toward sustainable groundwater in agriculture overviewag-groundwater.org/files/56496.pdf ·...

9
Toward Sustainable Groundwater in Toward Sustainable Groundwater in Agriculture Overview Introduction to Climate change and groundwater recharge Methodology Methodology Climate change scenarios Case Study Results and discussion Temporal impact Spatial impact Spatial impact Groundwater level changes Conclusions 2 References Climate Change and Groundwater Recharge Increase of CO2 concentration and other greenhouse gases will have significant effect on global climate. Cli h ff ii i dhd l Climate change affects precipitation andhydrology, which in turn influences recharge to groundwater. Recharge to GW is an important source which has the Recharge to GW is an important source, which has the main role in GW resources availability. To trace these changes to recharges and its consequent To trace these changes to recharges and its consequent effect on GW state, a combined modeling of climate change and GW is necessary. 3 Climate Change and Groundwater Recharge “Climate change affects: groundwater recharge rates and d th f d t t bl depth of groundwater table However, there is poor knowledgeof the impacts very little research on the future impact of climate change on GW, or GW–SW interactions. ” (IPCC 2008, p. 38) Intergovernmental Panel on Climate Change (IPCC) emphasize a continuing need to assess the potential effects f l d l f h 4 of CO2altered climates on aquifer recharge. Climate Change and Groundwater Recharge Groundwater aquifers are recharged mainly: Precipitation, and/or i i ih f b di interaction with surface water bodies, Hence, direct influence of climate change on precipitation and direct influence of climate change on precipitation and surface water ultimately affect groundwater systems. 5 Climate Change and Groundwater Recharge Climate change affects surface water resources through changes in the major climate variables h such as: air temperature, precipitation precipitation, evapotranspiration therefore, Precise estimation of groundwater recharge due to changes in these variables is necessary to quantify the impact of climate change on groundwater resources 6 climate change on groundwater resources.

Upload: others

Post on 17-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Toward Sustainable Groundwater inToward Sustainable Groundwater in Agriculture Overview

Introduction to Climate change and groundwater recharge 

Methodology Methodology Climate change scenarios Case Study

Results and discussion  Temporal impact Spatial impactSpatial impact Groundwater level changes

Conclusions 

2

References

Climate Change and Groundwater RechargeIncrease of CO2 concentration and other greenhouse gases will have significant effect on global climate.   Cli   h   ff   i i i   d h d l  Climate change affects precipitation and hydrology, which in turn influences recharge to groundwater. Recharge to GW is an important source  which has the Recharge to GW is an important source, which has the main role in GW resources availability. 

To trace these changes to recharges and its consequent To trace these changes to recharges and its consequent effect on GW state, a combined modeling of climate change and GW is necessary.

3

Climate Change and Groundwater Recharge“Climate change affects: groundwater recharge rates andd th f d t t bldepth of groundwater tableHowever, there ispoor knowledge of the impactsp g pvery little research on the future impact of climate changeon GW, or GW–SW interactions. ” (IPCC 2008, p. 38)

Intergovernmental Panel on Climate Change (IPCC)emphasize a continuing need to assess the potential effectsf l d l f h

4

of CO2‐altered climates on aquifer recharge.

Climate Change and Groundwater RechargeGroundwater aquifers are recharged mainly:Precipitation, and/ori i i h f b diinteraction with surface water bodies,Hence,direct influence of climate change on precipitation anddirect influence of climate change on precipitation andsurface water ultimately affect groundwater systems.

5

Climate Change and Groundwater RechargeClimate change affects surface water resourcesthrough changes in the major climate variables

hsuch as:air temperature,precipitationprecipitation,evapotranspiration

therefore,Precise estimation of groundwater recharge due to changesin these variables is necessary to quantify the impact ofclimate change on groundwater resources

6

climate change on groundwater resources.

Climate Change and Groundwater RechargeGW recharge is affected by many complex parameters, including: climatic factor such as amount and intensity of rainfall climatic factor such as amount and intensity of rainfalland evaporation

characteristics of the recharge beds such as: topography; in particular the slope of the land surface, type,topography; in particular the slope of the land surface, type, amount of vegetation cover and types of land use, residual soil moisture stored in the soil profile fromprevious rainfall eventsp

aquifer hydraulic properties to capture and transmit water

7

Climate Change and Groundwater RechargeFinally, recharge rates can be extensively impacted by human activities such as:increasing residential development (increased impervious cover), and 

high water usage coupled with:high water usage coupled with: low recharge during the summer months;  percolation from water distribution systems, sewers, and septic tanks; and 

over‐irrigation of parks and lawns.

8

Climate Change and Groundwater RechargeThe removal of deep rooted perennials in favor of crops, or plantation establishment in former pasture country can have an impact on the volume of water entering groundwater p g gsystems.

The significance of each of the factors controlling recharge will vary from site to site and may vary over time as land will vary from site to site and may vary over time as land use and vegetation cover changes. 

It can be important to manage land use to protect both the p g pquality and volume of water entering aquifer systems.

9

MethodologyIn this study, the impact of climate change on GW on two plain of Karkheh‐river basin (Iran) were 

dassessed;Using two downscaled scenarios of CGCM2 and  two large‐scale scenarios from CGCM3 to predict changes in large‐scale scenarios from CGCM3 to predict changes in future. 

The physically based hydrologic model HELP3 (Schroeder et al., 1994) in conjunction with GIS forced to simulate temporal and spatial recharge in three future periods: 2010‐2039, 2040‐2069, and 2070‐2099. 

10

periods: 2010 2039, 2040 2069, and 2070 2099. 

Methodology

The method applies hydrologic HELP3 model incorporated

with a geographic information system (GIS).with a geographic information system (GIS).

Two downscaled scenarios of CGCM2(A2 & B2) and two

l l i (A B & B ) f CGCM dlarge‐scale scenarios (A1B & B1) from CGCM3 were used to

predict change in future.

In addition to temporal changes, spatial future changes in

groundwater recharge are presented using physically based

11

g g p g p y y

methodology similar to Jyrkama et al. (2007).

MethodologyThe approach (based on the method by Jyrkama et al. ,2007,

Scibek and Allen, 2006), uses:Scibek and Allen, 2006), uses:

daily precipitation,

temperature and solar radiation records temperature and solar radiation records

land use/land cover and soils data.

Th di f thi th d l i t d i th t lidThe diagram of this methodology is presented in the next slide.

12

13

MethodologyClimate change scenarios:All GCM data used in this study were obtained from IPCC data distribution center and Canadian Center for Climate Modeling and Analysis data center. The emissions scenarios used in this study  A2 and B2 The emissions scenarios used in this study, A2 and B2 from CGCM2, B1 and A1B from CGCM3, are described in detail by Nakicenovic et al. (2000). Each scenario y ( )produces different atmospheric concentrations of future greenhouse gases. 

14

MethodologyA2, B2 represent the highest and lowest CO2 emissions scenario for which used to run CGCM2, B  h   h  hi h   i i  CO   f SRES  i  B1 has the highest emission CO2 of SRES scenarios, A1B has CO2 emission lower than A2 and higher than others (IPCC  2001)  others (IPCC, 2001), A1B assumes a world of very rapid economic growth, a global population that peaks in mid‐century and rapid g p p p y pintroduction of new and more efficient technologies. 

15

MethodologyA1B describe balance across all sources fossil intensive and 

non‐fossil energy resources. B1 describes a convergent world  with the same global population B1 describes a convergent world, with the same global population 

as A1, but with more rapid changes in economic structures toward a service and information economy. 

B  d ib     ld  ith i t di t   l ti   d  i  B2 describes a world with intermediate population and economic growth, emphasizing local solutions to economic, social, and environmental sustainability. A2 describes a very heterogeneous 

ld  i h hi h  l i   h   l   i  d l  world with high population growth, slow economic development and slow technological change. No likelihood has been attached to any of the SRES scenarios (IPCC, 2001).

16

MethodologyThe water‐budget model called the Hydrological Evaluation of Landfill Performance 

(HELP) model version 3.07 (Schroeder et al., 1994). (HELP) model version 3.07 (Schroeder et al., 1994). HELP is a quasi‐two‐dimensional deterministic, water routing 

model which simulate all of the important surface and subsurface hydrologic processes for estimating daily movement subsurface hydrologic processes for estimating daily movement of water into the ground, including:  snow accumulation; snowmelt;  surface runoff; surface runoff;  evapotranspiration; vegetation growth and decay;  soil freeze/ thaw from air temperature, and  vertical unsaturated drainage for each discrete layered soil column  

17

vertical unsaturated drainage for each discrete layered soil column. 

MethodologyDaily infiltration into each layer is determined indirectly from a surface‐water balance. E h d  i fil i  i   d    l  h     f Each day, infiltration is assumed to equal the sum of rainfall and snowmelt, minus the sum of runoff, surface storage  surface evaporation and plant surface storage, surface evaporation and plant transpiration. Vertical percolation through the base of the deepest p g pmodel layer, which is set equal to the water table depth, is considered as GW recharge. 

18

MethodologyHELP has been used in many GW recharge studies (e.g., Gogolev, 2002; Allen et al., 2004; Jyrkama and Sykes  2005  2007; Scibek and Allen  2006a  b; Allen Sykes, 2005, 2007; Scibek and Allen, 2006a, b; Allen and Toews, 2009).The HELP model was chosen mainly because it is a The HELP model was chosen mainly because it is a well‐documented, readily available, user friendly and furthermore because of the availability of its required input data. 

19

Case StudyIn this study impact of climate change on GW recharge in two different climatic plains of Karkheh river basin in Khuzestan  Iran  has been investigated using a in Khuzestan, Iran, has been investigated using a physically‐based methodology that can be used for predicting both temporal and spatial varying p g p p y ggroundwater recharge. Recharge was estimated using the Hydrological 

( )Evaluation of Landfill Performance (HELP3) water budget model. 

20

Case StudyKarkheh River Basin is, most notably, the eastern flank of the "cradle of civilization" (ancient Mesopotamia). 

Has an area of 50764 km2 has a population of around 4 million of as a a ea o 50764 as a popu at o o a ou d 4 o owhich 67% are living in rural areas. 

The mean annual precipitation varies from 150 mm in the south to 750 mm in the north and the climate is mainly semi‐arid. 

This major river basin of western Iran has unique agricultural and hydrological aspects; but also much in common with other catchments in developing countries around the world: 

l  t rural poverty land degradation,  low water and agricultural productivity, and  growing upstream‐downstream competition and conflict for water

21

growing upstream downstream competition and conflict for water.

Case StudyThe future of the Karkheh River Basin and its people’s livelihoods clearly depends on more holistic, basin‐wide management and monitoring of natural basin wide management and monitoring of natural resources—water, soil, vegetation and livestock. As water is the most limiting natural resource in this b i    i  i     d i i   ill  l  basin, any increase in water productivity will almost certainly benefit rural livelihoods. To ensure the sustainability of the improvements in To ensure the sustainability of the improvements in water productivity, assessment of the possible impacts of climate change on hydrology and water resources in the basin is necessary  

22

the basin is necessary. 

Case StudyAs a result of population growth and economic development, 

water demand and urbanization is increasing in the basin. Both the climatic and non‐climatic changes are dynamic  These Both the climatic and non climatic changes are dynamic. These 

changes complicate water resources management (i.e. water supply, flood management, drought management). 

U d t di  th  i t   f  li t   h    h d l   d Understanding the impacts of climate change on hydrology and water resources of the basin will help decision‐makers to cope with these changes and manage water resources adaptively in the f  future. 

Understanding recharge is also necessary to properly assess aquifer vulnerability to contamination, since the transport of 

23

most groundwater contaminants.

Case StudyThere has been a significant increase in the extraction of GW resources in Iran in the last 3 decades. Thi  h  l d   i d    f  h  i  This has led to increased awareness of the importance of managing such resources to ensure their long term sustainability  sustainability. This awareness has been sharpened by more severe drought over much of Karkheh River basin and is greflected in the attention to GW in the government water policy statements. 

24

Case StudyGW is a major component of the dry Karkheh‐river basin environment. I       i h  i   f GW d d  It supports a rich variety of GW dependent ecosystems, provides base flows to river systems, and supports much of Iran’s economic  cultural  and social supports much of Irans economic, cultural, and social development, especially in the arid zone that covers most of Iran. An important aspect critical to GW management issues is ultimately based on understanding of how the resource is being replenished or recharged  

25

resource is being replenished or recharged. 

Case Study

3%

Groundwater Usage in Kuhdasht Plain

%

Groundwater Usage in Karkheh‐Noor Plain

13%

8%

Agricultural

7%5%

Agricultural3 gIndustrial HouseholdReceational

23%

gIndustrial HouseholdReceational

76%

Receational65% Receational

26

Case StudyTwo areas of Karkheh River Basin were selected as a case study: Kuhdasht plain, Karkhe‐noor Plain (Fig.  2)  2). Plains are situated in two different sub basins, and have partially different climate  Properties of these have partially different climate. Properties of these areas can be seen in Table 2. Each plain are divided into various zones in paccordance with their common soil and land use characteristic.

27

Case Study

28

Case Study

Case Study East Latitude North Longitude  Elevation Area Location Sub basin(plain) range range (m) (km2) (County, Province)

Kuhdasht 47° 30'‐ 47° 45' 33° 25' ‐ 33° 35 1300 510 Kuhdasht, Lorestan KashkanKarkhe‐Noor 47° 55' ‐ 48° 25'   30° 31' ‐ 31° 12' 1100 473 Hoveyze, Ahvaz Karkheh‐

JonobCase Study Temperature Precipitation Climate Relative  Potential  Groundwater Case Study(plain)

TemperatureC˚

Precipitation(mm)

Climate Relative Humidity

Potential Evapotranspiration(mm)

Groundwater level(m)

Kuhdasht 16 460 humid semi‐arid

55 1371 30

Karkhe‐Noor 26 180 humid arid 52 1836 3

29

Case StudyHELP model Input dataWeather is assumed to be uniform across two plains due to small 

size of them and weather data were based on point observations size of them and weather data were based on point observations at two locations within two Plains. 

Some vegetation data such as Leaf area index and Evaporative  d th   i       t  il bl   d th    zone depth, growing season were not available, and they are 

computed by authors. Runoff curve numbers were calculated within HELP for each 

zone location based on vegetation and soil texture (U.S. Department of Agriculture, 1986), as represented by Schroeder et al. (1994). 

30

Results and DiscussionThe  impact of climate change was modeled using two downscaled scenarios (A2, B2) due to CGCM2 and two large scale scenarios (AB1  B1)  due to  CGCM3 model large scale scenarios (AB1, B1)  due to  CGCM3 model results. These data were derived for three periods: 2010‐2039, 2040‐2069, and 2070‐2099. 39, 4 9, 7 99

31

Results and Discussion Figure 2 illustrates the position of Karkheh River Basin and the 

20‐cell grid‐mesh that we have considered (in a previous study) on the basin in order to make downscaled data in 0.5 x 0.5 degree 5 5 gscale and run VIC model. 

Figure 2. Karkheh River Basin and 20‐cell grid‐mesh

32

Results and Discussion

Case study Predicted change in mean annual climate parameters (2010‐2099)Scenarios Precipitation Temperature Solar Scenarios Precipitation

(mm/year, total percent)

Temperature(°C/year, total 

percent)

Solar Radiation(total 

percent)K hd h  Pl i B  ( %) ( 6% ) % Kuhdasht Plain B2

A2A1BB1

+1.4 (40%)٭٭٭

+0.030(16% )+0.066(37% )+0.025(14% )+0.025(14% )

+3.2% +8.8% +4.6% +0.5% 5( 4 ) 5

Karkheh‐Noor Plain

B2A2A1BB

+1.1(31%)+0.51(23%)

٭٭

+0.034(11% )+0.061(23% )+0.028(13% )

(8% )

+5.2% +7.2% +3.2% 

33

B1 ٭ +0.022(8% ) +1.1% + Increasing trend−Decreasing trend ٭ No trend

Results and Discussion

Figure 3: Cumulative Recharge, Evapotranspiration, Runoff and Precipitation under A2. B2, A1B, B1 scenarios in Kuhdasht plain

34

Results and DiscussionFour scenarios show different values of recharge because ofdifferent predicted values of precipitation, temperatureand solar radiation (Table 2)

h h l d dHighest recharge rates are simulated under B2 scenariowhich has highest precipitation rate, while recharge rates ispredicted to have a small change under other scenarios dueto no trend in precipitation (Table 2)to no trend in precipitation (Table 2)

As a result changing precipitation has the highest influenceon the recharge rate.

35

Results and DiscussionScenario A2 has more evapotranspiration in comparisonwith B1 and A1B scenario due to more increase intemperature and solar radiation in Kuhdasht plain (Table2) Also Scenario B2 has highest e apotranspiration2). Also, Scenario B2 has highest evapotranspirationbecause of more available water in system.

Scenario B2 and A1B with no precipitation trend and sametemperature both have same recharge rate in spite oftemperature, both have same recharge rate in spite ofdifferent solar radiation, as a result solar radiation hasminimum effect on recharge in contrast with precipitationand temperature.and temperature.

36

Results and Discussion (annual)Fi 4 R h E t i ti R ff d P i it ti d A2 B2 A1B B1Fig. 4: Recharge, Evapotranspiration, Runoff and Precipitation under A2. B2, A1B, B1 

scenarios in Kuhdasht plain

500

600

A1BA2

300

400

nual

(mm

) Historical (1989-2009)B2B1

200

300

Mea

n A

nn

0

100

37

Precipitation Runoff Evapotranspiration Recharge

Results and Discussion (monthly)GW recharge will increase in winter months because more

precipitation will fall as rain due to increased temperatures.

R ff d h ill l b i h dRunoff and recharge will almost be zero in summer months dueto warmer and without rainfall summer.

R ff ill d i i d t hift f th i ltRunoff will decrease in spring due to shift of the spring meltfrom spring toward winter, and also due to shift of maximumprecipitation from early spring to late winter months. Theamount of runoff is consequently increased during winterq y gmonths as moisture is released from the snowpack due towarmerwinter.

38

40Results and Discussion (monthly)

303540

mm

) PrecipitationRun off

152025

ffer

ence

(m EvapotranspirationRecharge

05

1015

vera

ge d

iff

-10-50

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug SepAv

Year (month)

39

Year (month)

Spatial ImpactsThe average annual recharge rate is predicted to increase by approximately 40 mm/year from 35 mm/year to 75 mm/year over the 90 year study period mm/year to 75 mm/year over the 90‐year study period through 2010‐2099 under B2 scenario. The non‐uniform impact of potential climate change p p gacross the Kuhdasht plain is clearly illustrated in the next slide.

40

Spatial Impacts Some areas will be subjected to greater changes in recharge rates, while others 

will experience lesser change.  The measure of impact is directly depended on groundwater levels,  

h i i   f  h   d  f   d  h     f  h   d l i   ilcharacteristics of the ground surface, and the nature of the underlying soils.

41

Prediction of GW level changesCoefficients for recharge resulting from return flow of domestic, agricultural and industrial water supply wells  surface water flow  and precipitation calculated wells, surface water flow, and precipitation calculated using Balance Equation of GW for entire Kuhdasht aquifer for every year form 1989‐2009.  q y y 9 9 9By obtaining discharge factors versus year based on historical data and using predicted recharge and 

ff b  HELP   d l  d  B   i   l GW runoff by HELP3 model under B2 scenario, annual GW level changes can be predicted for 2010 through 2099 year. 

42

y

In spite of increasing recharge under B2 scenario, GW level changes will have deceasing trend because of high GW discharge from agricultural and industrial water supply wells.

2

3

4

vel 

0

1

2

dwater le

vng

e (m

)

‐3

‐2

‐1

Gro

und

chan

43

3

1984

1989

1994

1999

2004

2009

2014

2019

2024

2029

2034

2039

2044

2049

2054

2059

2064

2069

2074

2079

2084

2089

2094

2099

year 44

Karkheh‐Noor Plain has more evapotranspiration rateand lower percolation into GW due to warmer weathercondition in comparison with Kuhdasht plaincondition in comparison with Kuhdasht plain.

GW level is near surface in Karkheh‐Noor and recharge to GW occurs in shorter time in comparison with Kuhdasht plain which its GW level is approximately 30 m deep. 

45

Karkheh‐NOOR Plain Results

300

350 Precipitation EvapotranspirationRunoff Recharge

150

200

250

mm

50

100

5

02010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

46

Karkheh‐NOOR Plain ResultsHigher temperature and more solar radiation in Karkheh‐Noor Plain result in higher evapotranspiration rate (about 95% of annual evapotranspiration rate (about 95% of annual precipitation) and lower recharge (about less than 1% of annual precipitation) .

GW recharge is not shown to have significant change under all scenario of climate change due to high evapotranspiratoin rate.evapotranspiratoin rate.

47

ConclusionsThe significant differences between these four scenarios indicate that prediction of future recharge is uncertain and highly dependent on the scenarios uncertain and highly dependent on the scenarios selected. While GW recharge is predicted to increases under B2 

i  i   ill  h   li h l   d  A  B   d AB  scenario, it will change slightly under A2, B1 and AB1 scenarios. 

GW recharge in Karkheh Noor is less than Kuhdasht’sGW recharge in Karkheh‐Noor is less than Kuhdasht sbecause of more evapotranspiration due to warmer climateand its near surface GW level

48

and its near surface GW level.

Conclusions The significant differences between these four scenarios indicate that 

prediction of future recharge is uncertain and highly dependent on the scenarios selected. This calls for an adaptive water resources management. 

The results also shows how GW recharge varies spatially across Kuhdasht plain  due to variations in land use  underlying soil characteristics and plain, due to variations in land use, underlying soil characteristics and groundwater level.

Delineating the spatial impact is valuable not only in the context of GWresource protection, but also for general land use management in plainresource protection, but also for general land use management in plain

In spite of increasing recharge under B2 scenario, GW level changes will have deceasing trend because of high GW discharge from agricultural and industrial water supply wells. It is concluded that the rise in GW use associated with predicted population growth would pose a higher threat to h   if   h   li   hthe aquifer than climate change.

49

Allen, D.M., Mackie, D.C., Wei, M., 2004. Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeology Journal 12, 270–290. 

Allen, D.M, Michael W. Toews, 2009. Evaluating different GCMs for predicting spatial recharge in an irrigated arid region. Journal of Hydrology 374, 265–281.

Allen, D.M , E. K. Appiah‐Adjei,2008. Quantifying the impact of predicted climate change on groundwater recharge to fractured rock , , pp j , Q y g p p g g gaquifers. Groundwater & Climate in Africa, 24‐28 June 2008 Kampala, Uganda.

Gogolev, M.I., 2002. Assessing groundwater recharge with two unsaturated zone modeling technologies. Environmental Geology 42, 248–258.

IPCC. 2001. Climate Change 2001, Impacts, Adaptation and Vulnerability. (http://www.grida.no/climate/ipcc_tar/ df h df)wg2/pdf/wg2TARchap4.pdf)

IPCC. 2008. Climate Change and Water. IPCC Technical Paper VI. Available at: http://www.ipcc.ch/pdf/technical‐papers/climate‐change‐water‐en.pdf

Jyrkama, M.I., Sykes, J.F., 2007. The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). Journal of Hydrology 338, 237–250.

Scibek, J , Allen, D M , 2006  Comparing modeled responses of two high‐permeability unconfined aquifers to predicted climateScibek, J., Allen, D.M., 2006. Comparing modeled responses of two high permeability unconfined aquifers to predicted climate change. Global and Planetary Change 50, 50–62. Scibek, J., Diana M. Allen, Alex J. Cannon, Paul H. Whitfield, 2006. Groundwater–surface water interaction under scenarios of climate 

change using a high‐resolution transient groundwater model. Journal of Hydrology 333, 165– 181 Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom, J.W., Peyton, R.L., 1994. The Hydrologic Evaluation of Landfill 

Performance (HELP) Model: Engineering Documentation for Version 3. EPA/600/R‐94/168b. United States Environmental Protection A  Offi   f R h  d D l  W hi  DC  USAAgency, Office of Research and Development, Washington, DC, USA.

Yusoff I, Hiscock KM, Conway D (2002) Simulation of the impacts of climate change on groundwater resources in eastern England. In: Hiscock KM, Rivett MO, Davidson RM (eds) Sustainable Groundwater Development. Geological Society, London, SpecialPublications, 193: 325‐344.

50

Thank You for Your AttentionThank You for Your Attention 

51