tracking vector magnetic fields - stanford...

15
Tracking Vector Magnetic Fields HMI Science Team Meeting September 8-11, 2009, Stanford, CA Supported by NASA: NNH06AD87I P. W. Schuck [email protected] Room 236, Building 21 Space Weather Laboratory, Code 674 Heliospheric Science Division Goddard Space Flight Center Greenbelt, MD 20771 Collaborators: Jacob Hageman (GSFC) Brian Welsch, George Fisher, and Bill Abbett (SSL/Berkeley) (NASA/GSFC) DAVE/DAVE4VM September 9, 2009 1 / 12

Upload: others

Post on 04-Apr-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Tracking Vector Magnetic FieldsHMI Science Team Meeting

September 8-11, 2009, Stanford, CASupported by NASA: NNH06AD87I

P. W. [email protected]

Room 236, Building 21Space Weather Laboratory, Code 674

Heliospheric Science DivisionGoddard Space Flight Center

Greenbelt, MD 20771

Collaborators:Jacob Hageman (GSFC)

Brian Welsch, George Fisher, and Bill Abbett (SSL/Berkeley)

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 1 / 12

Page 2: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Motivation

Incorporate plasma physics into solar motion estimation: Analyzevector magnetograms with ideal MHD

Determine 3D photospheric plasma velocities

Test CME initiation models that require neutral line footpointshearing

Quantify the magnitude and timing of energy and helicity fluxes inactive regions

Provide boundary conditions for MHD simulations of the corona

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 2 / 12

Page 3: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Optical Flow Models

Caveat Emptor !

The velocities estimated from optical flow techniques depend onmotion model applied

All velocity estimation algorithms have an underlying motion model

Even Local Correlation Tracking (LCT) has an assumed motionmodel: advection in a uniform flow.

If the images do not satisfy the motion model, the methods willproduce (at best) biased results due to model misspecification.

The results may not be simply related to local plasma velocities andthe onus is on the user to “interprete” these estimates.

These “velocities” may be still be useful for empirical imageprocessing, i.e., image segmentation.

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 3 / 12

Page 4: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Optical Flow Models

Local Correlation Tracking (for small displacements)

C ≈∫

d2x

Aperture︷ ︸︸ ︷w (χ− x)

Advection Equation︷ ︸︸ ︷

∂t In (x , t) + u0 ·∇In (x , t)

2

Differential Affine Velocity Estimator (DAVE)

C ≈∫

d2xw (χ−x){

∂tn (x , t)+∇ ·[n (x , t)

(u0+W · x

)]}2

C ≈∫

d2xw (χ−x){

∂tn (x , t)+(

u0+W · x)·∇n (x , t)

}2

Track the vertical component of B to produce biased estimates ofthe horizontal plasma velocities (see Caveat Emptor ).

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 4 / 12

Page 5: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Optical Flow Models

Differential Affine Velocity Estimator for Vector Magnetograms(DAVE4VM)

C ≈∫

dx2 w (x − χ){∂tBz (x , t) + ∇h ·

[Bz (x , t) vh − vz Bh (x , t)

]}2

v =

u0v0w0

+

ux uyvx vywx wy

(xy

)∇h = (∂x , ∂y )

Incorporates both vertical and horizontal magnetic field components3D photospheric plasma velocities: explicit vertical flowsVariational principle results in a least squares/total least squaresestimator

- Can incorporate magnetic field covariance matrices (uncertainties)

Pretty fast and efficient: 30 seconds for a 288× 288 image (in IDL)and should be faster in parallel Fortran

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 4 / 12

Page 6: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Optical Flow Models

Main Difference(s) Between DAVE & DAVE4VM

DAVE implements the Démoulin & Berger (2003) assumption thattracking the vertical component of B is equivalent to tracking thefootpoint velocity (or flux transport velocity) u

∂tBz + ∇h · (u Bz) = 0 u Bz =⇒ vh Bz − vz Bh

DAVE4VM independently estimates the horizontal and verticalplasma velocities (and shears) and computes the footpointvelocity from these

∂tBz + ∇h · (vh Bz − vz Bh) = 0 vh Bz − vz Bh =⇒ u Bz

Démoulin & Berger assumption equivalent to Bh = 0. Results inbiased estimates of the horizontal plasma velocity vh ... not thefootpoint velocity u.

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 5 / 12

Page 7: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Optical Flow Models

Main Difference(s) Between DAVE & DAVE4VM

DAVE implements the Démoulin & Berger (2003) assumption thattracking the vertical component of B is equivalent to tracking thefootpoint velocity (or flux transport velocity) u

∂tBz + ∇h · (u Bz) = 0 u Bz =⇒ vh Bz − vz Bh

DAVE4VM independently estimates the horizontal and verticalplasma velocities (and shears) and computes the footpointvelocity from these

∂tBz + ∇h · (vh Bz − vz Bh) = 0 vh Bz − vz Bh =⇒ u Bz

Démoulin & Berger assumption equivalent to Bh = 0. Results inbiased estimates of the horizontal plasma velocity vh ... not thefootpoint velocity u.

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 5 / 12

Page 8: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Verification against ANMHD simulationsHelicity and Energy Fluxes

DAVE (Line-of-Sight) DAVE4VM (Vector Magnetogram)

Constrain the timing and magnitude of Helicity flux(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 6 / 12

Page 9: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Verification against ANMHD simulationsHelicity and Energy Fluxes

DAVE (Line-of-Sight) DAVE4VM (Vector Magnetogram)

Constrain the timing and magnitude of Poynting flux

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 6 / 12

Page 10: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Verification against ANMHD simulationsDAVE4VM Can Estimate Neutral-Line Shear Flows!

DAVE (Line-of-Sight) DAVE4VM (Vector Magnetogram)

⊥ and ‖ measured relative to contours of Bz

Constrain CME initiation models

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 7 / 12

Page 11: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Verification against ANMHD simulationsData products for theory programs

Boundary conditions (E or v ) for simulations CME initiation.

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 8 / 12

Page 12: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Verification against ANMHD simulationsDAVE4VM Can Estimate Field Aligned Flows!

Schematic diagram of a uniform plasma flow across a diverging magneticfield above the photosphere at h = 0. The black arrows indicate thestrength and direction of the magnetic field, the red arrows indicate thedirection of the spatially uniform total plasma velocity v , and the bluearrows indicate the magnitude and direction of the perpendicular plasmavelocity v⊥ . The aperture in the photosphere is indicated by the gray box.

(Schuck, 2008)

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 9 / 12

Page 13: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Software Status

IDL Codes: DAVE/DAVE4VM released with ancillary routines andexamples/figures from article (Schuck, ApJ, 683, 1134-1152,2008)

Oldest: Archived with ApJwww.iop.org/EJ/abstract/0004-637X/683/2/1134More Recent: Archived at NRLwwwppd.nrl.navy.mil/whatsnew/dave/index.htmlLatest: contact me at NASA – [email protected]

HMI Pipeline Codes: in production, Intel Fortran with C-wrappers,and linked with Intel MKL math libraries with drop-in open sourcereplacements (hopefully).

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 10 / 12

Page 14: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

Planned Improvements

More verification tests on other MHD codes

Incorporate Doppler velocities to constrain vertical flows

Incorporate HMI covariance matrices

Consider spherical geometry

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 11 / 12

Page 15: Tracking Vector Magnetic Fields - Stanford Universityhmi.stanford.edu/mtgs/team/Sep_2009/presentations/PSchuck.hmi_… · Tracking Vector Magnetic Fields HMI Science Team Meeting

References I

Démoulin, P., & Berger, M. A. 2003, Sol. Phys., 215, 203

Schuck, P. W. 2008, ApJ, 683, 1134,http://arxiv.org/abs/0803.3472

Welsch, B. T., Abbett, W. P., DeRosa, M. L., Fisher, G. H., Georgoulis,M. K., Kusano, K., Longcope, D. W., Ravindra, B., & Schuck, P. W.2007, ApJ, 670, 1434

(NASA/GSFC) DAVE/DAVE4VM September 9, 2009 12 / 12