training case 3 centrifugal pump 61

60
NUMECA, a New Wave in Fluid Dynamics Vincent Bouffioux NUMECA International Quality & Engineering Group phone: +32-2-627.13.45 e-mail:[email protected] FINE FINE TM TM /Turbo 6.1 /Turbo 6.1- 1 1 - Turbomachines Turbomachines Training Session Training Session Centrifugal Pump - Practice Relative Velocity Field Centrifugal Pump Mesh

Upload: ufonpu

Post on 18-Jul-2016

34 views

Category:

Documents


5 download

DESCRIPTION

Training Case 3 Centrifugal Pump 61

TRANSCRIPT

Page 1: Training Case 3 Centrifugal Pump 61

Slide 1 NUMECA, a New Wave in Fluid DynamicsVincent BouffiouxNUMECA InternationalQuality & Engineering Groupphone: +32-2-627.13.45e-mail:[email protected]

FINEFINETMTM/Turbo 6.1/Turbo 6.1--1 1 -- TurbomachinesTurbomachinesTraining SessionTraining Session

Centrifugal Pump - Practice

Relative Velocity Field

Centrifugal Pump Mesh

Page 2: Training Case 3 Centrifugal Pump 61

Slide 2 NUMECA, a New Wave in Fluid Dynamics

ContentContent

Centrifugal Pump

AutogridTM Software………………………………….………03

Practice

FINETM Software………………………………………………..24

Practice

CFViewTM Software…………………………………………….48

Practice

Page 3: Training Case 3 Centrifugal Pump 61

Slide 3 NUMECA, a New Wave in Fluid Dynamics

PracticePracticeCentrifugal Pump

AutogridAutogridTMTM

Total Mesh

MeridionalView

Page 4: Training Case 3 Centrifugal Pump 61

Slide 4 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Mesh GenerationMesh Generation

OK?

Step 3 : Define Blade Topology Step 3 : Define Blade Topology •H, I or HOH mesh

•Blunt

•Splitter

•Bulb

•Propeller

Step 6 :Step 6 : VolumicVolumic Mesh Mesh • Generation of the volumic mesh

• Checking the negative cells

• Checking the grid quality (orthogonality, aspect ratio, grid continuity)

• Boundary Conditions Type

Step 7 : Save Template & GridStep 7 : Save Template & Grid

Step 1 : Open IGG/Step 1 : Open IGG/AutogridAutogrid

Step 2 : Define Blade Geometry •Hub & Schroud Definition

•Suction & Pressure Sides definition

Step 2 : Define Blade Geometry

Step 4:Step 4: MeridionalMeridional Control Control ------> Flow Paths• Nbre of points

• Tip & Hub Clearance

> Flow Paths

Step 5 : Mesh BladeStep 5 : Mesh Blade--toto--blade on Hub & Shroud Generation of 2D mesh

blade on Hub & Shroud

NoYes

Page 5: Training Case 3 Centrifugal Pump 61

Slide 5 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step1: Open Step1: Open AutogridAutogridTMTM

1. Open IGG Session

2. Open Autogrid Window

1

2

Page 6: Training Case 3 Centrifugal Pump 61

Slide 6 NUMECA, a New Wave in Fluid Dynamics

Step 2 : Define Blade GeometryStep 2 : Define Blade Geometry

PracticePractice

7 blades - 259,161 nodesGeometry given in meters

Hub and shroud surface expansion = 0.03Topology

H/I-meshSpanwise grid points : 41Azimuthal grid points : 45Streamwise grid points : 33 - 65 - 33Cell width along walls = 1 10-5

Page 7: Training Case 3 Centrifugal Pump 61

Slide 7 NUMECA, a New Wave in Fluid Dynamics

1. If necessary: in order to see the Quick Access Pad, select in File/Preferences/Layout the Quick Access Pad & Apply

2. Select Set-Up in the Icon Bar

1a

1b

1c

1d2

PracticePractice

Page 8: Training Case 3 Centrifugal Pump 61

Slide 8 NUMECA, a New Wave in Fluid Dynamics

3a

3c

PracticePractice

3b

3. Activate Select Geometry File in the Set-Up Window

Page 9: Training Case 3 Centrifugal Pump 61

Slide 9 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1

1. Activate Surface Edition - Modify Expansion to 0.03

2. Activate Geometry Characteristics - Modify Nbre of Blades to 7

2

Page 10: Training Case 3 Centrifugal Pump 61

Slide 10 NUMECA, a New Wave in Fluid Dynamics

1. Activate Topology in the Set-Up WindowNbre of pointsClustering

2. Select H&I Topology3. Modify Nbre of pts & clustering - <enter>

4. Next ---> “Flow Paths” Created

blade

shroud

hub

streamsurface

spanwise

streamwise

azimuthal

2

Step 3 : Define Blade TopologyStep 3 : Define Blade Topology1

4

SpalartSpalart--AllmarasAllmaras

3

45

PracticePractice

Page 11: Training Case 3 Centrifugal Pump 61

Slide 11 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1. Deactivate Expert Mode

2. No Tip Clearance

3. Apply

4. Next

Step 4 : Step 4 : MeridionalMeridional Control Control

1

3

4

2

Page 12: Training Case 3 Centrifugal Pump 61

Slide 12 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

2D Mesh

Flow Paths

Page 13: Training Case 3 Centrifugal Pump 61

Slide 13 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step5 : Mesh BladeStep5 : Mesh Blade--toto--Blade on Hub & Shroud Blade on Hub & Shroud

1. Activate Points DistributionModify Nbre of points

2. Apply3. Activate Mesh

Put the Smoothing Step to 20Activate the Multiblock SmootherOrthogonality blade-to-blade to 0.0125%Initial Cell width blade-to-blade to 1e-5Cst Cells blade-to-blade to 10

4. Apply

If necessary

A. Right-Click on the edges to change local Cell Length or Clustering Expansion Ratio

B. Activate Expert (if necessary)Adapt Streamwise ClusteringAdapt Streamwise Matching Points (I mesh)

3

1

B

Left-click – value - <enter>

2-4

A

3

1

1

Left-click on Projection Point

Move Interactively

Page 14: Training Case 3 Centrifugal Pump 61

Slide 14 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

BladeBlade--toto--Blade Shape Control (Optional)Blade Shape Control (Optional)

3

1

2

A

1. Extension ControlImpose in degree angular (theta) position of Inlet & Outlet inRelative or Absolute on both Hub & Shroud views2. Activate Solid Angles Impose in degree trailing & leading edge angle in Relative on both Hub & Shroud views3. Update Blade-to-Blade MeshApply & Accept the modifications

If necessary

A. Activate ExpertBlunt ControlExtension Surface ParametersTangent Weight at Leading/Trailing edge

Page 15: Training Case 3 Centrifugal Pump 61

Slide 15 NUMECA, a New Wave in Fluid Dynamics

1. 3D Mesh Generation

2. Yes

3. Check Grid Quality & Negative Cells

4. Close the window

Step 6 :Step 6 : VolumicVolumic Mesh Mesh

12

3

4

PracticePractice

Page 16: Training Case 3 Centrifugal Pump 61

Slide 16 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Quality Quality CControlontrol –– ToolTool1. Select 3D View2. Deactivate Mesh

3. To access the Grid Quality analysis tool, select the "Grid/Grid Quality" menu.

To analyse the ORTHOGONALITY• Select all blocks - <0>• Select the "orthogonality" type in

the "mesh Quality" dialogue box• Click on the "Show chart"/"Hide

chart" to toggle a chart display• Display the range of cells by

clicking directly on the Chart Bar

Orthogonality > 10°

SolutionSolution

• Check Clustering

• Check Smoothing

OR

• Use I-mesh

• Use HOH-mesh

1 2a

2b3a

3b

3c

3d

3e

3f

3g

3h

Page 17: Training Case 3 Centrifugal Pump 61

Slide 17 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Page 18: Training Case 3 Centrifugal Pump 61

Slide 18 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

To analyse the EXPANSION RATIO• select the ”Expansion Ratio" type in

the "mesh Quality" dialogue box• Click on the "Show chart"/"Hide

chart" to toggle a chart display• Display the range of cells by clicking

directly on the Chart Bar• Select More Info to see maximum

value in the concerned block.

Expansion ratio ≤ 3

To analyse the ASPECT RATIO (i_direction/j_direction)

• Select all blocks - <0>• Select the " Aspect Ratio " type in the "mesh

Quality" dialogue box• Click on the "Show chart"/"Hide chart" to toggle a

chart display• Display the range of cells by clicking directly on

the Chart Bar• Select More Info to see maximum value in the

concerned block.

Aspect ratio < 5000

Page 19: Training Case 3 Centrifugal Pump 61

Slide 19 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Mesh Quality Improvements – Mesh Quality at Boundaries1

2

3

Mesh Quality Defined at Boundaries

ORTHOGONALITY

ANGULAR DEVIATION (CON - PER)

EXPANSION RATIO (CON - PER)

CELL WIDTH

Page 20: Training Case 3 Centrifugal Pump 61

Slide 20 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1

Mesh Quality – Negarive Cells

3

Mesh Quality Improvements – Negative Cells

2

4

Page 21: Training Case 3 Centrifugal Pump 61

Slide 21 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Boundary Conditions Check Boundary Conditions Check -- OptionalOptional

To check or set boundary condition type and visualize connected patches proceed as follow :

1. Select the "Grid/Boundary Conditions" menu

2. To set boundary condition type :• Select in the list the patch to visualize• Use "Set Patch Type" to impose the

type of boundary condition• Press Search to detect NMB,

PERNMB, Periodic (PER) & Matching (CON) Connections

3. To visualize the patches :• Select in the list the patch• Press Crtl + Left-Click to cumulatively

visualize other patches3

2b

2c

3

H&I Topology

BC Conditions - SolidBC Conditions – Periodic NMB

BC Conditions

Inlet

Page 22: Training Case 3 Centrifugal Pump 61

Slide 22 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step 7 : Save Template & GridStep 7 : Save Template & Grid

Save Template as

Save Grid as

Quit Autogrid yes

Page 23: Training Case 3 Centrifugal Pump 61

Slide 23 NUMECA, a New Wave in Fluid Dynamics

InterfaceInterface

..bcs Information generated by IGG for the solver: type of BC

..cgns cgns Coordinates of all the nodes of the mesh

..geomgeomDefinition of geometry points, curves and surfaces

..iggiggTopology and grid information

(Nbr of blocks, nbr of grid points, clustering, BC,…)

..meridionalmeridionalFlow Paths Coordinates used by CFView

..geomTurbogeomTurboGeometrical entities used to defined the mesh,

created during Autogrid Session

..trbtrbTemplate: Nbre of blades, Topology, Grid Points, Clustering.

bcs

Autogrid Autogrid FilesFiles

Page 24: Training Case 3 Centrifugal Pump 61

Slide 24 NUMECA, a New Wave in Fluid Dynamics

PracticePracticeCentrifugal Pump

FINEFINETMTM

Global ResidualMass Flow

Page 25: Training Case 3 Centrifugal Pump 61

Slide 25 NUMECA, a New Wave in Fluid Dynamics

InterfaceInterface

Flow SettingsFlow Settings

Step 2 : To link/create Mesh Step 2 : To link/create Mesh ““..iggigg””

No

Convergence ?

Step 1 : To start FINE SessionStep 1 : To start FINE Session

To open an Existing project or to create New projectTo open an Existing project or to create New project

Step 3 : To create/rename Computations

Step4: To impose Flow Settings

Step5: To start computation

Step6: To suspend computation

Step7: To restart computation until convergence

Step 3 : To create/rename Computations

Step4: To impose Flow Settings

Step5: To start computation

Step6: To suspend computation

Step7: To restart computation until convergence

Yes

Step8: PostStep8: Post--Processing:Processing: CFViewCFViewTMTM

Page 26: Training Case 3 Centrifugal Pump 61

Slide 26 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Import Existing Project “.Import Existing Project “.ieciec””

1. Start FINE Session

2. Load Project - “File/Open” (if necessary)1. Select Existing project2. Open Existing project

OR3. New Project - “File/New” (if necessary)

1. Create New Project2. Set a Name to the Project

Step 1: Start FINE SessionStep 1: Start FINE Session

1

2.1

3.1

2.2 3.2

Page 27: Training Case 3 Centrifugal Pump 61

Slide 27 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1. If New Project1. Open (Create) Grid File2. Select Grid File “.igg” - Open3. Select Grid Type & Units: Cylindrical/3D/Meter - OK

2. If Existing Project1. Mesh Properties (Units,…) accessible in Menu Mesh/Properties - Close2. Mesh Path accessible in Icon Bar

Step2: Link/Create MeshStep2: Link/Create Mesh

1.11.2

1.3

2.1

2.2

Page 28: Training Case 3 Centrifugal Pump 61

Slide 28 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1. If Rename Computation1. Select Computation (highlighted in blue)2. Right-click Rename OR Rename in Computation Menu3. Type New Name - <enter>

2. If New/Duplicate Computation1. Select Computation (highlighted in blue)2. Right-click New/Duplicate OR New in Computation Menu

3. If Remove Computation1. Select Computation (highlighted in blue)2. Right-click Remove OR Remove in Computation Menu3. OK

Step3: Create/Rename ComputationStep3: Create/Rename Computation

2.12.2

3.33.2

1.11.2

3.1

1.3

Page 29: Training Case 3 Centrifugal Pump 61

Slide 29 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step4: Define/Check Flow SettingsStep4: Define/Check Flow Settings

Steady flow in a Centrifugal Pump3D Internal FlowCylindrical Coordinates

FluidLiquid : Tref = 293 K and Pref = 100 000 PaCp = 4200 J/(kg.K), Pr = 7.02, ν = 1.141001 10-6 m2/s (Sutherland Law),density = 1000 kg/m3, compressibility = 1e-11 1/Pa, dilatation = 6.4e-5 1/K (Boussinecq Law)

Boundary conditionsInlet : Axial Flow – Magnitude = 1.842 m/s - Static Temperature = 293 K

Turbulent Viscosity = 0.001 m2/sOutlet : Static Pressure = 320,000 PaWalls : Adiabatic with pressure extrapolated from the flow field. The blade walls

and part of shroud/hub are rotating. Numerical Model

Multigrid : 3 grid levels (250 FMG cycle, coarse grid convergence criteria -3)Multigrid sub-iterations : 1 3 6 CFL number = 3

Turbomachinery initial solutionInlet static pressure = 150,000 Pa , Turbulent Viscosity = 0.0003 m2/s

Page 30: Training Case 3 Centrifugal Pump 61

Slide 30 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Configuration Configuration -- Fluid ModelFluid Model 1

1.1

1. Select Configuration/Fluid Model1. Select Existing FluidOR2. Create New Fluid by Add Fluid to List

1.2

Page 31: Training Case 3 Centrifugal Pump 61

Slide 31 NUMECA, a New Wave in Fluid Dynamics

2.1

2.2

2.3

2Configuration Configuration -- Flow ModelFlow Model

PracticePractice

2. Select Configuration/Flow Model1. Select Steady Time Configuration2. Select Spalart-Allmaras Turbulent Model3. Define Reference Scales

• Length = 1.0 m• Velocity = 10.0 m/s• Density = 1000.0 kg/m3• Temperature = 293 K• Pressure = 100,000 Pa

Page 32: Training Case 3 Centrifugal Pump 61

Slide 32 NUMECA, a New Wave in Fluid Dynamics

3.2

3.1

Configuration Configuration –– Rotating MachineryRotating Machinery

PracticePractice

33. Select Configuration/Rotating Machinery1. Select Blocks & Groups2. Define Rotational Speed: ω = 1,200 rpm

Page 33: Training Case 3 Centrifugal Pump 61

Slide 33 NUMECA, a New Wave in Fluid Dynamics

4.1

4.1.2

4.1.3

INLET

Boundary ConditionsBoundary Conditions

PracticePractice

4

4.1.1

4. Select Boundary Conditions1. Select Inlet

1. Open Mesh by Mesh/View On/Off2. Move Cursor3. Impose Inlet Boundary Conditions

• Axial Flow – Magnitude = 1.842 m/s• Static Temperature = 293 K• Turbulent Viscosity = 0.001 m2/s

Page 34: Training Case 3 Centrifugal Pump 61

Slide 34 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

OUTLET

2. Select Outlet: Impose Static Pressure = 320,000 Pa

3. Check Periodic Connections Nothing has to be changed

4.2

Right-click4.3 PERIODIC

Right-click

Page 35: Training Case 3 Centrifugal Pump 61

Slide 35 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

4.4

SOLID – Hub

Right-click

4. Select Solid: Impose Adiabatic Solid Boundary Conditions: part of shroud/hub &blade rotating

SOLID – Blade

Right-click

Page 36: Training Case 3 Centrifugal Pump 61

Slide 36 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Right-click

SOLID - Shroud

4.4

Page 37: Training Case 3 Centrifugal Pump 61

Slide 37 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Numerical ModelNumerical Model5. Select Numerical Model

1. Select Spatial Scheme: Central2. Select CFL Number: 33. Define Multigrid Parameters

• Number of Grid Level• Current Grid Level

4. Define Preconditioning Parameters

5

5.1 5.2

5.3 5.4

Page 38: Training Case 3 Centrifugal Pump 61

Slide 38 NUMECA, a New Wave in Fluid Dynamics

6.16.2

6.3

Initial SolutionInitial Solution

PracticePractice

66. Select Initial Solution

1. Select Blocks & Groups2. Select for turbomachinery3. Define Initial Static Pressure: 150,000 Pa

Page 39: Training Case 3 Centrifugal Pump 61

Slide 39 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Define group of variables (temperature, pressure, density, turbulent viscosity, wall distance, Y+,…) that will be visualized in CFView

OutputsOutputs

7.1

7

Page 40: Training Case 3 Centrifugal Pump 61

Slide 40 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

8. Select Computation Steering/Control Variables1. Number of iterations MultiGrid2. MultiGrid Convergence Criteria3. Save Solution4. Memory Requirements5. Expert Parameters

Computation Steering Computation Steering –– Control VariablesControl Variables

8

8.1

8.38.2

8.4

8.5

Page 41: Training Case 3 Centrifugal Pump 61

Slide 41 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Computation Steering Computation Steering –– Convergence HistoryConvergence History

9

Page 42: Training Case 3 Centrifugal Pump 61

Slide 42 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1. Select Solver/Start in the Menu Bar in order to start the computation

2. Start Euranus Solver

3. Select Convergence History in the Computation Steering

4. Select Monitor (Additionnal Tool) to check for each block:• Global Residual per block per equationBUT also:• Mass Flow Inlet/Outlet

Step 5: Start ComputationStep 5: Start Computation

1

2

Page 43: Training Case 3 Centrifugal Pump 61

Slide 43 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1. Select Solver/Suspend in the Menu Bar in order to suspend the computation and to check the “solution” in CFView before starting a longer calculation

2. Create a new computation and select it

3. Change the Initial Solution type to from file - Open the run file of the computation suspended before.

4. Deactivate the FMG option - Start the flow solver

Step 6 & 7: Suspend/Restart ComputationStep 6 & 7: Suspend/Restart Computation

1

2.12.2

3.1

3.24

Page 44: Training Case 3 Centrifugal Pump 61

Slide 44 NUMECA, a New Wave in Fluid Dynamics

Convergence HistoryConvergence History

Convergence Criteria

Global ResidualImage of the evolution of the calculation on the whole domain starting from the initial solution (global residual reference set at 1). To decrease the level of the Global Residual to 3 order of magnitude and to reach a level of Global Residual is also recommended.

Block ResidualImage of the evolution of the calculation on each block for each equation starting from the initial solution (residual reference set at 1). To decrease the level of the Residual to 3 order of magnitude and to reach a level of the Residual in each block is also recommended. Nevertheless, some differences may appear between blocks due to their respective mesh quality.

Mass FlowThe most important criteria to respect. Due to the discretization, 0.5% of error may be accepted between mass flows. Furthermore, both mass flow profiles have to present at convergence no more oscillating aspects.

Local ValueFINE provides the capability to check pressure, velocity,… evolutions locally in the flow field iteration per iteration. Convergence is reached when the evolution isstabilised. If some oscillations are still present in the evolution, the amplitude is defining the quantity precision or natural “unsteady” aspects.

Global ValueFINE provides the capability to check global quantity evolutions in the whole flow field iteration per iteration. Convergence is reached when the evolution isstabilised. If some oscillations are still present in the evolution, the amplitude is defining the quantity precision or natural “unsteady” aspects.

.

Page 45: Training Case 3 Centrifugal Pump 61

Slide 45 NUMECA, a New Wave in Fluid Dynamics

Convergence HistoryConvergence History

Level has been reached in all the

evolutions

No Level has been reached in all the

evolutions

Parameters

1. Check Mesh QualityClustering (Nbre of cells) – Orthogonality – Aspect Ratio – Expasion Ratio

2. Check Boundary Conditions – Initial Condition (Pini ≥ Poutlet natural flow)

3. Check Numerical ParametersCFL - Multigrid Parameter – Preconditioning Parameter – Turbulent Parameter

.

Page 46: Training Case 3 Centrifugal Pump 61

Slide 46 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step 8: PostStep 8: Post--Processing:Processing: CFViewCFViewTMTM

1. Convergence of Computation in Monitor

2. Open CFViewTM Tool on Menu Bar/Modules to visualize converged solution

2.1 2.2

Page 47: Training Case 3 Centrifugal Pump 61

Slide 47 NUMECA, a New Wave in Fluid Dynamics

Quantity FilesQuantity Files..cgnscgnsSolution, used for restarting solution, CFView results

.mf .mf Averaged Quantities at inlet & outlet

..res res Residual values for each iteration of a computation

.log.logAll information about the current computation: error, warning,...

.steering.steeringAll information about Convergence History Data in Task Manager

.std.stdAll information about the current computation: start, kill, iteration,…

.wall.wallForces and Torques on solid patch if requested by the user

.run .run All settings of the active computation

Numerical Control FilesNumerical Control Files

InterfaceInterface

FINEFINE--EuranusEuranus FilesFiles

Page 48: Training Case 3 Centrifugal Pump 61

Slide 48 NUMECA, a New Wave in Fluid Dynamics

PracticePracticeCentrifugal Pump

Hub/Blade

Relative Velocity

CFViewCFViewTMTM

Page 49: Training Case 3 Centrifugal Pump 61

Slide 49 NUMECA, a New Wave in Fluid Dynamics

CFViewCFView VisualizationVisualization

Step 1 : Open File Step 1 : Open File ““.run.run””

Step 2 : Select Area of Interest: surface, plane,...Step 2 : Select Area of Interest: surface, plane,...

Step 3 : Define New Quantity or Select QuantityStep 3 : Define New Quantity or Select Quantity

Step 4 : Select RepresentationStep 4 : Select Representation

Step 6 : Save OutputStep 6 : Save Output

Step 5 : Adapt RepresentationStep 5 : Adapt Representation

InterfaceInterface

Page 50: Training Case 3 Centrifugal Pump 61

Slide 50 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step1: Import File “.run”Step1: Import File “.run”1. Load Project from FINE Interface

1. Select the “CFView” item in the Menu Bar/Modules or in Icon Bar that automatically open the “.run” associated to the active computation

2. Load Project from CFView1. Open “.run” associated to the computation of interest.

1.1

1.2

2.2

2.1

Page 51: Training Case 3 Centrifugal Pump 61

Slide 51 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step2: Select/Create Area of InterestStep2: Select/Create Area of Interest1. Select Area

1. Select the “Geometry/Select Surfaces” item in the Menu Bar

2. Select the area of interest & Apply

2. Create Area before Select Area (if Area not existing)1. Select the“Geometry/Create...” item in the Menu

Bar2. Create thanks to Cutting Plane or I,J,K Surface 3. Plane or Surface is highlighted4. Save - Apply - Close

1.1

2.1

2.4

1.1

1.2

2.1 Quick Access Pad/SurfacesSelect Surfaces

Show Wireframe

Create IJK Surface/Cutting Plane

Right-click

2.3

1.2

1.3

Page 52: Training Case 3 Centrifugal Pump 61

Slide 52 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step3: Select/Define QuantityStep3: Select/Define Quantity1. Select Quantity

1. Select the “Quantity/ Field Data/...” item in the Menu Bar2. Select the quantity of interest3. Quantity Selected & its Range appear in the Selection Area

2. Create Quantity1. Select the “Quantity/ Field Data/Define New Quantity” item in the

Menu Bar2. Create New Quantity3. Apply

2.1

1.1

1.2

2.2.2

2.2.1

2.2.32.3

1

2

1.3

Quick Access Pad/QuantitiesSelect Quantity (dubble-click)

Create New Quantity

Page 53: Training Case 3 Centrifugal Pump 61

Slide 53 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step4: Select RepresentationStep4: Select Representation1. Select Representation: “Representation” item in the Menu Bar

2. Scalar Representation1. Local value2. Isolines3. Contour4. Cartesian Plot5. Integral6. IsoSurface

3. Vector Representation1. Streamlines2. Vector field 3. Local Vector4. Integral

2.1

1

2.6

2.2

2.3 2.5

2.4

2.42.1

2.2

2.5

2.6

Quick Access Pad/Representation

Quick Access Pad/Representation

3.13.2

3.3

3.4

3.4

3.1

3.33.2

Page 54: Training Case 3 Centrifugal Pump 61

Slide 54 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

1. Scalar Adapt Representation1. Scalar Range2. Icon Bar3. Quick Access Pad

2. Vector Adapt Representation1. Vector Range/Vector Type2. Icon Bar3. Quick Access Pad

Step5: Adapt RepresentationStep5: Adapt Representation

1.1

Quick Access Pad/Representation

2.1

2.3

1.2

1.3

2.1

2.2

2.3

Quick Access Pad/Representation

Page 55: Training Case 3 Centrifugal Pump 61

Slide 55 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

3. Refresh Graphics Area - Update

1. Undo

2. Select the Area of Interest (step2)3. Select the Quantity of Interest (step3)4. Delete5. Select Representation to delete

3.1

3.4

3.3

Right-click

3.2

3.5

Page 56: Training Case 3 Centrifugal Pump 61

Slide 56 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Step6: Save OutputStep6: Save OutputSave Image: Open “File/Print” Select format Select name

Save Macro File: Start “File/Macro/Record”

Save Template File

Save Cartesian Plot/Iso Surface

1.1

1.2

1.3

1.4

2.1

2.2

2.3

3.1

3.2

4.14.2

Scalar Quantity

Scalar Quantity

Cartesian Plot

Page 57: Training Case 3 Centrifugal Pump 61

Slide 57 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Task1: Check YTask1: Check Y+ +

Mesh wellMesh well--adapted to the Turbulent Model ?adapted to the Turbulent Model ?

1. Open “.run”2. Check Y+ close the Solid Wall

1. Create Surfaces close to the Solid WallHOH Mesh: I=2, J=2, J=Jmax-1H/I Mesh: I=2, I=Imax-1, J=2, J=Jmax-1

2. Select Created Surfaces3. Select Quantity Y+

4. Select Color Contour Representation5. Adapt Representation Range on Selected Surfaces6. Check range of Y+

1< Y+ <10 for Baldwin-Lomax OR Spalart-Allmaras OR k-epsilon Y-S1< Y+ <50 for Standard k-epsilon

SpalartSpalart--AllmarasAllmaras

2.3

2.4

2.5

2.5

0 < Y+ < 10

Full Range

Page 58: Training Case 3 Centrifugal Pump 61

Slide 58 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Task2: Visualize WheelTask2: Visualize Wheel

1. UpDate if Necessary Delete/All & <b>2. Select All Geometry 3. Desactivate Boundaries (b)4. Select Hub, Pressure, Suction – (Apply)5. Activate Boundaries (b) &/or Mesh (g)6. Set Material on Selected Surfaces: Render/Shading7. Adapt Material8. Set Nbre of Repetition: 7 blades9. Set Repetition <R>

10. Save output File/Print to save an image

4

6

65

8&9

Page 59: Training Case 3 Centrifugal Pump 61

Slide 59 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Task 3: Relative Velocity at MidTask 3: Relative Velocity at Mid--SpanSpan1. Deactivate Repetition <R>2. Select Turbomachine Module

1. Define Hub/Shroud Patches2. Define Meridional Patches

3. Create Turbomachines Views4. Create Mid-Spanwise Surface in B2B View5. Select Created Surface in 3D View6. Select Static Pressure Quantity7. Select Color Contour8. Adapt Representation9. Activate Repetition <R>

2.1

2.2

2.3 3

2.2

2.2.1

2.2.2

2.3

2.3.2

2.3.3

2.3.1

Page 60: Training Case 3 Centrifugal Pump 61

Slide 60 NUMECA, a New Wave in Fluid Dynamics

PracticePractice

Blade-to-Blade View

Meridional Average 3D View

MeridionalView

4.1 4.2

5

6

78

9

4.3