topic 4 filters design. basic filters 1 3db (cutoff ) frequency : fc (hz) maximum passband...

35
TOPIC 4 Filters Design

Upload: austen-bishop

Post on 19-Jan-2016

273 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

TOPIC 4

Filters Design

Page 2: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Basic Filters1

3dB (Cutoff ) Frequency : fc (Hz)Maximum Passband Attenuation : 3dBPassband Ripple : Rp (dB)Stopband Frequency : fx (Hz)Minimum Stopband Attenuation : Ax

0dB-3dB

-Ax dB

fc fx

Rp dB

0dB

-3dB

-Ax dB

fcfx

Rp dB

Lowpass

Highpass

Passband: 0 — fc (Hz)Stopband: fx—∞ (Hz)

Passband: fc—∞ (Hz)Stopband: 0 — fx (Hz)

Page 3: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Basic of Filters0dB-3dB

-Ax dB

fo fUx

Rp dB

fLx fLp fHp

Lower passband edge = fLp

Upper passband edge = fHp

Lower stopband edge = fLx

Upper stopband edge = fUx

Passband Bandwidth = fHp - fLp

Passband Ripple = Rp dBMaximun Passband Attenuation = 3dBMinimum Stopband Attenuation = AxCenter Frequency = fo = fHp fLp

0dB

-3dB

-Ax dB

fo fUx

Rp dB

fLxfLp fHp

Bandstop

Bandpass

Lower passband edge = fLp

Upper passband edge = fHp

Lower stopband edge = fLx

Upper stopband edge = fUx

Stopband Bandwidth = fUx - fLx

Passband Ripple = Rp dBMaximun Passband Attenuation = 3dBMinimum Stopband Attenuation = AxCenter Frequency = fo = fHp fLp

Page 4: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Technical Parameters of FilterIL: RF insertion loss

0dB

-3dB

-Ax dB

fo fUx

Rp dB

fLx fLp fHp

IL dB

BW

Rejectio

n

Q = f0 / BW

Rp: Ripple in the passband

BW: Difference between upper and lower freqencies at which the attenuation is 3 dB

SF: Describing the sharpness of the response with the ratio between the Ax dB and the 3 dB bandwiths

Rejection: it is parameter according to the specification of a filter

Qulity factor Q: Another parameter describing filter selectivity

Page 5: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

微波网络综合法设计滤波器

• 微波网络综合法设计滤波器时,将整个滤波器看成是多级二端口网络的级联,实际中这些二端口网络是串连电感并联电容。

• 一般先设计低通原型滤波器,实际的低通高通带通带阻滤波器可由低通原型变换得到。

Page 6: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

微波网络综合法设计滤波器• 由转移参量可以得到整个滤波器的频率响应特性。

S21= 2 / ( a + b + c + d ) 或 L = 10 log 1 / |S21|2 = 10 log |( a+b+c+d )/2|2

1 01 1 1 0

1/ 10 1 0 1 1

11

11

G

L

G G LL

L

A B R R

RC D j C

R R j C R RR

j CR

• 使频率响应满足指定的响应特性得到串连电感并联电容的大小。

Page 7: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

典型滤波器响应• 实际的滤波器响应有以下几种:

最大平坦响应(Butterwoth响应)

等波纹响应(Chebyshev响应)

椭圆函数响应

线性相位响应

Page 8: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

典型滤波器响应最大平坦响应 (butterwoth 响应 )

L = 1 + k2 ( ω /ωc )2N

式中 N 是滤波器阶数, ωc是截止频率,通带为 (0 , ωc ) ,通带边缘损耗为 1 + k2,常选为 -3 dB ,故 k = 1 。 带外衰减随频率增加而单调增加, ω>>ωc 时 , L ≈ ( ω /ωc )2N, 所以衰减以每 10 倍频 20N dB 的速率上升。

Page 9: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

典型滤波器响应等波纹响应 (Chebyshev 响应 )

L = 1 + k2 [ TN( ω /ωc ) ]2

因为 x<1 时 , |TN(x)|<1 故通带内波纹为 1 + k2,常选为 -3 dB ,故 k = 1 。 带外衰减随频率增加而单调增加, ω>>ωc 时 , 由 TN(x) 函数性质得到 L ≈ k2/4 ( 2ω /ωc )2N, 所以衰减也以每 10 倍频 20N dB 的速率上升。但其衰减比最平坦响应大 22N/4

式中 TN(x) 是 Chebyshev 函数,其多项式表示为 T1(x) = x T2(x) = 2x2 - 1 T3(x) = 4x3 - 3x T4(x) = 8x4 - 8x2 + 1 • • •

Page 10: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Chebyshev Low-Pass Filters Response

Page 11: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Comparison of Frequency response between Butterworht and Chebyshev Filters

where

B(3, ): attennuation response of 3-order butterworth-type

T( 0.25, 3, ) ): attennuation response of 3-order chebyshev-type with ripple of 0.25dB T( 0.5, 5, ) ): attennuation response of 5-order chebyshev-type with ripple of 0.5dB T(1, 7, ) ): attennuation response of 7-order chebyshev-type with ripple of 1dB

Comparison between Butterworht and Chebyshev Filters

Page 12: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

典型滤波器响应 椭圆滤波器( elliptic filter )是利用椭圆函数( elliptic functio

n )的双周期函数性质设计的。

就低通滤波器而言,如将巴特沃思滤波器与切比雪夫滤波器的幅频特性加以比较,它们具有以下特点:

① 在巴特沃思滤波器中,无论是通带还是阻带均表现为单调衰减,并且不产生波纹;

② 在切比雪夫滤波器中,通带内产生波纹,但阻带则为单调衰减; ③ 切比雪夫滤波器的截止特性比巴特沃思滤波器更为陡峭。

因而可以这样设想,如果在通带和阻带两方面都允许波纹存在,就能得到截止特性比切比雪夫滤波器更为陡峭的滤波器。基于这种思路的滤波器,就是由 W.Cauer 提出的椭圆滤波器。

Page 13: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

典型滤波器响应

其中, 为 的分式有理多项式,其零点全部在通带 <1 内,极点全部落在阻带 >1 内,具有如下形式

)(Cn

))((

))(()(

24

222

2

23

221

2

BCn

其中 为零衰减频率, 为无穷衰减频率,零衰减频率的个数与无穷衰减频率的个数相等。

1 3 2 4

这种衰减特性与契比雪夫滤波器衰减特性相比,有如下特点: ( 1 )通带内仍有契比雪夫滤波器响应的等波纹特性; ( 2 )阻带内增加了有限频率上的极点,也呈现等波纹特性;( 3 )过渡段区域的斜率更为陡峭。

210lg 1 ( )LA Cn

椭圆函数滤波器的衰减特性为:

Page 14: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

椭圆函数滤波器响应

Page 15: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

典型滤波器响应线性相位响应 Φ(ω) = A ω[ 1 + p (ω /ωc )2N]

式中 Φ(ω) 滤波器电压转移函数的相位, p 为常数。

通常良好的截止响应特性与良好的相位响应是一对矛盾。

还可以有其他的响应,上述 4 种是最常用的。

Page 16: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定

L

C~

1

R

低通原型滤波器器件参数的确定是一个道理简单计算复杂的过程。在低通原型滤波器中,一般取 g0 = 1 , ωc = 1 。

由微波网络级联可得此电路的响应为 L=1+[(1-R)2+(C2R2+ L2- 2LCR2)ω2 +L2C2R2ω4]/4R

最平坦响应为 L=1+ k2ω4 k=1 ω=1 时衰减 3dB

得到 R=1, L = C = 21/2

等波纹响应为 L=1+ k2(2ω 2 - 1)2 k=1 波纹 3dB 得到 R=5.81, L=3.1 C = 0.53

对于 N = 2 的低通原型,

其结构图如右图所示:

Page 17: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定 一般低通原型滤波器的两种结构如下图所示。

rL=gN + 1 = 1

rG=g0 =1

~

L2=g2 Ln=gn

C3=g3C1=g1

shunt capacitance series inductance

L1=g1 L3=g3

Cn=gnC2=g2~

rG=g0 =1

rL=gN + 1 = 1

series inductance shunt capacitance

图中器件的编号从信号源端的 g0 一直到负载端的 g

N+1. 两个电路同一编号的器件取值相同,给出同样的频响。因此它们互为对偶电路。

Page 18: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定 原则上,可求任意 N 阶低通原型滤波器的器件参数值。但工程应用时, N 过大不实际。对于最平坦响应的低通原型滤波器。前人将至 10 阶滤波器的参数值列表如下:

Page 19: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定最平坦响应的低通原型滤波器至 15 阶时的衰减曲线如下:

Page 20: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定 对于等波纹响应的低通原型滤波器,至 10 阶的滤波器参数值列表如下 ( 带内波纹 0.01dB) :

LAr = 0.01dB

n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 0.0960 1.0000

2 0.4488 0.4077 1.1007

3 0.6291 0.9702 0.6291 1.0000

4 0.7128 1.2003 1.3212 0.6476 1.1007

5 0.7563 1.3049 1.5773 1.3049 0.7563 1.0000

6 0.7813 1.3600 1.6896 1.5350 1.4970 0.7098 1.1007

7 0.7969 1.3924 1.7481 1.6331 1.7481 1.3924 0.7969 1.0000

8 0.8072 1.4130 1.7824 1.6833 1.8529 1.6193 1.5554 0.7333 1.1007

9 0.8144 1.4270 1.8043 1.7125 1.9057 1.7125 1.8043 1.4270 0.8144 1.0000

10 0.8196 1.4369 1.8192 1.7311 1.9362 1.7590 1.9055 1.6527 1.5817 0.7446 1.1007

Page 21: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定等波纹响应的低通原型滤波器至 15 阶时的衰减曲线如下:

Page 22: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定 对于线性相位响应低通原型滤波器,因为转移参量的相位不像幅度那样有较简单的表达式,器件参数求解更复杂。至 10 阶的滤波器参数值列表如下:

n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 2.000 1.0000

2 1.5774 0.4226 1.0000

3 1.255 0.5528 0.1922 1.0000

4 1.0598 0.5116 0.3181 0.1104 1.0000

5 0.9303 0.4577 0.3312 .2090 0.0718 1.0000

6 0.8377 0.4116 0.31586 .2364 .1480 0.0505 1.00

7 0.7677 0.3744 0.2944 .2378 .1778 .1104 0.0375 1.0000

8 0.7125 .3446 0.2735 .2297 .1867 .1387 .0855 0.0289 1.000

9 0.6678 0.3203 0.2547 .2184 .1859 .1506 .1111 0.0682 0.0230 1.0000

10 0.6305 0.3002 0.23842 .2066 .1808 .15390 .1240 0.0911 0.0557 0.0187 1.0000

Page 23: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

低通原型滤波器器件参数的确定

最大平坦响应和等波纹响应低通原型滤波器经常用到。有时通过查衰减曲线及查表得不到相应的阶数及器件参数值,这时可依据滤波器相关指标,由公式计算得到 N 及 gn

Page 24: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Impedance: Zo (ohm) Cutoff Frequency: fc (Hz) Stopband Frequency: fx (Hz) Maximum Attenuation at cutoff frequency: Ap (dB) Minimum Attenuation at stopband frequency : Ax(dB)

Butterworth LowPass Filters1

/10

/10

10 10.5 log log

10 1

Axx

Apc

fN

f

NKN

KgK ,....,2,1,

2

)12(sin2

Step 2: Determine the Number of elements , N is a integer

Step 3: Calculate Prototype Element Values , gK  。

Step1 : Specification

Page 25: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

)arccos(

1arccos 22

2

c

x

f

f

MagMag

N

110

1010/2

10/2

rp

AxMag

)(sin22

NK

BK

,...,2,1,2

)12(sin NK

NK

AK

2sinh

N

37.17cothln

rp

1cosh

1cosh 1

N

Chebyshev LowPass Filters2

Impedance: Zo (ohm) Cutoff Frequency: fc (Hz) Stopband Frequency: fx (Hz) Maximum Attenuation at cutoff frequency: Ap (dB) Minimum Attenuation at stopband frequency : Ax(dB)

Step 2: Determine the Number of elements , N is an odd integer that is to avoid differrence between the input and output impedance

Step1 : Specification

Step 3: Calculate Prototype Element Values , gK  。

Bg

AAg

KK

KKK

4

11

21

Ag

2 11

gN+1=1 N 奇数gN+1=coth2(β/4) N 偶数

Page 26: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

椭圆函数滤波器低通原型

s 由滤波器的设计指标 LAs(dB), 和 LAr(dB), 得到上述原型电路的系数,需要用雅可比椭圆函数的保角变换技术,其数学推导和计算都比较繁琐。现已有图标曲线,可供设计此类滤波器时查用。

C1

C2C3 C5 C1 C2

C4

L2 L4 L1 L3

L2 L4

L5

a )电容输入 b )电感输入

两种椭圆函数低通滤波器原型电路

s

L5C4L4L3C2L2L1

0.8851.1000.2831.7261.1800.11781.044501.6900.8360.9640.4011.6571.2280.14001.032451.5400.7660.8750.5301.5861.1930.17701.010401.4140.7010.7040.7421.4881.1390.23000.977351.309

C5L4C4C3L2C2C1 LAs

(dB)

s

下表给出了 N=5 带内波纹衰减 Lar=0.1 的椭圆函数低通滤波器的系数

Page 27: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

椭圆函数滤波器技术参数

0

p s13 24

AL

AsL

ArL

LAs :阻带抑制LAr :通带波纹 :通带截止频率p

:阻带抑制频率s

Page 28: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Frequency transformations from normalized LPF to others

C=gK

L=gk

Lowpass lowpass highpass bandpass bandstop Prototype pratical pratical pratical praticalValue value value value value

U Lo

2 U LBW -

L

c

C

c

L1c

C1c

o C 2

LBW o L 2

BW

CBW

BW

LBW

L

o2

BW

1

CBW

1

C

o2

BW

Page 29: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

g1 g2 g3 g4 g52.2072 1.1279 3.1025 1.1279 2.2072

 C1 L2 C3 L4 C5

Cal. value 93.658pF 119.67nH 131.65pF 119.67nH 93.658pF

Practical 94pF 120nH 132pF 120nH 94pF

Examples of LPF design

Impedance: Zo (ohm)=50 Cutoff Frequency: fc (MHz)=75 Stopband Frequency: fx (MHz)=100 Maximum Attenuation at cutoff frequency: 3 (dB) Minimum Attenuation at stopband frequency : 20(dB)

Step 2: Determine the Number of elements

Step1 : Specification

Step 3: Calculate Prototype Element Values , gK  。

Design a LC 1 dB ripple Chebyshev-type LPF(Zo=50 ohm) with 75MHz cutoff frequency and at least 20dB attenuation at 100MHz

Solution:

N=5

Step 4 : Select shunt capacitance series inductance

Page 30: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Result

Page 31: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Impedance: Zo (ohm) upper passband edge frequency: fPU (Hz) lower passband edge frequency: fPL (Hz) upper stopband edge frequency: fXU (Hz) lower stopband edge frequency: fXL (Hz) Maximum Attenuation at passband: Ap (dB) Minimum Attenuation at stopband : Ax(dB) Step 2: Determine the Number of elements , N is an odd integer that is to avoid differrence between the input and output impedance

Step1 : Specification

Design of BandPass Filters

),(

1,

1

21

2

2

2

1

XXX

PassXU

oXUX

PassXL

XL

oX

MIN

BWf

ff

BWf

f

f

PLPUpassPUPLo ffBWfff ,

X

Ap

Ax

Nlog

110110

log5.0 10/

10/

( 1 ) For Butterworth Type

( 2 ) For Chebyshev Type

110

1010/2

10/2

rp

AxMag

)arccos(

1arccos 22

2

X

Mag

Mag

N

Page 32: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Design of BandPass Filters2

ZoBW

gCp

BW

ZogLs

pass

eveneven

pass

oddodd

2,

2

pass

eveneven

pass

oddodd BW

ZogLs

ZoBW

gCp

2

,2

Cp

Lp

LsCs

Cp

Ls

oo

So

S

Po

P

f

LC

CL

2

1

1

2

2

prototype bandpassTransforma-tion fomu

la 

 

Step 3: Calculate Prototype Element Values , gK, as before. Select series induct-ance shunt capacitance or shunt capacitance series inductance, then calculate the values of C and L 。

a) series inductance shunt capacitance

b) shunt capacitance series inductance

Step 4:Calculate the component values of bpf 。 Transformate the lowpass prototype element values to the bandpass ones according the right transformation table

Page 33: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Example of BPF design

Design a 0.1 dB ripple Chebyshev-type BPF(Zo=50 ohm) with bandpass of 10MHz and central frequency at 75MHz, the Minimum Attenuation at stopband has to be 30dB with 30MHz stopband

Step1 : Specification Impedance ) : Zo = 50 ohm upper passband edge frequency: fPU = 75 + 5 = 80 MHz lower passband edge frequency: fPL = 75 – 5 = 70 MHz upper stopband edge frequency: fXU = 75 + 15 = 90 MHz lower stopband edge frequency : fXL = 75 –15 = 60 MHz Maximum Attenuation at passband: rp = 0.1 dB Minimum Attenuation at stopband : Ax = 30dB

)arccos(

1arccos 22

2

X

MagMag

N

Step 2 : determine the order of elements , N=3

778.2),( 21 XXX MIN

778.21

,333.31

2

2

2

1

PassXU

oXUX

PassXL

XL

oX BWf

ff

BWf

ff

MHzfff PUPLo ,83.74 MHzffBW PLPUpass 10

Page 34: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Result

C1 456pF L2 1268nH C3 456pFTransformated values of BPF

L1 10nH C2 3.6pF L3 10nH

Step 3: Calculate Prototype Element Values , gK. Select shunt capacitance series inductance type. Calculate the values of L and C

Step 4: Calculate the component values of bpf according the transformation table 。

rL=gN + 1 = 1

rG=g0 =1

~

L2=1.5937

C1=1.4329 C3=1.4329

Page 35: TOPIC 4 Filters Design. Basic Filters 1 3dB (Cutoff ) Frequency : fc (Hz) Maximum Passband Attenuation : 3dB Passband Ripple : Rp (dB) Stopband Frequency

Home work

1) Design a 0.5 dB ripple Chebyshev-type LPF(Zo=50 ohm) with bandpass of 10MHz and central frequency at 75MHz, the Minimum Attenuation at stopband has to be 20dB with 30MHz stopband, design a Butterworth-type LPF with the same specification and do comparison between them

2) Design a LC 0.1 dB ripple elliptic function LPF(Zo=50 ohm) with 75MHz cutoff frequency and at least 35dB attenuation at 98MHz. and calculate its frequency responding curve by using ABCD matrix