topological insulators - appi.keio.ac.jp

31
Topological Insulators A new state of matter with three dimensional topological electronic order Topological Insulators topological electronic order Surface States (Topological Order in 3D) “Search & Discovery”: PHYSICS TODAY 2009 (April) REVIEWS L. Andrew Wray Lawrence Berkeley National Lab Princeton University REVIEWS ------------------------------------------------ MZH & C.L. Kane, Rev. of Mod. Phys. 82, 3045 (2010) MZH & J.E. Moore, Ann. Rev. of Cond-Mat. Phys. (2011) X.L. Qi& S.C.Zhang, RMP (in press) 2011

Upload: others

Post on 01-Jan-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Topological Insulators - appi.keio.ac.jp

Topological InsulatorsA new state of matter with three dimensional

topological electronic order

Topological Insulators

topological electronic order

Surface States (Topological Order in 3D)“Search & Discovery”: PHYSICS TODAY 2009 (April)

REVIEWS

L. Andrew WrayLawrence Berkeley National LabPrinceton University REVIEWS

------------------------------------------------

MZH & C.L. Kane, Rev. of Mod. Phys. 82, 3045 (2010)

MZH & J.E. Moore, Ann. Rev. of Cond-Mat. Phys. (2011)

X.L. Qi & S.C.Zhang, RMP (in press) 2011

Princeton University

Page 2: Topological Insulators - appi.keio.ac.jp

History of Z2 Topological Insulators

2005: Theoretical prediction of the Z2 TI phase (C.L. Kane and

E.J. Mele PRL 2005)

2005: Theoretical prediction of the Z2 TI phase (C.L. Kane and

E.J. Mele PRL 2005)

2005: Theoretical prediction of the Z2 TI phase (C.L. Kane and

E.J. Mele PRL 2005)

History of Z2 Topological Insulators

E.J. Mele PRL 2005)

2006-2007: Achievement of a 2D TI phase in HgTe (B.A.

Bernevig, T.L. Hughes, S.-C. Zhang, SCIENCE 2006, M. König et

al. SCIENCE 2007)

E.J. Mele PRL 2005)

2006-2007: Achievement of a 2D TI phase in HgTe (B.A.

Bernevig, T.L. Hughes, S.-C. Zhang, SCIENCE 2006, M. König et

al. SCIENCE 2007)

E.J. Mele PRL 2005)

2006-2007: Achievement of a 2D TI phase in HgTe (B.A.

Bernevig, T.L. Hughes, S.-C. Zhang, SCIENCE 2006, M. König et

al. SCIENCE 2007)al. SCIENCE 2007)

2007-2009: First discovery of a 3D TI (Bi1-xSbx alloy, L. Fu et al.

PRL 2007, D. Hsieh et al. NATURE 2008, SCIENCE 2009)

al. SCIENCE 2007)

2007-2009: First discovery of a 3D TI (Bi1-xSbx alloy, L. Fu et al.

PRL 2007, D. Hsieh et al. NATURE 2008, SCIENCE 2009)

al. SCIENCE 2007)

2007-2009: First discovery of a 3D TI (Bi1-xSbx alloy, L. Fu et al.

PRL 2007, D. Hsieh et al. NATURE 2008, SCIENCE 2009)

2008: Discovery of the M2X3 TI class (Y. Xia, arXiv 2008, H.-J.

Zhang et al. NATURE 2009, D. Hsieh et al. NATURE 2009)

2008: Discovery of the M2X3 TI class (Y. Xia, arXiv 2008, H.-J.

Zhang et al. NATURE 2009, D. Hsieh et al. NATURE 2009)

2008: Discovery of the M2X3 TI class (Y. Xia, arXiv 2008, H.-J.

Zhang et al. NATURE 2009, D. Hsieh et al. NATURE 2009)

2010: Symmetry breaking: Observation of unconventional

superconductivity in CuxBi2Se3 , magnetism in MnxBi2-xTe3

(Wray et al. Nat. Phys. 2010, Hor et al. PRB 2010)

2010: Symmetry breaking: Observation of unconventional

superconductivity in CuxBi2Se3 , magnetism in MnxBi2-xTe3

(Wray et al. Nat. Phys. 2010, Hor et al. PRB 2010)

2010-2011: Many new ternary TIs, building of TI interfaces and

nanodevices

Page 3: Topological Insulators - appi.keio.ac.jp

Lecture Outline:Lecture Outline:

1. “Experimentally discovering” topological insulators2. Understanding topological order2. Understanding topological order3. New material properties, new possibilities4. Discussion

Page 4: Topological Insulators - appi.keio.ac.jp

Bismuth Selenide

e- doped as Cu0.12Bi2Se3

Y. Xia, arXiv 2008, D. Hsieh et al. NATURE 2009, L.A. Wray et al. Nat. Phys. 2010

Page 5: Topological Insulators - appi.keio.ac.jp

Helical Dirac fermionsOne to One Spin-Linear Momentum LockingOne to One Spin-Linear Momentum Locking

+K

-K

-K +K-K

Hsieh et.al., SCIENCE 09, NATURE 09

Page 6: Topological Insulators - appi.keio.ac.jp

STM (Roushan et.al.) Spin-ARPES (Hsieh et.al.)

Spin-texture ���� Absence of Backscattering

Xu, Moore et. (06)

Spin-Independent

Spin-Dependent

Roushan et.al.,NATURE 09

Page 7: Topological Insulators - appi.keio.ac.jp

Photoemission on a TIPhotoemission on a TI

Wray PRB 2011

Page 8: Topological Insulators - appi.keio.ac.jp

Macroscopic Effects

L

Conductivity by wire size:

σB ~ A/L

σ ~ r/LσS ~ r/L

A=πr2

Critical crystal size for σB~σS in Bi2Te2Se is ~1X1X0.1mm!!

Page 9: Topological Insulators - appi.keio.ac.jp

More than just a surface state

Disallowed band structure!Typical Rashba surface state

For visual clarity, 3D parity symmetry has been broken so that each

band is singly degenerate away from the Kramers points

Page 10: Topological Insulators - appi.keio.ac.jp

Tying a knot

Note: this does not closely approximate a real band structure

Page 11: Topological Insulators - appi.keio.ac.jp

How to see the topological connection: band bending

En

erg

y (

eV

)E

ne

rgy

(

tight binding model

Momentum (A-1)

Page 12: Topological Insulators - appi.keio.ac.jp

Band bending creates new topological surface states!

Wray et al., Nat. Phys. 2010, arXiv 2011

Page 13: Topological Insulators - appi.keio.ac.jp

Partner exchange and symmetry inversionE

ne

rgy

(e

V)

En

erg

y (

Non-TI “gap”

Wray, Nature Physics 2010

Wray, arXiv:1105.4794 2011

Momentum (A-1)

Page 14: Topological Insulators - appi.keio.ac.jp

+ +

Weak TI Strong TI

+

+

+

+

+

+kZ=π

k =0

kX=π

+kZ=0

-

-

--

-

-eV

)

--

+ +

kZ=πk =π

En

erg

y (

eV

+

+ + +kZ=π

kZ=0

kX=π

- -

-

- -

-

--

-

Momentum

L. Fu, PRL 2007

Momentum

Page 15: Topological Insulators - appi.keio.ac.jp

Inducing the topological statelattice strain and spin orbit couplinglattice strain and spin orbit coupling

Xu et al., Science 2011

Page 16: Topological Insulators - appi.keio.ac.jp

Topological Invariants Define Surface States

Fully gapped

Bi2Se3 � Bi2Se3

“interface”“interface”

Page 17: Topological Insulators - appi.keio.ac.jp

Topological Insulator Quantum Hall Effect{ν

ο} (Chern Parity invariants) Z2

ν (Chern Number): Thouless et.al.,

3D Topological Insulators

Protected Protected SSurface urface SStatestates = New 2DEG= New 2DEG

XXX

Nature 08 (subm. 2007)

2D Topological InsulatorsScience 07 (subm. 2007)

Chiral Edge States (1D) Edge States (1D) by TRS

Page 18: Topological Insulators - appi.keio.ac.jp

Topological Insulator in 2D: Quantum Hall StateThouless et.al, (‘82), (Berry Phase ‘84)

Hall conductance:

σxy = ne2/h

nh/e2

σxy = ne2/h

n = Chern no. ( Edge states)n = Chern no. ( Edge states)

Chern : Quantum version (Hilbert space)

of Gauss-Bonnet formula

21( ) ( )

2 BZ

n d u uiπ

= ⋅ ∇ × ∇∫ k kk k k

Topological Property

of Gauss-Bonnet formula

n

2 BZiπ ∫ k k

Electron-occupied Bulk bands

TKNN invariant:

Topological Quantum Number

Finite n� topologically “protected” edge-states

Page 19: Topological Insulators - appi.keio.ac.jp

time-reversal invariant!

Quantum Hall Effect (insulator) : 2D Topological insulator w/ LL

Haldane model (QAH) : 2D Topological insulator w/o LL

time-reversal invariant!

1 invariant � QSHE

+

Quantum spin Hall effect 2e2/h1 invariant � QSHE Quantum spin Hall effect Kane & Mele (05a), Kane & Mele (05b) [σspinHall Not quantized]

Bernevig, Hughes, Zhang (06), Sheng, Haldane et.al., (06)

2e2/h

4

Bernevig, Hughes, Zhang (06), Sheng, Haldane et.al., (06)

Expt: Molenkamp group HgCdTe-QWells, Science (2007)

4 Invariants ���� 3D TI

Distinct Topological state in 3D Topo InsulatorMoore & Balents(07), Fu & Kane(07), Fu, Kane &Mele(07), Roy (2009)Moore & Balents(07), Fu & Kane(07), Fu, Kane &Mele(07), Roy (2009)

Expt: MZH group Bi-based Semiconductors, KITP Proc.(2007)

Nature 2008 [Submitted in 2007]

Superconductors and Magnets (Tc)3D TIs -> Superconductors and Magnets (Tc)

Many others afterwards, ~ 800 papers on arXiv

Page 20: Topological Insulators - appi.keio.ac.jp

σ = ne2/h

TransportQHE phases

σxy = ne2/h

Topological quantum numberTopological quantum number

How to experimentally “measure” the Topo Insulators

How to experimentally “measure” the

topological quantum numbers (νi) ?

4 TQNs � 16 distinct insulators

Topo Insulators

ννννο ο ο ο = Θ/π = Θ/π = Θ/π = Θ/π Θ=Θ=Θ=Θ=ππππ ((((odd)

?

No quantized transport

{{{{νννν}}}}

4 TQNs � 16 distinct insulatorsΘ=Θ=Θ=Θ=ππππ ((((odd)

Θ=Θ=Θ=Θ=2π2π2π2π (even)

Topological “Order Parameters”

{ν{ν{ν{ν0, ν, ν, ν, ν1 νννν2 νννν3 }}}}

Spin-sensitive

Momentum-resolved?

via : {{{{ννννi}}}}Momentum-resolved

Edge vs. BulkTopological quantum number

Page 21: Topological Insulators - appi.keio.ac.jp

So what can they do?So what can they do?

Page 22: Topological Insulators - appi.keio.ac.jp

Magnetoelectric EffectsMagnetoelectric Effects(not “Electromagnetic”)

Page 23: Topological Insulators - appi.keio.ac.jp

Spin helical states meeting defectsSpin helical states meeting defects

Biswas PRB 2010; arXiv 2010

Page 24: Topological Insulators - appi.keio.ac.jp

Local Magnetic Monopoles

Dyons

X.-L. Qi, Science 2009Magnetic order creates effective “axions”

Page 25: Topological Insulators - appi.keio.ac.jp

Possibilities for Surface Magnetism

Page 26: Topological Insulators - appi.keio.ac.jp

CuxBi2Se3 (Tc ~ 3.8K) : Hor et.al., PRL 2010

A Majorana PlatformCuxBi2Se3

A Majorana Platform

Topological Surface States:

Superconductivity in doped topological insulatorsSuperconductivity in doped topological insulatorsWray et.al., Nature Physics (2010)

Page 27: Topological Insulators - appi.keio.ac.jp

Majorana FermionsMajorana Fermions

Fu, PRL 2008; Wray, Nature Physics 2010; PRB 2011Non-Abelian Statistics

Page 28: Topological Insulators - appi.keio.ac.jp

Topological Superconductor (TSC)?Kitaev/Ludwig D3 class of TSC (proposed by Fu & Berg 09)

m/µµµµ from ARPES

If ODD parity � TSC

[ analog of SF He-3(B) ]

ARPES Expts

[ analog of SF He-3(B) ]

Wray et.al., Nature Physics (2010)

Page 29: Topological Insulators - appi.keio.ac.jp

Slide from J. Moore

Page 30: Topological Insulators - appi.keio.ac.jp

Topological insulators are:

Simple•Exact non-interacting models (DFT, k.p)

Topological insulators are:

•Exact non-interacting models (DFT, k.p)

•Most complexity reduces to 1D (much nicer than cuprates!!!)

•Surface is robust against non-magnetic scattering

Complicated•Theory is difficult to learn, and few people know it•Theory is difficult to learn, and few people know it

•Many surface instabilities, particularly because they occupy the same orbitals as bulk

•Lots of new phases and new physics to explore (Majorana Fermions, Dyons, magnetoelectric

effect, unusual surface transport, unusual interface physics)

•Lots of different compounds! (Tl chalcogenides, Heuslers, M2X3, etc)

•Many “simple” issues are actually complicated:

-2nd order backscattering is allowed from Anderson impurities

-Self energy is poorly understood-Self energy is poorly understood

Page 31: Topological Insulators - appi.keio.ac.jp