盾。

还可以有其他的响应,上述 4 种是最常用的。

Page 16: TOPIC  4

低通原型滤波器器件参数的确定

L

C~

1

R

低通原型滤波器器件参数的确定是一个道理简单计算复杂的过程。在低通原型滤波器中,一般取 g0 = 1 , ωc = 1 。

由微波网络级联可得此电路的响应为 L=1+[(1-R)2+(C2R2+ L2- 2LCR2)ω2 +L2C2R2ω4]/4R

最平坦响应为 L=1+ k2ω4 k=1 ω=1 时衰减 3dB

得到 R=1, L = C = 21/2

等波纹响应为 L=1+ k2(2ω 2 - 1)2 k=1 波纹 3dB 得到 R=5.81, L=3.1 C = 0.53

对于 N = 2 的低通原型,

其结构图如右图所示:

Page 17: TOPIC  4

低通原型滤波器器件参数的确定 一般低通原型滤波器的两种结构如下图所示。

rL=gN + 1 = 1

rG=g0 =1

~

L2=g2 Ln=gn

C3=g3C1=g1

shunt capacitance series inductance

L1=g1 L3=g3

Cn=gnC2=g2~

rG=g0 =1

rL=gN + 1 = 1

series inductance shunt capacitance

图中器件的编号从信号源端的 g0 一直到负载端的 g

N+1. 两个电路同一编号的器件取值相同,给出同样的频响。因此它们互为对偶电路。

Page 18: TOPIC  4

低通原型滤波器器件参数的确定 原则上,可求任意 N 阶低通原型滤波器的器件参数值。但工程应用时, N 过大不实际。对于最平坦响应的低通原型滤波器。前人将至 10 阶滤波器的参数值列表如下:

Page 19: TOPIC  4

低通原型滤波器器件参数的确定最平坦响应的低通原型滤波器至 15 阶时的衰减曲线如下:

Page 20: TOPIC  4

低通原型滤波器器件参数的确定 对于等波纹响应的低通原型滤波器,至 10 阶的滤波器参数值列表如下 ( 带内波纹 0.01dB) :

LAr = 0.01dB

n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 0.0960 1.0000

2 0.4488 0.4077 1.1007

3 0.6291 0.9702 0.6291 1.0000

4 0.7128 1.2003 1.3212 0.6476 1.1007

5 0.7563 1.3049 1.5773 1.3049 0.7563 1.0000

6 0.7813 1.3600 1.6896 1.5350 1.4970 0.7098 1.1007

7 0.7969 1.3924 1.7481 1.6331 1.7481 1.3924 0.7969 1.0000

8 0.8072 1.4130 1.7824 1.6833 1.8529 1.6193 1.5554 0.7333 1.1007

9 0.8144 1.4270 1.8043 1.7125 1.9057 1.7125 1.8043 1.4270 0.8144 1.0000

10 0.8196 1.4369 1.8192 1.7311 1.9362 1.7590 1.9055 1.6527 1.5817 0.7446 1.1007

Page 21: TOPIC  4

低通原型滤波器器件参数的确定等波纹响应的低通原型滤波器至 15 阶时的衰减曲线如下:

Page 22: TOPIC  4

低通原型滤波器器件参数的确定 对于线性相位响应低通原型滤波器,因为转移参量的相位不像幅度那样有较简单的表达式,器件参数求解更复杂。至 10 阶的滤波器参数值列表如下:

n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 2.000 1.0000

2 1.5774 0.4226 1.0000

3 1.255 0.5528 0.1922 1.0000

4 1.0598 0.5116 0.3181 0.1104 1.0000

5 0.9303 0.4577 0.3312 .2090 0.0718 1.0000

6 0.8377 0.4116 0.31586 .2364 .1480 0.0505 1.00

7 0.7677 0.3744 0.2944 .2378 .1778 .1104 0.0375 1.0000

8 0.7125 .3446 0.2735 .2297 .1867 .1387 .0855 0.0289 1.000

9 0.6678 0.3203 0.2547 .2184 .1859 .1506 .1111 0.0682 0.0230 1.0000

10 0.6305 0.3002 0.23842 .2066 .1808 .15390 .1240 0.0911 0.0557 0.0187 1.0000

Page 23: TOPIC  4

低通原型滤波器器件参数的确定

最大平坦响应和等波纹响应低通原型滤波器经常用到。有时通过查衰减曲线及查表得不到相应的阶数及器件参数值,这时可依据滤波器相关指标,由公式计算得到 N 及 gn

Page 24: TOPIC  4

Impedance: Zo (ohm) Cutoff Frequency: fc (Hz) Stopband Frequency: fx (Hz) Maximum Attenuation at cutoff frequency: Ap (dB) Minimum Attenuation at stopband frequency : Ax(dB)

Butterworth LowPass Filters1

/10

/10

10 10.5 log log

10 1

Axx

Apc

fN

f

NKN

KgK ,....,2,1,

2

)12(sin2

Step 2: Determine the Number of elements , N is a integer

Step 3: Calculate Prototype Element Values , gK  。

Step1 : Specification

Page 25: TOPIC  4

)arccos(

1arccos 22

2

c

x

f

f

MagMag

N

110

1010/2

10/2

rp

AxMag

)(sin22

NK

BK

,...,2,1,2

)12(sin NK

NK

AK

2sinh

N

37.17cothln

rp

1cosh

1cosh 1

N

Chebyshev LowPass Filters2

Impedance: Zo (ohm) Cutoff Frequency: fc (Hz) Stopband Frequency: fx (Hz) Maximum Attenuation at cutoff frequency: Ap (dB) Minimum Attenuation at stopband frequency : Ax(dB)

Step 2: Determine the Number of elements , N is an odd integer that is to avoid differrence between the input and output impedance

Step1 : Specification

Step 3: Calculate Prototype Element Values , gK  。

Bg

AAg

KK

KKK

4

11

21

Ag

2 11

gN+1=1 N 奇数gN+1=coth2(β/4) N 偶数

Page 26: TOPIC  4

椭圆函数滤波器低通原型

s 由滤波器的设计指标 LAs(dB), 和 LAr(dB), 得到上述原型电路的系数,需要用雅可比椭圆函数的保角变换技术,其数学推导和计算都比较繁琐。现已有图标曲线,可供设计此类滤波器时查用。

C1

C2C3 C5 C1 C2

C4

L2 L4 L1 L3

L2 L4

L5

a )电容输入 b )电感输入

两种椭圆函数低通滤波器原型电路

s

L5C4L4L3C2L2L1

0.8851.1000.2831.7261.1800.11781.044501.6900.8360.9640.4011.6571.2280.14001.032451.5400.7660.8750.5301.5861.1930.17701.010401.4140.7010.7040.7421.4881.1390.23000.977351.309

C5L4C4C3L2C2C1 LAs

(dB)

s

下表给出了 N=5 带内波纹衰减 Lar=0.1 的椭圆函数低通滤波器的系数

Page 27: TOPIC  4

椭圆函数滤波器技术参数

0

p s13 24

AL

AsL

ArL

LAs :阻带抑制LAr :通带波纹 :通带截止频率p

:阻带抑制频率s

Page 28: TOPIC  4

Frequency transformations from normalized LPF to others

C=gK

L=gk

Lowpass lowpass highpass bandpass bandstop Prototype pratical pratical pratical praticalValue value value value value

U Lo

2 U LBW -

L

c

C

c

L1c

C1c

o C 2

LBW o L 2

BW

CBW

BW

LBW

L

o2

BW

1

CBW

1

C

o2

BW

Page 29: TOPIC  4

g1 g2 g3 g4 g52.2072 1.1279 3.1025 1.1279 2.2072

 C1 L2 C3 L4 C5

Cal. value 93.658pF 119.67nH 131.65pF 119.67nH 93.658pF

Practical 94pF 120nH 132pF 120nH 94pF

Examples of LPF design

Impedance: Zo (ohm)=50 Cutoff Frequency: fc (MHz)=75 Stopband Frequency: fx (MHz)=100 Maximum Attenuation at cutoff frequency: 3 (dB) Minimum Attenuation at stopband frequency : 20(dB)

Step 2: Determine the Number of elements

Step1 : Specification

Step 3: Calculate Prototype Element Values , gK  。

Design a LC 1 dB ripple Chebyshev-type LPF(Zo=50 ohm) with 75MHz cutoff frequency and at least 20dB attenuation at 100MHz

Solution:

N=5

Step 4 : Select shunt capacitance series inductance

Page 30: TOPIC  4

Result

Page 31: TOPIC  4

Impedance: Zo (ohm) upper passband edge frequency: fPU (Hz) lower passband edge frequency: fPL (Hz) upper stopband edge frequency: fXU (Hz) lower stopband edge frequency: fXL (Hz) Maximum Attenuation at passband: Ap (dB) Minimum Attenuation at stopband : Ax(dB) Step 2: Determine the Number of elements , N is an odd integer that is to avoid differrence between the input and output impedance

Step1 : Specification

Design of BandPass Filters

),(

1,

1

21

2

2

2

1

XXX

PassXU

oXUX

PassXL

XL

oX

MIN

BWf

ff

BWf

f

f

PLPUpassPUPLo ffBWfff ,

X

Ap

Ax

Nlog

110110

log5.0 10/

10/

( 1 ) For Butterworth Type

( 2 ) For Chebyshev Type

110

1010/2

10/2

rp

AxMag

)arccos(

1arccos 22

2

X

Mag

Mag

N

Page 32: TOPIC  4

Design of BandPass Filters2

ZoBW

gCp

BW

ZogLs

pass

eveneven

pass

oddodd

2,

2

pass

eveneven

pass

oddodd BW

ZogLs

ZoBW

gCp

2

,2

Cp

Lp

LsCs

Cp

Ls

oo

So

S

Po

P

f

LC

CL

2

1

1

2

2

prototype bandpassTransforma-tion fomu

la 

 

Step 3: Calculate Prototype Element Values , gK, as before. Select series induct-ance shunt capacitance or shunt capacitance series inductance, then calculate the values of C and L 。

a) series inductance shunt capacitance

b) shunt capacitance series inductance

Step 4:Calculate the component values of bpf 。 Transformate the lowpass prototype element values to the bandpass ones according the right transformation table

Page 33: TOPIC  4

Example of BPF design

Design a 0.1 dB ripple Chebyshev-type BPF(Zo=50 ohm) with bandpass of 10MHz and central frequency at 75MHz, the Minimum Attenuation at stopband has to be 30dB with 30MHz stopband

Step1 : Specification Impedance ) : Zo = 50 ohm upper passband edge frequency: fPU = 75 + 5 = 80 MHz lower passband edge frequency: fPL = 75 – 5 = 70 MHz upper stopband edge frequency: fXU = 75 + 15 = 90 MHz lower stopband edge frequency : fXL = 75 –15 = 60 MHz Maximum Attenuation at passband: rp = 0.1 dB Minimum Attenuation at stopband : Ax = 30dB

)arccos(

1arccos 22

2

X

MagMag

N

Step 2 : determine the order of elements , N=3

778.2),( 21 XXX MIN

778.21

,333.31

2

2

2

1

PassXU

oXUX

PassXL

XL

oX BWf

ff

BWf

ff

MHzfff PUPLo ,83.74 MHzffBW PLPUpass 10

Page 34: TOPIC  4

Result

C1 456pF L2 1268nH C3 456pFTransformated values of BPF

L1 10nH C2 3.6pF L3 10nH

Step 3: Calculate Prototype Element Values , gK. Select shunt capacitance series inductance type. Calculate the values of L and C

Step 4: Calculate the component values of bpf according the transformation table 。

rL=gN + 1 = 1

rG=g0 =1

~

L2=1.5937

C1=1.4329 C3=1.4329

Page 35: TOPIC  4

Home work

1) Design a 0.5 dB ripple Chebyshev-type LPF(Zo=50 ohm) with bandpass of 10MHz and central frequency at 75MHz, the Minimum Attenuation at stopband has to be 20dB with 30MHz stopband, design a Butterworth-type LPF with the same specification and do comparison between them

2) Design a LC 0.1 dB ripple elliptic function LPF(Zo=50 ohm) with 75MHz cutoff frequency and at least 35dB attenuation at 98MHz. and calculate its frequency responding curve by using ABCD matrix