trachea (generation #1) primary bronchi (generation #2) conducting airways generations 1-16 2 o...
Embed Size (px)
TRANSCRIPT

Trachea(Generation #1)
Primary Bronchi (Generation #2)
Conducting Airways Generations 1-16
2o Bronchi (Generation #3)
Respiratory ZoneGenerations ~17-23
Alveoli
Respiratory Bronchioles

PAPa Pv
Zone 1PA>Pa>Pv
Low Flow
PA
Pa Pv
PA
Pa Pv
Zone 2Pa>PA>Pv
Waterfall
Zone 3Pa>Pv>PA
Hi Flow
O2
CO2
venous arterial
PB=0
PA<0
Flow=P/R

O2
CO2
venous arterial
PB=0
PA<0
O2
CO2
venous arterial
PB=0
PA>0
Atmospheric AirHigh O2 (150 mmHg)
CO2 ~ 0
Alveolar AirO2 ~100 mmHgCO2 ~ 40 mmHg
Inspiration Expiration

Fick’s lawJ = DA (C/ X)
Lung
Chest Wall
StuckTogether
Lung
Air leakPneumothoraxLung collapses& Chest expands

Hemoglobin-O2 Binding Curve
0 20 40 60 80 1000
20
40
60
80
100
0
5
10
15
20
Venous
Arterial
CO2
PaO2 (mm Hg)
% H
b S
atu
rati
on
Hb
O2 co
nten
t (ml O
2 /dl)

VT
To
t al L
un g
Ca
pac i
ty
Expiratory Reserve
InspiratoryReserve
FRC
InspiratoryCapacity
Residual Volume
VitalCapacity

Expiratory Reserve
Residual Volume
VitalCapacity
VT
To
t al L
un g
Ca
pac i
ty
InspiratoryReserve
FRC
InspiratoryCapacity
TLC
RV RV
IC
VT
IR
FRCER
VC

VL
V1
VL
V1
C1V1=N C2(V1 +VL) =N
VL=(C1/C2)V1 –V1
Equilibrate Concentration
C1V1= C2(V1 +VL)

III. A Few Terms (for Your Convenience) Eupnia - Normal breathing. Apnea - cessation of respiration (at FRC). Apneusis - cessation of respiration (in the inspiratory phase). Apneustic breathing – Apneusis interrupted by by periodic exhalation. Hyperpnea – increased breathing (usual VT). Tachypnea – increased frequency of respiration. Hyperventilation – increased alveolar ventilation (PACO2 <37 mm Hg). Hypoventilation – decreased alveolar ventilation (PACO2 >43 mm Hg). Atelectasis – closed off alveoli, typically at end exhalation. Cheyne-Stokes Respiration – Cycles of gradually increasing and decreasing VT. Dyspnea- Feeling of difficulty in breathing. Orthopnea- Discomfort in breathing unless standing or sitting upright. Ppl - Pleural pressure (pressure in space between visceral and parietal plurae) PTP - Transpulmonary pressure (distending pressure of airway) PACO2 - Alveolar PCO2 (partial pressure of CO2). PaCO2 - arterial PCO2. PvCO2 - venous PCO2 PAO2 - Alveolar PO2 PaO2 - arterial PO2 PvO2 - venous PO2 PECO2 - PCO2 of exhaled air FECO2 – fraction of exhaled air which is CO2 (i.e. A= Alveolar, a= arterial, v= venous, E = exhaled, I = inspired)
VE – Expired volume (liters) . VE – ventilation (liters/min) . VA – Alveolar ventilation (liters/min)
Q – Blood Flow (liters/min)

Some Normal Values For Some Key Pulmonary Parameters FRC 2.5 0.5 L RV 1.2 0.3 L TLC 6.5 0.5 L VT 500 100 ml FVC 4.5 0.5 L FEV1.0 / FVC >75% Frequency 10-12/min V
A (norm) 5 0.5 L/min V
E (norm) 7 0.7 L/min V
E (max) 120-150 L/min Max. insp flow 7-10 L/sec
Max. exp flow 6-9 L/sec Compliance 60-100 mL/cm H20 PAO2 100 mm Hg PaO2 (21% O2) 90-95 mm Hg PaO2 (100% O2) >500 mm Hg PaCO2 40 3 mm Hg Arterial pH 7.37-7.43 PvO2 40 mm Hg PvCO2 46 mm Hg [Hb] 14-15 g/dL

Expiratory Reserve
Residual Volume
VitalCapacity
VT
To
t al L
un g
Ca
pac i
ty
InspiratoryReserve
FRC
InspiratoryCapacity
600 ml
2.5 L
1.2 L
5 L
~6
.5 L

Lung
Chest Wall
StuckTogether
Lung
As we remove airfrom pleural spacethe lung expands& the chest wallgets pulled in.

ChestWall
RecoilForce
Lung Wall
RecoilForce
Ppl = 0
Ppl = -2
Normal Emphysema lung recoil
Fibrosis lung recoil
Pneumo- thorax
Ppl= -8
Balance of Forces Determines FRCHooke’s Law: F = -kx
Intrapleuralspace
Incr
easi
ng
volu
me
Dec
reas
ing
vo
lum
e
Normal FRC
Ppl = -5

P1
P2
For same T, P1>P2
(I.e. 2T/r1 > 2T/r2)
LaPlace2T=PrP=2T/r

Sur
face
Are
a (r
elat
ive)
Surface Tension (dynes/cm)30 60
WaterDetergent
LungSurfactant Plasma
80
Surface Area Surface Tension
Surfactant40% Dipalmitoyl Lecithin25% Unsaturated Lecithins 8% Cholesterol27% Apoproteins, other phospholipids, glycerides, fatty acids

Sur
face
Are
a (r
elat
ive)
Surface Tension (dynes/cm)30 60
WaterDetergent
LungSurfactant
80
Surface Area Surface Tension
1. Reduces Work of Breathing2. Increases Alveolar Stability
(different sizes coexist)3. Keeps Alveoli Dry

Static Compliance Curves
-18-16-14-12-10-8-6-4-202
Normal
VT
FRCN
Pleural Pressure, Ppl (cm H2O)
Lu
ng
Vo
lum
e
Expiration
Inspiration

Static Compliance Curves
-18-16-14-12-10-8-6-4-202
Fibrosis(low compliance)
Normal
Emphysema(high compliance)
VT
FRCNVT
FRCF
VT
FRCE
Pleural Pressure, Ppl (cm H2O)
Lu
ng
Vo
lum
e

ChestWall
RecoilForce
Lung Wall
RecoilForce
Normal FRC
Ppl = -5
Normal
Balance of Forces Determines FRCHooke’s Law: F = -kx
Intrapleuralspace
Incr
easi
ng
vol
ume
Dec
reas
ing
v
olum
e
Ppl = 0
Ppl = -2
Emphysema lung recoil
Fibrosis lung recoil
Pneumo- thorax
Ppl= -8

Lung has weight
-8
Ppl = -2
-5
Apex
Base
Chest Wall

Regional- Apex to Base Differences
-14-12-10-8-6-4-202
Apex
Base
Norm Lung Volume
Alveolar VolumeAlve Ventilation
Apex Base
++ ++
Inspiration
Inspiration
Pleural Pressure, Ppl (cm H2O)
Lu
ng
Vo
lum
e

Regional- Apex to Base Differences
-14-12-10-8-6-4-202
ApexV
Base
Pleural Pressure, Ppl (cm H2O)
Lu
ng
Vo
lum
eLow Lung Volume(shifts to lower V)
Alveolar VolumeAlve Ventilation
Apex Base
++++

Apex to Base Differences
-14-12-10-8-6-4-202
ApexV
Base
Pleural Pressure, Ppl (cm H2O)
Lu
ng
Vo
lum
e
Low Lung V
Normal Lung V

PA (cm H2O)+1
-1
0
+0.5
-0.5
0
Air Flow (L/s)
1 2 3 4
time (sec)
-5
-8
Ppl (cm H2O)
The linear Dashed trace is the Ppl required to overcome recoil forces.More Ppl (solid curve) is required toovercome airway resistance to flow.N.B. P = PA-PB Resist•Flow.
VT (L)0.4
0
0.2
Respiratory Cycle
Inspiration Expiration
-5
-8
-8
-6
-5
Rest FRC
Inspiration
End Inspiration
+
0
0
- AirFlow
PA= 0
Ppl
End Expi-ration-FRC
Expiration
time
Respiratory CycleSingle VT Breath
PB=0

Static Compliance Curves
-18-16-14-12-10-8-6-4-202
Normal
VT
FRCN
Pleural Pressure, Ppl (cm H2O)
Lu
ng
Vo
lum
e
Expiration
Inspiration

PA (cm H2O)+1
-1
0
+0.5
-0.5
0
Air Flow (L/s)
1 2 3 4
time (sec)
-5
-8
Ppl (cm H2O)
Case of ZERO Resistance
VT (L)0.4
0
0.2
Respiratory Cycle
Inspiration Expiration
-5
-8
-8
-6
-5
Rest FRC
Inspiration
End Inspiration
+
0
0
- AirFlow
PA= 0
Ppl
End Expi-ration-FRC
Expiration
time
Respiratory CycleSingle VT Breath
PB=0

PA (cm H2O)+1
-1
0
+0.5
-0.5
0
Air Flow (L/s)
1 2 3 4
time (sec)
-5
-8
Ppl (cm H2O)
The linear Dashed trace is the Ppl required to overcome recoil forces.More Ppl (solid curve) is required toovercome airway resistance to flow.N.B. P = PA-PB Resist•Flow.
VT (L)0.4
0
0.2
Respiratory Cycle
Inspiration Expiration
-5
-8
-8
-6
-5
Rest FRC
Inspiration
End Inspiration
+
0
0
- AirFlow
PA= 0
Ppl
End Expi-ration-FRC
Expiration
time
Respiratory CycleSingle VT Breath
PB=0

PA (cm H2O)+1
-1
0
+0.5
-0.5
0
Air Flow (L/s)
1 2 3 4
time (sec)
-5
-8
Ppl (cm H2O)
VT (L)0.4
0
0.2
Respiratory Cycle
Inspiration Expiration
-5
-8
-8
-6
-5
Rest FRC
Inspiration
End Inspiration
+
0
0
- AirFlow
PA= 0
Ppl
End Expi-ration-FRC
Expiration
time
Respiratory CycleSingle VT Breath
PB=0
Case of HIGH Resistance

Mild Expiratory Effort (P+13)
0
Normal at FRC-5
0
Dynamic Compression of Airways
PTP=+5PPl - PA= -5

Strong Expiratory Effort (P+30)
+25
30 25 20 15 10 5 0
EPP
Normal
+28
30 25 20 15 10 5 0
EPP
Emphysema
in unsupported airways
13 10 8 6 4 2 0
EPP
Emphysema+11
PPl-PA=-2
-2
0
Dynamic Compression of Airways
EPPEqual Pressure Point(in supported airways)
+13
Mild Expiratory Effort (P+13)
+8
8 4 0
Normal at FRC-5
0
+13
+13
PTP=+5PPl - PA= -5
Low VL&Basal Alv
also like this

Airway Generation 5 1 0 15
Tot
al C
ross
Sec
tiona
l Are
a
ConductingZone
RespZone
v = Flow/A
NR= Dv/ =density D= diameter v= velocity = viscosity
Airway Generation
Res
ista
nce
Subsegmental Bronchi
5 1 0 15
Resistance
8lR= ——— r4
k•numberR= ————— A2

Lung Volume
Air
wa
y R
es
ista
nc
e
Normal
RecoilEmphysema
Fibrosis

Normal
ResistanceObstructive
RecoilRestrictive
time (sec)
Vol
ume
FRC
Inspiration

Forced Vital Capacity
TLC
FEV1.0 FVC
1 sec
FEV1.0 = 4 LFVC = 5 L % = 80%
RV
NormalTLC
FEV1.0
FVC
1 sec
FEV1.0 = 1.2 LFVC = 3.0 L % = 40%
RV
Obstructiveairway resist
Restrictivelung recoil
TLCFEV1.0
FVC
1 sec
FEV1.0 = 2.7 LFVC = 3.0 L % = 90%
RV

Effort Independent limb in forced expiration.
TLC RV
Exp
irato
ry F
low
Lung Volume
Flow-Volume Curves
Due to Dynamic Airway Compression and airway collapse.

Inverted Inspiration
RV
Exp
irato
ry F
low Forced expiration
Inspiration
Insp
irato
ry F
low
TLC Lung Volume

Normal
Obstructive
Restrictive
9 8 7 6 5 4 3 2 1 Lung Volume (L)
Flo
w R
ate
(L/s
ec)
9

TLC RV
Lung Volume (L)
6 5 4 3 2 1
3. Alveolar Plateau
1. 2. Dead Space Washout
4.
N2 C
once
ntra
tion
(%)
20
40
Critical Closing Volume Test
ClosingVolume

Apex to Base Differences
-14-12-10-8-6-4-202
ApexV
Base
Pleural Pressure, Ppl (cm H2O)
Lu
ng
Vo
lum
e
Low Lung V
Normal Lung V

TLC RV
Lung Volume (L)
6 5 4 3 2 1
3. Alveolar Plateau
1. 2. Dead Space Washout
4.
N2 C
once
ntra
tion
(%)
20
40
Critical Closing Volume Test
ClosingVolume
IncreasedClosingVolume

PO2=100 mm Hg 21 ml O2/dL
PO2=100 mm Hg 0.3 ml O2/dL
O2
O2
PO2=100 mm Hg 21 ml O2/dL
PO2=100 mm Hg0.3 ml O2/dL dissolved20 ml O2/dL HB-O2
O2
O2

Expired Lung Volume (L)
0 0.2 0. 4 0.6 0.8
Alveolar Plateau
Inspired O2 dilutedby alveolar N2
N2 C
once
ntra
tion
(%)
20
40
A
B
Fowler’s Test Area A = Area B
Vd

The Bohr Equation
VD1 (PACO2 – PECO2) = VT PACO2
VD2 (PaCO2 – PECO2) = VT PaCO2
D. Sample Calculation VT = 600 ml PACO2 = 38 mmHg
PECO2 = 28 mmHg PaCO2 = 40 mmHg
VD1 = 600(38 – 28)/38 = 158 ml
VD2 = 600(40 – 28)/40 = 180 ml
E.Alveolar Ventilation . . . VE = VD + VA = VT frequency. . . VA = VE - VD
.1.For VT = 500 ml, f = 10/min, VD = 150 ml, what is VA?
.VA = 5000 - 1500= 3500 ml/min . .2.If VE is doubled by increasing VT what is VA? = 10,000 - 1500= 8500 ml/min . .3.If the same VE is obtained by doubling frequency, what is VA? = 10,000 - 3000= 7000 ml/min .Thus increasing VT rather than frequency is more effective for VE.

F. Alveolar Ventilation and CO2 production . VCO2 = Expired CO2 - Inspired CO2
.=VA FACO2
. VA x PACO2
= PA
.
.VCO2 K VA =
PACO2XIII. RESPIRATORY EXCHANGE RATIO . . RQ = VCO2/VO2 The relative amounts of O2 consumed and CO2 produced depends upon the fuel. Carbohydrate RQ = 1 Fat RQ = 0.7 Protein RQ = 0.8 A typical "normal" RQ is 0.8 The partial pressures of O2 and CO2 are also affected.
PACO2 40 RQ = = PIO2 - PEO2 50
Study Questions/ Exercises
Q: Why does this ratio necessarily reflect the RQ? Alveolar Gas Equation – Allows you to estimate PAO2 – PaO2 gradient. PAO2 = FIO2 (PATM – PH2O) – PaCO2/RQ + K = PIO2 – PaCO2/RQ K = PACO2 FIO2 ({1-RQ}/RQ) a small correction (2 mm Hg) usually ignored

XIV. RESPIRATORY GAS CASCADEPO2 PCO2
mm Hg mm Hg
Air (dry) 760 0.21 160 0Trachea (humidified; 760-47) 713 0.21 150 0Alveolus (some O2 absorbed by blood) 100 40
Arterial (R-L Shunt) 90 40+Mixed venous (O2 absorbed by tissues) 40 46

time in Capillary (sec)
0.25 0.5 0.75
PO
2 m
m H
g
20
40
60
80
100
NormalTransit TimeExercise
ShortensTransit
time
Thickened Alveolar
Membrane
O2 Diffusion in Pulmonary Capillaries(transit time)

Hemoglobin-O2 Binding Curve
0 20 40 60 80 1000
20
40
60
80
100
0
5
10
15
20
26
50
75
9097.5
PaO2 (mm Hg)
% S
atu
rati
on
of
Hem
og
lob
inH
b-O
2 con
tent
(ml O
2 /100 ml b
loo
d)

Bohr Shift Hb-02 Curve
0 20 40 60 80 1000
20
40
60
80
100
Normal Hb
Bohr Shift H+], CO2, Temp or DPG
H+], CO2
Temp
PaO2 (mm Hg)
% S
atu
rati
on
of
Hem
og
lob
in

0 20 40 60 80 1000
5
10
15
20
Myoglobin
Normal Hb
Anemia
Carbon Monoxide
PaO2 (mm Hg)
Hb
-O2 c
on
ten
t(m
l O2 /
100
ml b
loo
d)

Capillary Wall
CO2 + H2O — H2CO3 H+ + HCO3-
O2CO2
CO2Cl-
H+ + HbO2 HHb + O2
CarbaminoHHb-CO2
O2
TissueCO2 Loading & O2 Unloading
c.a.

Alveolar Wall
O2CO2
CO2
Cl-
H+ + HbO2 HHb + O2
CarbaminoHHb-CO2
O2
LungsCO2 Unloading & O2 Loading
c.a.
HCO3-
CO2 + H2O — H2CO3 H+ + HCO3-

O2 helps CO2 unloading
Arterial (O2)
Exercise Venous
37 40 43 46 49 52
46
48
50
52
54
Rest Venous
PCO2 (mm Hg)
CO
2 C
on
ten
t(m
l CO
2/1
00
ml b
loo
d)
HALDANE SHIFT

PO2 = 40PCO2 = 45
Normal VA/QLow VA/Q High VA/Q
CO2 = 45
PO2 = 150PCO2 = 0
PO2 = 100PCO2 = 40
PO2 = 150PCO2 = 0
. . .
Ventilation Perfusion Ratios
No flow

PO2 = 40PCO2 = 45
Low VA/Q.
Normal VA/Q.
PO2 = 100PCO2 = 40
High VA/Q.
PO2 = 150PCO2 = 0
PO2 (mm Hg)
PC
O2 (
mm
Hg)
50 100 150
50
Base
Apex

Flo
w o
f B
loo
d o
r A
irV
A /Q
Ratio
Bottom TopDistance up Lung
Ventilation
Perfusion
VA/Q
1
2
3
.
.
Region VA VA Q VA/Q PCO2 PO2 Apex + + + Base + ++ +
. .

Mechanisms of Hypoxemia
PaO2 PaCO2 PO2 (A-a) PaO2 with 100% O2 Hypoventilation low High Norm >550
Diffusion low norm-low high >550
R-L Shunt low norm-low high <550 . VA/Q Imbalance low norm-lo-hi high >550
Other Hypoxemias (without low PaO2)a. Anemiab. Carbon Monoxidec. Hypoperfusion (CV problem)
Local Controla. Low PAO2 vasoconstrictionb. Low PVCO2 bronchoconstriction

FourthVentricle
Nucleusretroambiguous(ventral)
NucleustractusSolitarius(dorsal)
C1
MedullaOblongata
CCut-off
Bvent
AInsp
Dors ts
PneumotaxicCenter
Apneustic Center
–
Periph &CentralChemo-receptors
+
RespiratoryMuscles
+
+
VagusStretch
+
Ton
ic In
sp D
rive
+Cut-offsignal
thresh

Arterial PO2 (mm Hg)
% m
axim
al f
iring
rat
e
50 100 500
50
75
25
Peripheral Chemoreceptor Responsiveness

BBB CSFPlasma
CO2
HCO3
+
H+
CO2 HCO3 + H+
Pumped
RespiratoryAcidosis (PaCO2)
CNS Acidosis then HCO3 is pumped in(& restores pHCNS faster than kidneys can restore pHsystemic)

BBB CSFPlasma
CO2
HCO3
+
H+
CO2 HCO3 + H+
Metabolic Acidosis
Hyperventilation& PaCO2
CNSAlkalosis !!!!
(then pump HCO3 out)

30 60 900
10
20
30
40
50
60
PCO2 = 40 mm Hg
PCO2 = 45 mm Hg
PCO2 = 20 mm Hg
PaO2 (mm Hg)
Ven
tilat
ion
(L/m
in)
Ventilatory Response to O2

35 40 45 50 550
20
40
60
PaO2 200 mm Hg
PaCO2 (mm Hg)
Ven
tilat
ion
(L/m
in)
PaO2 ~100 mm Hg
PaO2 ~ 60 mm Hg
Ventilatory Response to CO2

35 40 45 50 550
10
20
30
40
50
NormalMetabolic Alkalosis
Metabolic Acidosis
PaCO2 (mm Hg)
Ven
tilat
ion
(L/m
in)
Ventilatory Response to CO2

EFFECTS OF HIGH ALTITUDE A. At 10,000 ft PB=525 mmHg inspired PO2 is ~100 mmHg PAO2 is ~50 mmHg. At 15,000 ft PB=380 mmHg inspired PO2 is ~70 mmHg PAO2 is ~20 mmHg. At Mt Everest PB=250 mmHg, inspired PO2 is ~42 mmHg PAO2 is ~0 mmHg. At 63,000 ft PB=47 mmHg, inspired PO2 is ~0 mmHg tissues boils, H2O vapor. B. Acclimatization and hyperventilation at 10,000 ft Time at High Alt. PaO2 PaCO2 pH blood pH CSF VE [HCO3]
1 Hr low low high high - Hypoxic drive is restrained by low PaCO2 and high pH. 1-2 day. low low high Norm. - CSF chemoreceptors no longer limiting hyperventilation. 2-4 days low low Norm. Norm. Peripheral alkalosis no longer restraining hyperventilation. 30 Yrs. low Norm. Norm. Norm. - - Hypoxic response of chemoreceptors lost.

BBB CSFPlasma
CO2
HCO3
+
H+
CO2 HCO3 + H+
RespiratoryAlkalosis
high pHCSF limits Hyperventilation
When pHCNS
returns to norm (HCO3 pumped out)VE is less restrained