toroidal vortex flow

52
Fundamentals of Fluid Film Lubrication Hamrock, Schmid & Jacobson ISBN No. 0-8247-5371-2 Toroidal Vortex Flow Figure 7.1 Toroidal vortex flow in a journal bearing. Conditions for vortex flow: Taylor Number: Reynolds Number:

Upload: poppy

Post on 22-Jan-2016

97 views

Category:

Documents


1 download

DESCRIPTION

Toroidal Vortex Flow. Conditions for vortex flow:. Taylor Number:. Reynolds Number:. Figure 7.1 Toroidal vortex flow in a journal bearing. Mass Flow. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Toroidal Vortex Flow

Figure 7.1 Toroidal vortex flow in a journal bearing.

Conditions for vortex flow:

Taylor Number:

Reynolds Number:

Page 2: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Mass Flow

Figure 7.1 Mass flow through rectangular-section control volume. (a) x-y plane; (b) y-z plane; (c) x-y plane. [From Hamrock and Dowson (1981).]

Page 3: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation

Page 4: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation Terms

Figure 7.3 Density wedge. Figure 7.4 Stretch mechanism.

Page 5: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation Terms

Figure 7.5 Physical wedge mechanism.Figure 7.6 Normal squeeze mechanism.

Page 6: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation Terms

Figure 7.7 Translation squeeze mechanism.

Figure 7.8 Local expansion mechanism.

Page 7: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Possible Motion in Bearings

Figure 7.9 Normal squeeze and sliding velocities.

Page 8: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Possible Motion in Bearings

Figure 7.9 Normal squeeze and sliding velocities.

Page 9: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Surface Slider Bearing

Figure 8.1 Velocity profiles in a parallel-surface slider bearing.

Page 10: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Flow in Inclined Slider

Figure 8.2 Flow within a fixed-incline slider bearing (a) Couette flow; (b)

Poiseuille flow; (c) resulting velocity profile.

Page 11: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Thrust Bearing

Figure 8.3 Thrust bearing geometry.Figure 8.3 Force components and oil film geometry in a hydrodynamically lubricated thrust sector.

Page 12: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Surface Bearing

Figure 8.5 Parallel-surface slider bearing.

Page 13: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Bearing

Figure 8.6 Fixed-incline slider bearing.

Figure 8.7 Pressure distributions of fixed-incline slider bearing.

Page 14: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Bearing Results

Figure 8.8 Effect of film thickness ratio on normal load-carrying capacity.

Figure 8.9 Effect of film thickness ratio on force components.

Page 15: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Bearing Results

Figure 8.10 Effect of film thickness ratio on friction coefficient parameter.

Figure 8.11 Effect of film thickness ratio on dimensionless volume flow rate.

Page 16: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Bearing Results

Figure 8.12 Effect of film thickness ratio on dimensionless adiabatic temperature rise.

Figure 8.13 Effect of film thickness ratio on dimensionless center of pressure.

Page 17: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Streamlines in Fixed-Incline Slider Bearing

Figure 8.14 Streamlines in fixed-incline bearing at four film thickness ratios Ho. (a) Ho =2; (b) Ho =1 (critical value).

Page 18: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Streamlines in Fixed-Incline Slider Bearing

(cont.)

Figure 8.14 Concluded. (c) Ho = 0.5; (d) Ho = 0.25.

Page 19: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step Bearing

Figure 8.15 Parallel-step slider bearing.

Page 20: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step Pad Slider Bearing

Figure 9.1 Finite parallel-step-pad slider bearing.

Page 21: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step-Pad Bearing Results

Page 22: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step-Pad Bearing Results

Page 23: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step-Pad Bearing Results

Figure 9.3 Shrouded-step slider bearings. (a) Semicircular step; (b) truncated triangular step.

Page 24: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline-Pad Slider Bearing

Figure 9.4 Side view of fixed-incline-pad bearing. [From Raimondi and Boyd (1955).]

Figure 9.5 Configurations of multiple fixed-incline-pad thrust bearing. [From Raimondi and Boyd (1955).]

Page 25: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Film Thickness for Given Surface Finish

Page 26: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.6 Chart for determining minimum film thickness corresponding to

maximum load or minimum power loss for various pad proportions - fixed-incline-pad

bearings. [From Raimondi and Boyd (1955).]

Page 27: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.7 Chart for determining minimum film thickness for fixed-incline-pad thrust bearings. [From Raimondi and Boyd (1955).]

Page 28: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.8 Chart for determining dimensionless temperature rise due to viscous shear heating of lubricant in fixed-incline-pad thrust bearings. [From Raimondi and Boyd (1955)]

Page 29: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.9 Chart for determining performance parameters of fixed-incline-pad thrust bearings. (a) Friction coefficient; (b) power loss. [From Raimondi and Boyd (1955)].

Page 30: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.9 Concluded. (c) Lubricant flow; (d) lubricant side flow.

Page 31: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Bearing

Figure 9.10 Side view of pivoted-pad thrust bearing. [From Raimondi and Boyd (1955).]

Figure 9.11 Configuration of multiple pivoted-pad thrust bearing. [From Raimondi and Boyd (1955).]

Page 32: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.12 Chart for determining pivot location corresponding to maximum load or minimum power loss for various pad proportions - pivoted-pad bearings. [From Raimondi and Boyd (1955).]

Page 33: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.13 Chart for determining outlet film thickness for pivoted-pad thrust bearings. [From Raimondi and Boyd (1955).]

Figure 9.14 Chart for determining dimensionless temperature rise due to viscous shear heating of lubricant for pivoted-pad thrust bearing. [From Raimondi and Boyd (1955).]

Page 34: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.15 Chart for determining performance parameters for pivoted-pad thrust bearings. (a) Dimensionless load; (b) friction coefficient. [From Raimondi and Boyd (1955).]

Page 35: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.15 Concluded. (c) Lubricant flow; (d) lubricant side flow; (e) power loss.

Page 36: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Journal Bearing

Figure 10.1 Hydrodynamic journal bearing geometry.

Figure 10.2 Unwrapped film shape in a journal bearing.

Page 37: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Sommerfeld Angle

Page 38: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Full Sommerfeld Solution

Figure 10.3 Pressure distribution for full Sommerfeld solution.

Sommerfeld substitution:

Pressure distribution:

Maximum pressure:

Page 39: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Forces for Sommerfeld Solution

Figure 10.4 Coordinate system and force components in a journal bearing.

Figure 10.5 Vector forces acting on a journal.

Page 40: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Boundary Condition

Figure 10.6 Location of shaft center for full and half Sommerfeld journal bearing solutions.

Figure 10.7 Pressure profile for a journal bearing using Reynolds boundary condition.

Page 41: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Hydrodynamic Journal Bearings

Figure 11.1 Pressure distribution around a journal bearing.

Sommerfeld number:

Diameter-to-width ratio:

Page 42: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Film Thickness and Eccentricity

Figure 11.2 Effect of bearing number on minimum film thickness for four diameter-to-width ratios. [From Raimondi and Boyd (1958)].

Page 43: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Attitude Angle

Figure 11.3 Effect of bearing number on attitude angle for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 44: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Friction Coefficient

Figure 11.4 Effect of bearing number on friction coefficient for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 45: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fluid Flow

Figure 11.6 Effect of bearing number on volume side flow ratio for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Figure 11.5 Effect of bearing number on dimensionless flow rate for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 46: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Maximum Pressure & Location

Figure 11.8 Effect of bearing number on location of terminating and maximum pressures for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Figure 11.7 Effect of bearing number on dimensionless maximum film pressure for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 47: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Effect of Radial Clearance

Figure 11.9 Effect of radial clearance on some performance parameters for a particular case.

Page 48: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Pad Journal Bearings

Page 49: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Effect of Preload

Figure 11.11 Effect of preload factor mp on two-lobe bearings. (a) Largest shaft that fits in bearing. (b) mp =0; largest shaft, ra; bearing clearance cb = c. (c) mp =1.0; largest shaft, rb; bearing clearance cb =0. [From Allaire and Flack (1980).]

Page 50: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Hydrodynamic Squeeze Film Bearings

Figure 12.2 Journal bearing with normal squeeze film action. Rotational velocities are all zero.

Figure 12.1 Parallel-surface squeeze film bearing.

Page 51: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel Circular Plate

Figure 12.3 Parallel circular plate approaching a plane surface.

Load support:

Time of approach:

Page 52: Toroidal Vortex Flow

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Rigid Cylinder

Figure 12.4 Rigid cylinder approaching a plane surface.

Load support:

Time of approach: