torsion by aci 318-11-3slidesperpage.272121622

17
1 Design for Torsion by ACI 31811 Basile G. Rabbat Consultant Mt. Prospect, IL [email protected] September 25 26, 2013 Learning Objective Determine when design for torsion is mandated by Code Distinguish between: Equilibrium Torsion Compatibility Torsion Design torsion reinforcement Detail torsion reinforcement 2 3 Two-Way Flat Plate w/Spandrel Beams (13.6.3) 3 Design spandrel for torsion

Upload: oqusous

Post on 08-Sep-2015

26 views

Category:

Documents


4 download

DESCRIPTION

sdaf asdf asdf sadf

TRANSCRIPT

  • 1

    Design for Torsion by ACI 318-11

    Basile G. Rabbat

    Consultant Mt. Prospect, IL

    [email protected]

    September 25- 26, 2013

    Learning Objective

    Determine when design for torsion is mandated by Code

    Distinguish between: Equilibrium Torsion Compatibility Torsion

    Design torsion reinforcement Detail torsion reinforcement

    2!

    3!

    Two-Way Flat Plate w/Spandrel Beams (13.6.3)

    3!

    Design spandrel for torsion

  • 2

    4!

    Torsion in Canopy Spandrel Beam

    Design for Torsion

    11.5 Design for Torsion

    Based on Thin-Wall Tube, Space Truss Analogy

    Applies to: R/C & P/S Hollow and Solid Sections

    Tc = 0 5!

    Solid vs. Hollow Section Strength

    6!Source: MacGregor, ACI 318-11 Ref. 11.31

  • 3

    R11.5 Thin-Wall Tube Analogy

    7!

    !

    8!

    11.5 Design for Torsion

    Compute Tu (from analysis) If Tu < Tcr /4 (threshold torsion)

    Ignore torsion Cracking at = 4 fc If Tu Tcr /4 Design for torsion

    Equilibrium torsion? Compatibility torsion?

    Design torsion reinforcement Transverse & longitudinal reinf.

    !

    11.5.1(a) Threshold Torsion

    Nonprestressed Concrete

    Threshold torsion (Tcr /4)

    Tu < !" fc' Acp

    2

    pcp

    !

    "##

    $

    %&&

    9!

  • 4

    11.5.1(b) Threshold Torsion

    Prestressed Concrete

    Tu < !" fc' Acp

    2

    pcp

    !

    "##

    $

    %&& 1+

    fpc4" fc

    '

    fpc = compressive stress in concrete, after prestress losses, at centroid of cross section

    10!

    11.5.1(c) Threshold Torsion

    Nonprestressed w/Axial Force

    Tu < !" fc' Acp

    2

    pcp

    !

    "##

    $

    %&& 1+

    Nu4Ag! fc

    '

    Nu = factored axial force normal to cross section occurring simultaneously with Vu or Tu; positive for compression and negative for tension

    11!

    12!

    11.5.1 Acp & pcp

    Members cast monolithically with a slab Effective flange width per 13.2.4

    h (h hf ) 4hf

    hf

    bw

    Acp = Shaded area pcp = Perimeter of shaded area

  • 5

    11.5.1 Threshold Torsion

    Determine Acp and pcp

    Neglect overhanging flange(s) when:

    Acp2 pcp

    Beam w/o flange(s)

    Acp2 pcp

    Beam with flange(s) <

    13!

    11.5.1 Threshold Torsion

    Hollow sections

    Replace Acp with Ag in equations for threshold torsion

    14!

    15!

    R11.5.2.1 Equilibrium Torsion

    Design torque may not be reduced, because moment redistribution is not possible

  • 6

    16!

    R11.5.2.2 Compatibility Torsion

    Design torque for spandrel beam may be reduced because moment redistribution is possible

    17!

    11.5.2.2 Compatibility Torsion

    Twist

    Tcr Torque

    Tn

    Tu,comp = 4 fc Acp2 pcp

    = Tu,comp

    18!

    11.5 Design for Torsion - Recap

    Compute Tu (from structural analysis)

    If Tu < Tcr /4 Ignore torsion

    Tu Tcr /4 Design for torsion Equilibrium torsion? Design for Tu (analysis) Compatibility Torsion?

    Design for Tu,comp = Tcr (compatibility) Redistribute T = Tu Tu,comp = Tu - Tcr

  • 7

    11.5.2.2 Compatibility Torsion, Tu,comp

    19!

    Tu ! !4" fc' Acp

    2

    pcp

    "

    #$

    %

    &' 1+

    fpc4" fc

    '

    Tu ! !4" fc' Acp

    2

    pcp

    "

    #$

    %

    &' 1+

    Nu4Ag" fc

    '

    Tu ! !4" fc' Acp

    2

    pcp

    "

    #$

    %

    &'

    R/C w/Axial Force

    P/S

    R/C

    Note: Do not replace Acp with Ag

    11.5.2.3 Slab/Spandrel Torsion

    Determine torsional moment distribution through analysis

    Assume torsion from slab to spandrel to be uniformly distributed

    20!

    11.5.2.4-.5 Critical Section

    Distance from support R/C d

    P/S h/2

    Exception: Concentrated torque within distance d (R/C), or h/2 (P/S)

    21!

  • 8

    Torsional Stresses Shear Stresses

    11.5.3.1 Adequacy of Solid Section

    22!

    11.5.3.1 Adequacy of Solid Section

    Circular interaction

    23!

    Vubwd

    !

    "#$

    %&

    2

    +Tuph1.7Aoh

    2

    !

    "#$

    %&

    2

    ' !Vcbwd

    +8 fc'!

    "#$

    %&

    Torsional Stresses Shear Stresses

    11.5.3.1 Adequacy of Hollow Section

    24!

  • 9

    11.5.3.1 Adequacy of Hollow Section

    Linear interaction

    25!

    Vubwd

    !

    "#$

    %&+

    Tuph1.7Aoh

    2

    !

    "#$

    %&' !

    Vcbwd

    +8 fc'!

    "#$

    %&

    11.5.3.3 Thin Wall Section

    If t < (Aoh /ph ) Replace

    26!

    Tuph1.7Aoh

    2

    !

    "##

    $

    %&& with

    Tu1.7Aoht

    !

    "##

    $

    %&&

    Space Truss Analogy Torsional Cracks Spiral Around Section

    27!Courtesy : Dr. Michael Collins, University of Toronto

  • 10

    28!

    Concrete Shell Spalls

    Courtesy : Dr. Michael Collins, University of Toronto 28!

    Stress Trajectories Tension in Hoop

    Compression in Concrete

    Compression in Concrete

    Tension in Hoop

    Outside of Concrete

    Source: Collins & Mitchell, Prestressed Concrete Structures

    Concrete Shell Spalls

    29!

    11.5.3 At Maximum Torque

    Concrete shell spalls

    Aoh = Area within stirrup centerline

    Assume Ao = 0.85Aoh

    30!

  • 11

    Fig. R11.5.3.6(b) Definition of Aoh

    31!

    32!

    T

    Longitudinal Bar

    xo

    yo

    Stirrups Cracks

    = 30o to 60o

    V1 V2

    V3

    V4

    R11.5.3.6(a) Space Truss Analogy

    Concrete Compression Diagonals

    For R/C = 45o For P/S = = 37.5o

    33!

    11.5.3.6 Transverse Reinforcement

    Atfyt

    yocot

    s

    yo = center-to-center length of closed stirrup

    V2

    Atfyt

    V2 =qyo =T2Ao

    yo =Atfytsyo cot!

  • 12

    34!

    11.5.3.6 Transverse Reinforcement

    Atfyt

    yocot

    s

    yo = center-to-center length of closed stirrup

    V2

    Atfyt

    Tn =2AoAtfyts

    cot!

    where Ao = 0.85Aoh = 0.85xoyo

    11.5.3.6 Torsional Moment Strength

    Tn Tu

    35!

    = 0.75 (9.3.2.3)

    Tn = 2Ao At fyt

    s cot (11-21)

    11.5.3.6 Transverse Reinforcement

    Determine transverse reinforcement required for torsion

    36!

    =

    Ao = 0.85Aoh

    At s

    Tu (or Tu,comp) 2Aofyt cot

  • 13

    11.5.5.2 Minimum Transverse Reinf.

    37!

    Av At s

    + Minimum = 0.375 f c bws

    fyt

    25bw fyt 2s

    Av = 2fyt d

    2s Vu Vc

    38!

    11.5.3.7 Longitudinal Reinforcement

    N2 /2

    N2 /2

    N2

    D2 V2

    yo cos

    yo

    N2 =V2 cot! =A!fy

    V2 =Atfytsyo cot!

    Afy/2

    39!

    11.5.3.7. Longitudinal Reinforcement

    N2 /2

    N2 /2

    N2

    D2 V2

    yo cos

    yo

    A! =Atsphfytfycot2!

    ph = perimeter of centerline of exterior stirrup/hoop

    Afy/2

  • 14

    40!

    11.5.3.7 Longitudinal Torsional Reinf.

    A =

    s

    ph

    fyt

    fy

    cot2 (11-22) At

    41!

    11.5.5.3 Minimum Longitudinal Reinf.

    A,min =

    5 fc Acp

    fy ph

    s

    At

    fyt

    fy

    At s

    25bw fyt

    11.5.3.6-.7 Torsion Reinforcement

    42!

    h

    bw

    At @ s

    A"

  • 15

    Determine longitudinal reinforcement required for flexure

    Combine longitudinal reinforcement required for torsion with that required for flexure A added to Aflexure on tension side A may be reduced in flexural compression

    zone of member by Mu/(0.9dfy) 43!

    11.5.3.9 Details of Longitudinal Reinforcement

    11.5.6.2 Details of Longitudinal Torsional Reinforcement

    44!

    Minimum one longitudinal bar in every corner

    12 (typ.)

    11.5.6.2 Details of Longitudinal Torsional Reinforcement

    45!

  • 16

    db s/24

    db 3/8

    46!

    11.5.6.2 Details of Longitudinal Torsional Reinforcement

    Extend torsion reinforcement beyond theoretical cut-off point a distance of (bt + d)

    47!

    11.5.6.3 Details of Torsion Reinforcement

    11.5.6 Spacing of Transverse Reinf.

    ph /8

    12 in.

    d/2

    48!

  • 17

    Questions?

    49!