tranform laplace

Upload: sestuff

Post on 03-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Tranform Laplace

    1/34

    Programme 6

    Framesto 34

    lntroduction

    o

    Laplace

    ransforms

    Learning

    outcomes

    \\'hen you have

    completed

    his Prograntnte

    ou

    will be able to:

    o

    Derive

    he

    Laplace ransform of an expression

    y using the

    integral

    definition

    o Obtain inverseLaplace ransformswith the help of a Tableof Laplace

    transforms

    o Derive

    the

    Laplace ransform of the derivative

    of

    an expression

    o

    Solve

    irst-order,

    constant-coefficient,

    nhomogeneousdifferential

    equations

    using the

    Laplace ransform

    o

    Derive

    urther

    Laplace ransforms

    rom known transforms

    o

    Use

    he

    Laplace

    ransform to obtain the solution

    to linear, constant-

    coefficient,

    nhomogeneousdifferential equationsof second

    and

    higher

    order

  • 8/12/2019 Tranform Laplace

    2/34

    1118

    Programme

    2

    The

    Laplace

    ransform

    All the

    differential equations

    you

    have looked

    at so far have

    had

    solutions

    containing a number of unknown integration constantsA, B, C etc.

    fhe

    values

    of these

    constants

    have

    then been found

    by applying boundary

    conditions

    to

    the solut ion, a

    procedure

    hat can often

    prove

    to be tedious. Fortunately,

    or

    a

    certain type of differentiai

    equation there is

    a method of

    obtaining

    the

    solution where these unknown

    integration

    constants are evaluated

    during

    ht

    process

    f solutiorr. urtherrnore,

    ather than

    employing integration

    as

    he r,var

    of unravelling the differential

    equation,

    you

    use straightforward

    algebra.

    The

    method hinges on what

    is called the Laploce

    ronsform.If

    f

    (f

    )

    represents

    some

    expression

    n

    f defi ned for f

    )

    O, he

    Laploce

    ronsfbnn

    of

    f

    (f

    ),

    denoted

    br

    L{ f( . t ) ) , is def ined o be:

    f \

    L \ f ( t ) l :

    I

    e

    " f i f ) d f

    . l r o

    where s is

    a

    variable whose

    values

    are chosen so as to

    ensure that

    the

    seni-

    infinite integral

    converges.More will

    be said about the variable.s

    n

    Frame.l.

    For now, what would you

    say s the Laplace

    ransform

    f

    (t)

    -Z

    for

    f

    >

    0?

    Sttbstififte

    br f

    (t)

    irt the integral

    obove md then

    perform

    the integrotiutt

    The

    ctnswer s in the

    next

    ft'arttt

    provided.s

    > 0

    Because:

    f \

    t { [ { t t }

    -

    |

    r ,

    " 1 r t r d I

    .J -u

    SO

    L { 2 }

    e

    t t Z

    d t

    -0

    [, '

    l '

    L l l , , ,

    (0

    -

    ( -1 l . s ) )

    Notice that s > 0 is demanded because f s

    s

    -

    0 then Ltz l is not

    def ined

    ( in

    both

    diverges),so that

    < 0 t h e n e 5 r - : c a s f + r . a n d 1 :

    of these two

    cases the integra.

    I

    - l

    , | ,

    a

    a

    Z

    .s

    L

    ;

    12]i provided

    s

    >

    0

  • 8/12/2019 Tranform Laplace

    3/34

    -,ction

    to Laplace

    transforms

    lltg

    Bv

    the same reasoning,

    f k is

    some

    constant then

    L'

    t 1 ( |

    - "

    p r o v i d e d

    0

    _ s -

    \ow,

    how

    about the I-aplace

    transform

    of

    f(f)

    :

    e

    kt,

    t

    >

    0 where

    k is a

    ionstant?

    Go bcrck

    o tlte integrttldefinition

    trtrd work

    it ottt.

    Again,

    the artswer

    s in the next

    fiame

    l { , '

    ^ ' }

    - ,

    l

    O

    p r ov i ded

    (

    f i

    :

    I

    e ' t e

    k t d t

    .,

    -0

    l I

    -

    |

    .

    r s t ( 1 4 1

    J :rt

    [ , ,

    ' + ( r ] \

    t - l

    l

    (s '+

    )1,-,,

    ( , , (

    |

    \ \

    . s + k > 0 i s d e r n a n d e d t o e n s u r e t h a t t h e

    \-

    (.t

    +

    k)//

    integral

    convergesat

    both l imits

    I

    -

    ;: ^

    provided .s+ k > 0, that is provided .s> k

    \ J

    |

    ^ l

    1

    I

    Because

    tk

    r ' )

    I hese

    wo

    exampleshave

    demonstrated

    hat

    you

    need to

    be careful about

    the

    iinite

    existence of

    the Laplace

    transform and not

    just

    take

    the integral

    clefinit ion

    without

    some thought.

    For the Laplace

    transform

    to exist

    the

    integrand

    e

    't

    f

    (.t)

    lnust

    converge

    o zero

    as f

    -

    rc and

    this

    wil l

    impose some

    conditions

    on the

    values

    of .s for

    which

    the integral

    does converge and,

    hence, the I-aplace

    transform

    exists. In

    this Programme you

    can

    be assured hat

    there are no

    problems

    concerning

    the existence

    of any of the Laplace

    ransforms that you

    ni l l

    meet .

    Move

    on

    The

    inverse

    Laplace

    transform

    -fhe

    Laplace ransform

    is an

    expression n the variable

    s which is

    denoted by

    F(s) . t is

    sa id that

    f ( f )

    and F(s)

    -LI f

    ( t ) j

    form a t ransfonn ai r .This

    means

    that if

    I(s) is

    the Loplace ransfonn

    of

    f(t)

    then

    f(f)

    is the lnverue

    Lcrplace

    trunsform

    of

    F(s).

    We write:

    f ( t ) - L ' { r ( r ) }

    >

    to the rrcxt

    rame

  • 8/12/2019 Tranform Laplace

    4/34

    1120

    programme

    _i

    There

    is no simple

    integral definition

    of the inverse

    transform

    so you

    have

    :

    find

    it

    by

    working

    backwards.

    For

    example:

    i f

    f

    ( t )

    :4

    then

    the Laplace

    ransformL1f

    @|:

    f (s)

    :1

    .

    S O

    4

    i f F(s)

    :

    :

    then

    the inverse

    Laplace ransform

    r

    t{F(.r)}

    -

    f(t)

    -

    4

    .s

    It is this

    abil ity to find

    the Laplace

    ransform

    of an

    expression

    and

    then

    rever:.

    it that

    makes the Laplace

    ransform

    so useful

    in the

    solution

    of

    different:,

    equations,

    as

    you

    will soon

    see.

    Ior

    now, what is

    the inverse t,aplace

    ransform

    of F(s)

    :

    I

    .,

    . s - I

    L

    ' { F ( s ) }

    - f ( t ) - e '

    know

    that:

    1

    - Vou

    CanSaVha t

    ) + K

    sow henk :

    r , r t {L }

    ,

    l s

    r

    Becauseou

    t { t

    r ' }

    :

    1 ' {

    1

    } - . ^ ,

    I S + K J

    l ,

    l l t

    _ p t

    To assist

    n the

    process

    of

    finding

    Laplace

    ransforms

    and

    their inverses

    a

    talr_.

    is

    used. n the next frame

    is a

    short table

    containing

    what

    you

    know

    to

    dat.

    s

    Table

    of Laplace

    transforms

    f ( f ) : L ' { r ( r ) }

    F(s)

    L\f

    ( t ' ) j

    k

    e k t

    k

    J

    I

    s + k

    s > 0

    s > - k

    Reading

    he table from left

    to right gives

    the

    Laplace

    ransform

    and

    readinr

    the table

    from right to left gives

    the lnverse Laplace

    transform.

    use

    tlrcse,where

    possible,

    o answer

    he

    questions

    n tlrc Revision

    exercise

    tlr,;.

    follows. Otherwiseuse the basicdefinitictnbr Frtrnre

    To answer

    tlis, Iook

    at the Laplace

    ronsfonns

    you

    now

    krtt..,.

    Tlrc

    nttswer

    s in Ilrt

    rtt 'xI

    [r ',rt,

  • 8/12/2019 Tranform Laplace

    5/34

    lntroduction

    o

    Laplace

    ransforms

    'l'l2l

    SJ

    nevision

    ummary

    1

    The

    Lttltloce ronsfonn

    of

    f(f

    ),

    denoted

    by L{f

    (t)},

    is defined

    to

    be:

    f -

    t { / 1 r r } | e " l r t r d t

    . l t l

    where

    .s s a

    variable

    whose valuesare chosen

    so as o

    ensure hat

    the senti-

    infinite

    integral converges.

    2

    If f '(s)

    is the

    Ltrpluce ronsfbnn

    of

    [(r)

    then

    f(f)

    is the inverse

    Loploca

    trotrsfitrrn

    f

    F(s). We

    write:

    l ' t t t

    L r { F r s r }

    There

    s no simple

    integral dcfinition

    of thc

    inverse ransform

    so

    you have

    to

    find

    it

    by

    working

    backwardsusing

    a Tableof'Ltrpltce

    ronsfbrnrs.

    Z{

    Revision

    exercise

    1

    Hincl

    he l.aplace

    ransfclrm

    of eacl'tof

    the fcll lowing.

    ln each

    case

    def ined

    or I

    - '0

    :

    (a)

    ( r )

    -

    3

    ( d ) f ( f )

    -

    5c

    2

    lrind

    tftc

    inversc

    1

    (a )

    F (s )

    s

    :i

    ( ( l )

    / r ( r - )

    -

    L

    a. )

    ( b )

    l ( t )

    -

    c

    (e)

    f ( t )

    -

    2( '7t

    2

    transfr l rm

    of cach

    1

    F ( s )

    -

    t

    .s .)

    l

    1'(r")

    2s

    :3

    (c)

    l'(t)

    -

    e2t

    of the fo l lowing:

    .J

    ( c )

    F ( . \ ) -

    ^

    . \

    r L

    . l l

    l.aplace

    (b)

    ( c )

    Solt t t i t rrr .s

    tt

    t rcx[

    fr t r t r t '

    (a)

    f ( t )

    -

    . l

    Because

    {k }

    (b)

    f(t)

    -

    c

    providcd ,t

    >

    0, l{ 3}

    -

    C

    p r o v i d e d s > 0 , L { c } : -

    provided .s

    >

    0

    provided s >

    0

    _ {

    .)

    Because

    U,)

    -

    |

    (c)

    f ( t )

    -

    ezt

    Because

    \t

    u']1:

    1

    J

    1

    s + k

    F

    provideds

    >

    k, L\ezL1

    provided

    s

    >

    2

  • 8/12/2019 Tranform Laplace

    6/34

    11?2

    Programme

    :

    f

    ( t )

    -se

    ' '

    L l . 5e

    " l

    l '

    e

    " r

    5 , ,

    3 / rd r

    - 5

    |

    e ' / c

    i r c l t

    _511e

    1 1

    . J r

    , 1 , , ,

    l { 5e

    ' r }

    '

    . , p rov ideds .3

    . \ t J

    f ( t ) - 2 e "

    z

    f -

    L lZe" ' l - 1 e

    ) t -o

    ) , '

    2

    L { 2 e 7 '

    2 }

    -

    =

    F(s ) :

    1

    .s

    Because ' { i

    I s J

    F ( s )

    - 1

    . s - . )

    (

    1 )

    , , t (

    I

    I

    B e c a u s e L

    { '

    . I

    - ( " , L ' - ( '

    l \

    K )

    [ 5

    s J

    ( 1 )

    Because

    '4= - l

    :

    e

    2 tand

    l { . 3e

    z ' }

    - . l t { e

    2 t }

    :

    [ . )

    | z J

    ( 2 )

    t ' l - ' ' ; f

    : 3c2 '

    [ ) t 4 J

    :l

    . i ) s o

    . ) T a

    (d)

    (e)

    \ \ 2 e t ' , C , t -

    2 1

    2 |

    e ' / e ' d t 2 c

    ) L 1 e - t 1

    .J,-

    provided

    s

    >

    7

    2

    (a)

    :k,Lr{+} . '{i} :- '

    (b)

    (c)

    (d)

    (e)

    1

    F ( s )

    - .

    4.S

    -

    3 t - 3 4 r

    r ? )

    , f

    3

    4 l

    r ,

    F r r -

    -

    4s s

    |

    +sJ

    -

    t

    s

    J

    I

    _

    \ " /

    a - a

    z.\ .)

    F(s)

    2 s 3

    so h a t

    ( t )

    - L ' { " = }

    1

    ;

    Z

    3

    s - -

    L

    -, I

    l

    + ,

    -jl:''

    Nert

    fi

    'r r

    Beforeyou

    can use the

    l.aplace

    ransform to solve a differential equation vo,:

    need to know the Laplace ransform of a derivative. Given some expressi,r-

    f ( f )

    wi th

    Laplace t ransform LI i( . t ) \ :F(s) , the Laplace t ransform

    of

    tnt

    derivative

    f'(f)

    is:

    f 1 .

    L \ f ' ( t ) l

    :

    I

    e ' t f ' ( . t ) d t

    . . , /_o

    l-aplace ransform of a derivative

  • 8/12/2019 Tranform Laplace

    7/34

    lntroduction

    to Laplace

    transforms

    'fhis

    can be

    integrated by

    parts

    as

    follows:

    l ' \

    L l [ ' t t t l

    -

    |

    .

    ' i 1 ' r t r d l

    . ,

    -0

    f ^

    ru ( f

    dv{ r )

    . l t o

    t l ' I

    ( t h e P a r t s f o r m u l a - s e e

    I t r { l

    l t r ' ' . 1

    , u

    -

    . 1 ,

    , t ' " o t " "

    P r . g r a m r n e 5 ,F r a m c

    l t

    where

    u ( t ) :

    c

    ' r

    so du ( r )

    . se

    td f

    and

    where

    dv ( f )

    -

    f l ( r ) d f

    so

    v ( f )

    -

    f

    ( t ) .

    Therefore,

    substitution

    in the Parts ormula

    gives:

    I

    l - f -

    L{ f ' ( t ' t } -

    ] t

    " f ( t ) l

    o . t

    I

    c ' I f 1 r ;d r

    L - l : t t

    ' l t

    'o

    -

    ( 0

    f (0 ) )+

    sF(s ) ssuming

    ' I f ( r )

    -

    0 as

    * : r

    That

    is :

    L { f ' ( t ) \

    :

    sF( . s )

    f ( 0 )

    So

    the

    Laplace

    transform of the derivative

    of

    f(f)

    is

    given in terms of the

    l.aplace

    ransform

    of

    f

    (r)

    itself and the

    value of

    f

    (t)

    when f

    -

    0. Before

    you

    use

    this

    fact

    just

    consider

    two

    properties

    of the Laplace transform

    in the next

    frame.

    1129

    Two

    properties

    of

    Laplace transforms

    Both the Laplace transform and its inverse are lirrcsr trcrrtsforms, y r.t'hich is

    meant that:

    (1)

    The

    transfornr

    of a surn

    (or

    diffbretrceof expressiotts

    s thc stun

    (or

    difference) f

    the

    individunl

    rarrsfonns. hqt is:

    r { r ( r )+s(r)}

    r { r ( f ) } r {s(r) }

    a n d

    I

    ' 1 r 1 . s 1 + G ( s ) )

    : l

    1 { F ( . r ) } + L

    { { ; ( s ) }

    (2)

    The

    trcrnsftinn

    of on exprassionhat

    is rruiltiplied by a constottt

    s the cortstant

    multiplied

    by the tronsform

    of tlte expressiort.

    hctt is:

    r { k f ( r ) } : kL \ f ( t ) } and l 11 ru1s ;1:kL |

    {F (s ) }

    wherek i s a cons tan t

    'Ihese

    are

    easily

    proved

    using

    the basic definition of the

    Laplace ransform

    in

    Frame

    1.

    Armed

    with

    this information

    let's try a simple differential

    equation.

    By using

    Ll f ' ( ) \ :

    sF( .s)

    f (0)

    take

    the

    Laplace ransfonn

    of both sidesof

    the equation

    f '

    ( t )

    +

    f ( . t )

    :

    I

    where

    f(0)

    :

    O

    and find an explession or the Laplace ransform I'(s).

    Work through tltis steodily

    using what

    you

    know;

    vott will find the

    onsv'er

    n Frarne 12

    by r.t'hich is

  • 8/12/2019 Tranform Laplace

    8/34

    1124

    Programme

    26

    Because,

    that:

    L{ f ' ( . t )

    That is:

    1

    f

    ( s )

    -

    s (s r )

    taking

    Laplace

    transforms of both sides of the

    equation

    you

    have

    r Frr \ rJ l l

    The Laplace ransform

    of the lef t -hand

    sideequals

    '

    /

    \ / '

    -LLrr

    the Laplace ransform of

    the

    r ight -hand

    side

    L{f '(L)l

    +

    LIf

    G)}:

    r{ 1}

    l l :" tT: l"m

    of a sum s hesum

    of the

    translorms.

    From what

    you

    know about the Laplace transform

    oti

    f

    (t)

    and its

    derivative

    f'(f)

    this

    gives:

    l sF(s)

    f (o) l+r (s)

    l

    s

    That

    s:

    (s

    +

    1)F(s)

    f(0)

    :1

    and

    you

    are

    given

    hat

    /(0)

    :0

    so

    .t

    l _ l

    1s r l )F1s ) , t ha t i s F (s )

    -

    - - - -

    's s ( s l )

    Well done. Now, separate he ri ght-hand side into

    partial

    fractions.

    Yotthsve

    done

    plenty

    of this before n ProgrammeF.7;

    the answer s in

    Frame

    1 1

    i ( S ) - - - -

    s s + l

    Because

    I A B

    Assume hat

    ^

    :

    +

    -

    then, 1

    :A(s+

    1)

    +Bs

    fromwhichyou

    s ( s + l )

    s

    s ,

    I

    f i n d t h a t A : 1

    a n d B -

    1

    s o t h a t F ( s )

    1 -

    t ,

    . s . r + 1

    That was straightforward enough. Now take the inverse Laplace

    transform

    and

    find

    the solu tion to the differential eouation.

    The znswer is in

    Frame

    11

  • 8/12/2019 Tranform Laplace

    9/34

    I

    ntroduction o Laplace

    ransforms

    1',25

    f ( 1 )

    : 1

    c ' I

    Because

    f ( t ) : L ' { r ( . r ) }

    , t [ 1

    1

    I

    L ( - )

    l s

    s t J

    _ ,

    '11 \

    _ r

    ,

    |

    \

    r he inve rseLap lace t rans fo rmo f

    d i f f e rence

    -

    |

    rJ

    "

    [s

    +

    1J

    is

    the difference

    of the inverse

    ransforms

    :

    1

    e

    '

    Using

    the Table

    of Laplace

    ransforms

    in Frame

    6

    You now have

    a method

    for

    solving

    a differential

    equation

    of the form:

    af ' ( t )

    +bf

    ( . t )

    g( f )

    g iven

    that

    f (0)

    :

    k

    where a, b and

    k are known

    constants

    and3(f)

    is a known

    expression

    n

    f:

    (a)

    Take the Laplace

    ransform

    of both

    sidesof

    the differential

    equation

    (b)

    Find

    the expression

    F(.s)

    L{f

    (.t)}

    n the

    form

    of an algebraic

    raction

    (c)

    SeparateF(s)

    nto

    its

    partial

    fractions

    (d)

    Find the

    inverse

    Laplace

    ransform

    r

    r{F(s)}

    to find the

    solution

    f(f)

    tcr

    the

    differential

    equation.

    Now yctu

    ry sonrc

    but beforeyou

    do

    jttst

    ook dt the

    Toble

    of

    Laploce

    trartsfrtrmsn the next frame. You will neetl hem to solve

    tlrc

    equations

    n fhe

    Revision

    exercise

    that

    fbllotus.

    34

    -".:

    Table of Laplace

    transforms

    f ( t ) - L ' { F ( . s ) }

    F(s)

    L{ f

    ( t ) }

    k

    e k t

    re

    ^'

    r

    s

    1

    . s + k

    1

    :

    (.r

    +

    /()"

    s > 0

    s > - k

    s > - k

    We

    will derive

    this third

    transform

    later in

    the

    prograrnme.

    For now, use lrcse

    o answer

    he

    questions

    hat

    follow

    f/le Revision

    summary

    in

    the

    next

    ftcune

    . $

  • 8/12/2019 Tranform Laplace

    10/34

    1126

    Programme

    26

    @

    nevision

    umm ry

    I t ff

    1 If F(s)

    is the

    Laplace transform of

    f(f)

    then the Laplace transform

    oi

    I l l J

    I

    t - ' r l r i s .

    |

    ' t ' " '

    L { f ' ( t ) }

    - - s F ( s )

    / ( 0 )

    2

    (.a)

    The Laplace ransform of a sum

    (or

    difference) of expressions s

    the

    sum

    (or

    difference)of

    the individual

    transforms.

    That is:

    t { f ( r )

    + . { ( t ) } t { f

    ( t t )

    + t { ( s ( f ) }

    and

    I

    r {F ( s ) + t i ( s ) }

    r

    1 {F ( i ) } + r { c ( s ) }

    (b)

    1'he transform of an expression

    multipl ied by

    a constant is

    the

    constant

    multipl ied by the transform of the expression.

    I 'hat

    is:

    L l k l t t t l k L t t l ' t r l a r t d

    r l k F n ' |

    -

    k L

    r { F r r

    w h e r e k i s a c o n s t a n t .

    3

    To solve a differential equation

    of

    the

    form:

    0f ' \ t )

    t

    bf

    ( l )

    -

    3( f )

    given

    that

    f (0)

    :

    k

    where

    a,

    b and k arc known constantsand

    g(f

    )

    is

    a

    known

    expression

    n f :

    (a)

    Take

    the

    Laplace ransform of both sidesof the differential equation

    (b)

    Find the expression

    (.s1

    L{f

    (t)}

    in the form of an algebraic

    ractior.t

    (c)

    Separate

    (s) into

    its partlal fractions

    (d)

    Find the

    inverse Laplace ransform f

    r{F1s)J

    to f ind the solution

    f

    t

    to

    the

    differential eouation.

    ffi

    Revision

    xercise

    I { ?

    Solve each of the folloning differential equations:

    ,

    '

    '

    ( a ) f ' ( t )

    f ( t ) : 2whe r e f ( o )

    o

    (b)

    r ' ( r )

    +

    f ( t )

    -e

    t

    where

    (0)

    0

    (c )

    f ' ( r )+ l ( r )

    3

    where

    (0 )

    2

    (d)

    f'(r) f'G)

    e''

    where

    (0)

    -

    1

    (e)

    3r'(r) 2f

    .t) 4e

    t

    -l-

    where

    (0)

    0

    Solutions n next

    tidn:,

  • 8/12/2019 Tranform Laplace

    11/34

    lntroduction

    o Laplace

    ransforms

    1127

    (a)

    f ' ( t)

    f

    ( t)

    -

    2 where

    (0)

    :

    0

    TakingLaplaceransforms

    f both sides f this

    equation

    gives:

    .sF(s)

    /to1

    F(s)

    ?

    so hat F(.s)

    - : ^

    -

    -2

    +

    -L

    ,

    s \ ( 5 l ) . \ s I

    The inverse transform

    then

    gives

    the solution

    as

    f

    ( t ) :

    - z

    +

    2 e t 2 ( t ' t 1 )

    (b)

    f ' ( f )

    -

    f

    ( t )

    -

    e '

    t

    where

    f (0)

    -

    0

    Taking

    Laplace

    ransforms of both sides

    of this equation

    gives:

    sf ' (s)

    f(0)

    -

    F(s)

    - f

    ,o that F(.r)

    1

    =

    J

    r

    r

    r r

    ,

    1 1 2

    The

    'l 'able

    of inverse

    ransforms then

    gives

    he solution as

    f

    (t)

    :

    7g

    r

    (c)

    f ' ( f )

    f

    l ' ( r )

    - 3 where

    (0)

    - 2

    Taking Laplace ransforms

    of both sidesof this

    equation

    gives:

    .sF(s)

    / (0)

    +

    F(s)

    9

    so that

    s

    - 2 3 : J 2 s 3 5

    s

    I s r s l , 1

    s '

    l 1

    s

    s I

    The

    inverse

    transform then

    gives

    the solution as

    f(f)

    -

    .J 5e

    I

    (d)

    f'(.t)

    -

    f ' \.t)

    r '2rwhere

    f(o)

    -

    1

    Taking Laplace ransforms of both sidesof this equation gives:

    . s F ( s )

    f ( O ) - F ( . r )

    j

    S i u l r l g

    - ,

    l ) F ( r ) -

    1 :

    ]

    ^

    l l l

    s o f l a t ' t '

    -

    i -

    l

    , ,

    l

    r r s

    2 , . s 2

    The inverse transform

    then

    gives

    the soh,rtion

    as

    f

    {.t1

    szt

    (e)

    3f ' ( r )

    -

    2f

    ( t )

    -

    1e

    t

    +

    2 where

    f(0)

    -

    0

    Taking Laplace ransforms of

    both sidesof this equation

    gives:

    3 isF(s )(0) , 2F(s11* ? : ,1 ,1*? , o ha t

    \

    r

    I

    \ \ ( s

    l )

    6 s + 2 2 7 / 1

    \

    1 1 / 1

    \

    s r , s

    l , ; t . i s 2 t

    5

    \ 3 s - 2 /

    r

    . 5 \ r | /

    The inverse transform then

    gives

    he solution

    as:

    9 . . , +

    I t l l - , " I

    .) .)

    'i(+)

    l-i(+)

    \ .

    1/

    On now to Frante

    19

  • 8/12/2019 Tranform Laplace

    12/34

    1128

    Programme

    26

    t * *

    ;

    T

    S

    Generating ew transforms

    Deriving

    the Laplace ransform

    of

    f

    (f)

    otten requiresyou

    to integrate

    by

    parts,

    sometimes

    repeatedly. However,

    because LIf '(t)j

    -

    st{f(t)}

    f(0.1

    you

    can

    sometimesavoid this involved processwhen you know

    the

    transform

    of

    the

    derivative

    f'(f).

    Take as an

    example

    the

    problem

    of finding

    the Laplace

    transform

    of the expression

    f

    (t)

    :

    t. Now

    f'(f)

    :

    1

    and

    f(0)

    :

    0

    so that

    substituting in

    the equation:

    LI f ' ( t ) | :

    s r { f ( r ) }

    f (0)

    gives

    t t 1 ] - s I - { r } - 0

    that is

    1

    -

    s r { f }

    s

    therefore

    L { t }

    : :

    J '

    That was

    easyenough,

    so

    what

    is

    the

    Laplace

    ransform

    of

    f

    (t)

    -

    t2?

    The

    snswer is in

    the next

    frorrtt

    1

    i

    I

    i

    e*

    Because

    f

    (t)

    -

    t,,

    f '(.t)

    2t and

    (0)

    :

    o

    Substituting in

    L{f '

    t)}

    -

    sr{f(t)}

    f(0)

    gives

    L {z t } : . r r { f 2 } - O

    that is

    ^ ?

    2 L l t l

    - s t { t 2 }

    s o

    ;

    -

    s t t / 2 }

    ' s -

    therefore

    a

    ^ /

    L { t ' }

    :

    =

    Just

    try another

    one.

    Verify

    the third

    entry in the Table

    of Laplace

    ransforms

    in Frame 15 for k : 1, that is:

    , - l

    I ) t ) |

    -

    L t

    |

    -

    ( s +

    1 ) '

    This is

    a

    littler

    harder but

    jttst

    follow

    the

    procedure

    aicl

    out in the

    previorls

    hlr)

    frames

    crnd ry it. The explattation

    s irr the

    next

    frortrt

  • 8/12/2019 Tranform Laplace

    13/34

    lntroduction

    o Laplace ransforms

    Because

    f

    ( t ) :

    t e

    ' ,

    f ' ( t ) :

    e

    '

    r e

    I

    and

    f (o )

    Substituting

    in

    L{f ' ( t ) } : sr { f ( t ) } f (0)

    gives

    L{e

    '

    te

    t1

    :

    sL{te

    t}

    0

    that

    is

    L { ,

    ' }

    -

    L { te

    ' }

    -

    s t { re

    r }

    therefore

    t { t ' l :

    ( s +

    I ) L { t e

    t l

    giving

    - 1 ,

    - ( s

    *

    I

    ) l t f e

    ' ]

    a n d s o { f e

    ' }

    s + 1

    1129

    1

    :G+1f

    On

    now

    to

    Frame22

    Laplace

    ransforms of

    higher

    derivatives

    The

    Laplace transforms of derivatives higher than the

    first are readily derived.

    Let F(s) and

    G(s) be the respectiveLaplace ransforms of

    f(f)

    and

    J:(f).

    That is

    L \ f

    ( t ) l : F ( s )

    so

    tha t r { f ' ( f ) }

    :

    sF(s )

    f

    (0 )

    and

    r {s( t ) } :

    G(s) nd {s ' ( t ) i sG(s)

    s(0)

    Now

    let

    .S(f)

    f '( f

    )

    so that r{g(f)}

    :

    L{f'(t)} where

    .s(0) f'(0)

    andG(s)

    sr(.s)

    f(0)

    Now,

    because

    (f

    )

    -

    f '( t)

    g ' ( t )

    -

    f "

    ( t )

    This

    means that

    r {s ' ( r ) }

    L{ f " ( t ) } : sG(s)

    s(0)

    :

    s fsF(s)- f (O) l

    f ' (o)

    SO

    L{f"

    t)}

    s2r(s)sr(O)

    r'(0)

    By a similar

    argument

    t

    can be shown that

    L{f" '(.t)}:

    s3r1s;s',r(O)sr'(0)

    f"

    (0)

    and

    so on.

    Can

    you

    see he

    pattern

    developing here?

    The

    Lap lacerans fo rm

    f

    f i ,

    t , i s . . . .

    Nex t

    rome

  • 8/12/2019 Tranform Laplace

    14/34

  • 8/12/2019 Tranform Laplace

    15/34

    1130

    Programme

    26

    L{ fu

    t ) }

    -

    s1F(s) s : r1 '101

    21 ' tO1-r " (0)

    f " ' , (O)

    Now,

    us i ng L { f " ( . t ) }

    s 'F ( s ) s l ' ( 0 )

    l ' ( 0 )

    t he Lap lace

    t r ans f o r m

    o i

    f ( f ) : s inkf where k is a constant s . .

    Diffirentiate

    f

    (t)

    twice

    ord

    follow

    the

    procedure

    hat

    yotr

    used

    n Franres

    19 to

    21.

    Tqke it

    corefully, he ttnswer

    nrd tuorkingLtreht

    tlte

    following frarrrc.

    r{sinkf}

    "+"

    Because

    f( f )

    :

    s in kt ,

    f '

    ( t )

    -

    k

    coskf and

    f"

    ( t )

    -

    k2

    sinkf .

    A lso

    l ' (0)

    :0

    and

    f ' (O)

    -

    f .

    Substituting in

    L I f " ( t ) )

    : . s2 r 1 . s1

    s l ( 0 )

    f ' ( 0 )

    wher eF( .s ) L l f

    ( . t ) j

    gives

    L { - k2s i nk f }

    : . r z l { s i nk f }

    s . 0 k

    that is

    k2Llsinkr l

    :

    .s2t{sin r }

    k

    S O

    1.s2

    i

  • 8/12/2019 Tranform Laplace

    16/34

    lntroduction

    o Laplace ransforms

    1131

    Tableof

    Laplace

    ransforms

    f

    ( f )

    t ,

    ' { r ( r ) }

    F( .s ) L { f

    ( t ) }

    k

    e k '

    te

    kt

    t

    P

    sin kf

    coskf

    t

    s

    1

    . r + k -

    1

    -

    (s

    +

    k ) '

    1

    5t

    L

    F

    k

    .)j

    .r-

    +

    K'

    J

    U

    .s-

    +

    K'

    . s > 0

    - s > - k

    s > - k

    s > 0

    s > 0

    . s 2 + k 2 > o

    . s 2 + k 2 > O

    Linear,

    constant-coefficient, nhomogeneous

    differentialequations

    1'he Laplace ransform can be used

    to solve equations of the form:

    a, , f ( " ' )

    . t )

    a, ,

    t f i "

    t ' ( r )

    +

    . . .

    +

    a2f"

    . t )

    +

    a1f '

    t )

    +

    a\ f ( t )

    -

    s( t )

    where al l ,011

    , . . . ,

    ez, a1,ag ?t? known constants,

    ( t )

    is

    a

    known

    expression

    in f and the

    values

    of

    f

    (t)

    and its

    derivativesare known at f

    :

    0. This type of

    equation

    is called a linear, cotlstatlt-coeflicient,

    nhr,tmogeneous iffbrential

    equatiort nd

    the values

    of

    f

    (f)

    and its derivatives

    at

    f

    :

    0 are

    called

    boundary

    conditions.

    The method of obtaining

    the solution follows the

    procedure

    laid

    down in Frame 14. For example:

    To

    find the solution of:

    f "

    ( t )

    +

    3f ' ( t )

    +

    2f

    ( . t )

    4f where

    f

    (0)

    :

    f ' (0)

    :

    0

    (a)

    Tcrke he

    Loploce

    ransform of both sidesof the etyntion

    L{f"

    . t)}

    3L{f '(t) l

    +

    2L1f

    rD

    4L{t}

    to

    give

    [s2r1s;

    sf(0)

    l"(0)]

    +,3l.sF(.s)

    (O)l

    +

    2r(.s)

    -1

    I

    I

    I

    g6

    4

    s2

    F

  • 8/12/2019 Tranform Laplace

    17/34

    1132

    Programme

    ):

    (b)

    Find

    the exprcssitm (s)

    -

    L{f

    (t)l

    in the

    fitrm

    of an algebraic

    fioction

    Substituting

    the

    values

    for

    f(0)

    and

    f'(0)

    and then rearranging

    gives

    1s2+ : l . s

    z )F (s l -

    52

    so that

    4

    F t t :

    -

    - -

    i '.;i

    's

    -)

    (c)

    Seporate

    (s)

    into

    its

    partiol

    fructions

    4 A B C I )

    sL.s

    16

    +

    z;

    :

    T- . t t

    - . r

    L '

    t

    +

    2

    Adding

    the right-hand side partial

    fractions

    together and

    then

    equating

    the left-hand side numerator

    with

    the

    right-hand

    side

    numerator gives

    4

    :

    As ( s

    +

    1) ( . s 2 )

    +

    B( s+

    1) ( . s 21

    +

    Csz ( s 2 )

    +Ds21s

    1)

    L e t s - 0 4 - Z B t h e r e f o r e B - 2

    s :

    - 1

    4 : c ( 1 ) 2 ( - 1

    z ) :

    c

    . s : 2 1 - D( . 2 )2(

    2+ i )

    -

    . tD

    t he r e f o r eD

    -

    -1

    Equate

    he coefficients

    of s:

    O

    -

    2A+

    38

    -

    2A

    +

    6 therefore

    A

    -

    -3

    Consequentlv:

    _ 3 2 4 1

    s

    s /

    s

    L \ 1 2

    (d)

    Usc he Tttbles o

    firtd

    the inverse

    aplace ronsfonn

    L

    r{F(s)}

    ctndso

    furd

    tlr,.

    solutiorr

    f

    (.t)

    to tlrc clifferential

    eqtntiotr

    f ( t ) :

    3 + z t + 4 e t

    e 2 t

    So lnt wns

    crllverystraightforwsrtl

    even f it was involved.Now

    try

    your

    hond

    ot tlte

    diff'erential

    equations n

    Frttnrc

    29

    Revision

    ummary

    :

    #,t::'

    1 If F(s)

    is the Laplace ransform

    of

    f

    (f)

    then:

    L{f"

    t)1

    s2r1.s;

    f

    0)

    f '(0)

    and

    L{f"'(t) l :

    .s:JF(s).s2r(0)

    sf '(0)

    f"(0)

    2 Equations

    of the

    form:

    t , , f i " ' ' ( t )

    a , ,

    t f ' ' "

    t ' ( r ) +

    . . . + e 2 f t t ( . t )

    + a 1 f t G )+

    r i o f ( r )

    . g ( f )

    where

    ( t i l t

    o i l

    t , . . . ,

    o2, oy, o11

    t Constants re cal led l inear ,

    coefficient, nhomogeneous

    differential

    equations.

    constant-

  • 8/12/2019 Tranform Laplace

    18/34

    lntroduction

    o Laplace ransforms

    3

    The

    l .aplace t ransform can be used to solve constant -coef f ic ient ,

    inhomogeneous

    di f ferent ia l equat ions

    provided

    a, , , a, ,

    r , . . . ,

    oz, or , Lto

    are

    known constants,

    g(f

    )

    is a known expression

    n f, and the vah-res f

    f

    (r)

    and

    its derivatir, 'es re known at f

    :

    0.

    4

    The

    procedure

    for solr. ing hese equations of

    second and

    higher

    order

    is

    the same as that

    for

    solving the equations

    of f irst order.

    Namely:

    (a)

    Take the l-aplace ransform of both sidesof the

    differential equation

    (b)

    Find the expression

    (s) L{ f

    ( t ) l

    in the form of an a lgebraic

    ract ion

    (c)

    Separate (s) into its

    part ial

    fractions

    (d)

    Fincl he

    inverseLaplace ransform L

    r{} ' ( -s)} to

    f ind the solut ion

    f ( f )

    to the differential e0uation.

    1133

    Zl Revisionexercise

    Use ire

    Laplaceransform o solveeachof

    the fol lowing equations:

    /fi={j;;

    :

    (a )

    f ' l t )

    r

    f ( r )

    :

    - l

    where

    (0)

    -

    0

    (b)

    3r '( f)

    +2f

    ( t)

    -

    t

    n 'herc

    (0)

    -

    2

    (c)

    r"(r)

    t

    5f

    ( f)

    +

    6f ' ( t) 2e

    I

    where

    (0)

    -

    0 and

    ',(0)

    0

    @)

    f '"( t)

    4f

    ( t)

    :

    sin2t

    where

    (0)

    -

    1 and

    '(0)

    :

    -2

    An.sr,uerstr rrcxt t'orne

    (a)

    f ' ( t )

    +f

    t . t ) :3

    where

    (0)

    o

    : .3{ - t

    ' l 'aking

    Laplaceransforms

    f both sides f the equation

    gives

    L { f ' ( . t ) }

    1 1 1 1 r ;1L { 3 } so h a t

    s F f

    s )

    f ( O ) j

    F ( t )

    :

    That is

    (s

    -r

    1)i'(s)

    i

    ,o

    F(s)

    --1=,

    -=

    *-3

    -

    5

    s 1 r

    I '

    r

    s

    I

    g iv ing

    he so lu t ion s

    ( t )

    -

    3 3e

    I

    :3 (1

    *e

    t )

    tr

  • 8/12/2019 Tranform Laplace

    19/34

    1134

    Programme

    26

    (b )

    3 f ' ( f )

    +2 f

    ( t ) :

    f wh e re

    (O ) :

    - z

    TakingLaplace

    ransforms f both sides

    f the equation

    gives

    L13f '(t) j

    +

    LIzf

    ( t ) l

    :

    r {r}

    so hat 3lsF(.s)

    (0)l

    2F(,

    :

    \

    .t '

    That

    s

    (3s

    2)F(s1

    (-6)

    :1

    ,o

    Fisl

    l : j*

    \ r

    s 2 r 3 s

    2 1

    The

    partial

    fraction breakdown gives

    3

    1 1 1

    15 1 : l 1 1

    1 5 1

    , - r s r _

    r

    _ _

    . t s

    2 s 2

    4

    r 3 s l r -

    + r

    t

    j

    + r s - 1 '

    giving

    he solutionas

    3 f

    \ s z t " ' l

    f I f \

    t -

    4 2 4

    (c) f"( t ) + sf ' ( r ) + 6f ( t ) :2e t where f(0) - 0 and f ' (0) - 0

    Taking

    Laplace ransforms of

    both sidesof the equation gives

    L { f " ( . t ) }

    r { s r ' ( f ) } L {6 f ( t ) l

    L {2e

    t }

    so

    hat

    s2r'1.s1

    f

    0)

    / ' (0)l

    +

    sl.sF(.s)

    (o)l

    +

    6F(s7:

    ?

    -

    5 + l

    That is

    (.s2

    5.s 6)F(s)

    -?

    .

    s + 1

    so F / s )

    2

    J v

    \ ' ' /

    t t +

    t [ s + 2 ) t t + 3 )

    s + 1

    -

    s + 2 -

    j ' + 3

    giving

    the solution as

    f ( t ) : e t

    2 1 2 t 1 1 3 t

    (d)

    f"( t )

    4f

    ( t )

    :

    s in2f where

    f(0)

    :

    1 and

    f ' (0)

    :

    2

    Taking

    Laplace ransforms of both

    sidesof the equation

    gives

    L\f"( . t ) | L{4f

    ( t ) l

    -

    L{s inzt l

    so hat

    .s2r1s;-

    f(o)

    f '(o)l

    4F(s)

    "+"Thats1s2+;r ' (s1s. l (_z) *L

    . \ - T Z

    2

    s - 2

    soF(s1

    ;: , ^

    l ) -

    -

    + , 1 s ' - 1 1 - ; ' -

    1 5 1 1 1 1 2

    : G

    u r - r *

    t

    2

    E s r + z ,

    giving

    he solutionas

    -

    1 5

    , ,

    I

    , ,

    s i n 2 l

    l l l \ - - - p

    ' '

    I

    1 6 ' 1 6 ' 8

    So, inally, the CanYou? checklist -ollowed y the Test exercise

    and Further problems

  • 8/12/2019 Tranform Laplace

    20/34

    Introduction

    o Laplace ransforms

    A

    Can

    You?

    Checklist

    26

    (.lrcck his list befbreond afteryou try the end of Programtneest.

    On a scale

    of

    1 to 5 how confident are

    you that you can:

    o

    Derive

    he Laplace ransform of an expression

    y using the

    integral

    definition?

    Yes

    o

    Obtain

    inverse

    Laplace ransforms

    with

    the

    help

    of

    a Table of

    Laplace

    ransforms?

    . l

    Nr.r

    1135

    Frames

    r"*rJ.

    -r-J

    [:*].

    ilC

    ilil

    Yes

    r

    Derive

    he

    Laplace ransform of the derivative

    of an

    expression?

    Y e s l ' . .

    f No

    o

    Solve

    irst-order,

    constant-coefficient,

    nhomogeneous

    differential

    equations

    using the Laplace ransform?

    ffi.

    {-'qJ

    No

    Derive

    further

    Laplace ransforms from

    known

    transforms?

    ilpl

    .

    ilr,uJ

    Ycs -- i

    Use he

    Laplace ransform to obtain the solution to

    linear,

    constant-coefficient,

    nhomogeneousdifferential equations

    of

    higher

    order

    than the first?

    i'_Zl

    .

    il t

    Y e s r [ - N o

    S

    Test

    exercise

    26

    1 Using

    the integral definit ion,

    f ind the Laplace ransforms

    for eac h of the

    following:

    (a)

    f ( r )

    -

    8

    (b)

    l ' ( f )

    -

    esr

    (c)

    f ( r )

    :

    -4e2t t3

    2 Using the

    l'able of Laplace ransforms,

    ind

    the

    inverseLaplace ransforms

    of each

    of the fol lowing:

    ( a )

    l ( 5 )

    -

    .

    l s ) \ '

    \ ' -

    -

    /

    3

    l

    3fri

    I

    c , , 1

    tb t

    F ls t

    1 l

    ) .

    q

    ( d l

    F l s t :

    - #

    J ' t J

    ts

    ( c )

    F ( s )

    s2 + 9

  • 8/12/2019 Tranform Laplace

    21/34

    1136 Programme

    26

    yHllll

    3

    Ciiven

    that

    the Laplace ransform of fe

    kt

    is F(s)

    -

    ,+

    derive

    the

    [,,-..i

    (s

    +

    /()-

    Lapiaceransformof t2c:'1 ithout using he integral

    definition.

    4 Use he Laplaceransform o solveeachof the following

    equations:

    @)

    f' '

    .t)+ 2f ft) : I where (0) 0

    ( b )

    f ' ( r )

    f ( . t ) - a

    r w he r e f ( 0 )

    :

    1

    (c)

    f"( f)

    +

    Lf ' ( t)

    +

    4f

    ( t)

    -

    e

    21

    where

    (0)

    :0

    and

    '(0)

    :

    t )

    (d)

    4f " ( t )

    9 f

    ( t ) :

    18where

    (0)

    -

    0 and

    ' (0)

    0

    &

    Further

    problems

    26

    #"3

    I

    Find

    the

    being de

    (a)

    (r)

    (d)

    (r)

    Find

    the

    (a)

    F(.s)

    (d )

    F (s )

    3s 4

    7s2 27

    s r + 9 \

    T1Tl

    (b)

    Laplace ransfo

    f i n e d f o r f > 0 ) :

    : ( l k l , ( t > o

    ( X

    f o r 0 < f

    - )

    f

    o

    fo r t>s

    inverse

    Laplace

    2

    of each of the following expressions

    each

    f( r)

    :

    sinhkt

    0

    ( c l

    f ( r )

    - c os hk r

    transform of each of the

    (c)

    -s2 fl

    fn l l o r r r i n o .

    3 . s - 4

    F t t t - _

    -s'+ ro

    - )

    -

    .\-

    ()5

    +

    I'+

    s r

    -

    J z

    ,

    4 r

    -

    - l

    3 Show that

    i f F(s)

    (b)

    F(.s)

    -+s

    ( e )

    F r s )

    ( t )

    ( \ 2

    7 ) '

    L l l r t t l

    |

    .

    " / ' , l r d /

    t h e n :

    .,

    :o

    (a)

    ( i )

    F ' (s)

    -L{ t f

    ( t ) }

    ( i i )

    } ' "1.s1 L\ f f

    ( t ) }

    Use

    part

    (a)

    to find

    (b)

    ( i )

    r {r s inZt l

    ( i i )

    t { f2cos3f}

    (c) What would you say the nth derivative of I (.s) s equal to?

    4 Show

    that

    if L{f

    ft)}

    -

    F(s) then L{ektf

    (f)}

    :

    F(.s k) where k is

    a constant.

    Hence find:

    (a)

    L\e"I s inbf

    )

    (b)

    l{e"rcosbf}

    where

    s and

    b

    are constants

    n

    both cases.

  • 8/12/2019 Tranform Laplace

    22/34

    lntroduction

    o

    Laplace ransforms

    5 Solve

    each of

    the following differential equations:

    (a)

    f"

    ( t )

    -

    sf ' ( f )

    +

    6f(t)

    -

    0

    (b)

    f"( t )

    sr '( f

    +

    6f

    (t) :

    I

    (c)

    f"( t )

    5f '( t )

    +

    6f(t1

    gzr

    (ci) 2f" ( t ) - f ' ( t ) f ( t1 : ,

    t t

    (e)

    f( t \

    +

    f '( t )

    2f"

    1t |

    7g

    ( f

    f " ( t )

    +

    16r(r) 0

    1137

    wherc

    (0)

    :0

    aqd

    '(0)

    -

    1

    where

    (0)

    -

    0 and

    ' ' (0)

    0

    where

    (0)

    =

    0

    and

    ' (0 )

    0

    where (0) - 2 antl '(O)- |

    where

    (0)

    -

    0 and

    '(0)

    -

    1

    where

    (0)

    =

    1

    and

    '(0)

    :

    4

    -:lrr

    It,W$l

    ( S )

    Z f " ( t )

    f ' ( t ) f ( f )

    - s i n r - c o s t

    w h e r e f ( 0 )

    0 a n d l ' ' ( 0 ) - 0

    Now

    visit the companlon

    website for this book at

    www.palglave.com/stroud

    #4,

    for more

    questions applying this

    mathematics to science

    and engineering.

  • 8/12/2019 Tranform Laplace

    23/34

  • 8/12/2019 Tranform Laplace

    24/34

    /(s)

    F{t)

    t4.

    f-

    f

    (u)

    d.u

    F(t)

    T

    t5.

    i=+=t

    fo'

    "-*"u'ou

    F(t;

    =

    P1;a1,

    t6.

    /(/t)

    a

    hf"""

    uz/4t

    pt(ul

    6.r,

    17 .

    Iliu'l

    {o*

    tn{'lfrt'{u1 ou

    t 8 .

    #lv'l

    p,,

    f

    o

    u-nrz 1n12,,1ffi)

    fu)

    du

    t9.

    f(s

    * 1/s)

    - 7 +

    1

    f,'

    rrtzt/ if t=AtF@)

    ilu

    20.

    #1,'

    -atz a-s?lau (ul il u

    r'(f,)

    2r

    /(ln

    s)

    s l n s f,-ryn"

    27.

    P(e)

    =

    suku banyak

    dari bilangan

    yang

    lebih

    kecil dari n,

    Q ( s )

    =

    ( s - c 1 ) ( s - a 2 )

    " '

    ( s - a n )

    di

    manacl

    ,Q2, , , , ,o,

    semuanYa

    aPat

    dibedakan

    g

    p("r)

    oo*t

    rar

    Q'@x)

    -

  • 8/12/2019 Tranform Laplace

    25/34

    ' t \ t

    ^lpendiks

    TABEL

    TRANSFORMASI

    APLACE

    HUSUS

    /(s)

    r(r)

    I

    I

    ;

    1

    2.

    1

    8,

    t

    3.

    t

    S"

    n

    =

    1 , 2 , 3 , .

    tn -

    L

    (;-ill

    0 = 1

    4.

    I

    8t

    n ) 0

    t tu* t

    ilD-

    5.

    8 - A

    eo t

    6.

    I

    G-A;

    n

    =

    1 , 2 1 3 , .

    f f i . '

    o =1

    7.

    - l -

    n ) O

    (8

    -

    a) "

    Xn-I

    ed t

    riil-

    8.

    '|

    TT7'

    sin ol

    a

    9.

    s

    F 4 " ; ;

    cos 6t,

    lo.

    I

    G

    *-bFT?

    ebt

    sin ot

    a

    t l

    s - b

    G:O?T?

    ebt

    cosot

    12.

    I

    a*a

    sinh

    dt

    .L

    t3 .

    E

    a=at

    cosh

    ot

    t4.

    1

    G=W=A

    ct,

    slnh

    4

    &

  • 8/12/2019 Tranform Laplace

    26/34

    246

    TABEL TRANSFORMASI

    LAPLACE

    KHUSUS

    IApendiks

    B

    /(s)

    F(r)

    t5.

    e - b

    G=6?

    -7

    eb,

    cosh

    oi

    t6.

    ebt

    -

    eot

    b - a

    17.

    a * b

    bebt

    -

    aeat

    b - o

    18 .

    k,

    +W

    g i n a t

    -

    a t co sa t

    -__,4-_

    t9.

    a

    @+W

    I

    sin g.i

    2a

    20.

    a2

    @+W

    s i n c t

    * o t co se t

    2a

    2 l

    cos

    ot

    -

    \a't

    sin

    at

    22,

    s 2 - a 2

    ;--:--;i;

    ls. t

    d'1.

    t cos o,t

    ,3.

    1

    Gr=w

    at cosh

    ot

    -

    sinh

    at

    --w-*

    2*.

    I

    Gt=w

    t

    sinh

    ot

    ---2;*

    25.

    92

    @-;rF

    sinh

    ot

    * at

    cosh ot

    2a

    26.

    83

    @-w

    eoshot *

    $atsinhat

    27.

    e 2 * a 2

    ;..;-.-M-

    18'

    -

    d ' l '

    t cosh

    ol

    28.

    1

    t--;1-d5

    | 8 " - t o ' . ) "

    -

    $ot cosat

    29.

    s

    Gt+ory

    30.

    82

    @Ti-ozlt

    (1

    * aztz) sin

    at

    -

    at cos

    at

    8o3

    3 l

    $3

    @T;'F

    3t

    sin

    of *

    atz

    cosat

    -__T;-

  • 8/12/2019 Tranform Laplace

    27/34

    : x J i k s

    B

    TABEL

    TRANSFORMASI

    LAPLACE

    KHUSUS

    247

    i(s)

    F(t)

    32.

    8{

    (F+7p

    (3

    -

    a2tzl

    sin

    at

    |

    \at

    eosot

    8o

    33 .

    G'+"43

    (8

    -

    art2)

    cos ot

    -

    ?ot

    sin of

    8

    34.

    lsz

    -

    az

    G'+"ry

    t2

    sin

    af

    _T;

    35.

    s3

    -

    3a2s

    Gt+;ry

    $tz

    easat

    36.

    $t3 cosc.t

    37.

    s3

    -

    o2s

    Grfiry

    t3

    sin ot

    24"*

    38.

    I

    Grj45

    ($

    *

    o2lz)

    sinhot

    -

    Sot

    coshot

    8o5

    39.

    a

    @=w

    oi2

    cosh at

    -

    t

    einh

    ot

    8a3

    40.

    a2

    @=ry

    ot

    cosh of

    *

    (azts

    1)

    ginh

    ot

    8a3

    4 l

    a3

    Gt_"ry

    3t

    sinh ot

    * ot2

    eoshol

    ---_

    6d,

    42.

    3{

    G';T

    (3

    * az1z1

    inh

    ot

    *

    5oi

    cosh of

    8a

    43.

    g5

    G':ZF

    (8

    * azfe)

    cosh

    at

    * Tat

    sinhs,t

    8

    44.

    t2

    sinh ot

    -Ta

    45.

    sB

    * 3o2s

    tr=ry

    {t2

    cosh

    ot

    46.

    a 4 + 6 @ 2 s 2 + a 4

    -*lp

    -;4a-

    *ts

    cosh ot

    47.

    ss

    *

    a2s

    @-w

    13

    sinh ot

    -ffi-*

    48.

    s 3 * o 3

    #{lu"t"ry-"*ry*"-*,,)

  • 8/12/2019 Tranform Laplace

    28/34

    /(s)

    F(0

    49.

    a

    s i * a s

    #{*++y'

    sin+-'- ' ' "}

    s0.

    gt

    FT;6

    +

    (,-"'

    +

    zea'tz*"4t)

    5 l

    I

    ' s3

    *

    c3

    ffi

    {**,,

    "o"

    r*

    /F"'"

    }

    52.

    a

    s 3 - c 3

    u#{{"'"+-"'"ry*"*"'

    53.

    PTJg

    *

    (*'

    *

    z"-*,'

    ro"{L"t)

    54.

    1

    TT?;|

    frtrtn

    a.t cosh t - cosdt sinhot )

    55.

    *4

    * 4aa

    gin

    of sinh

    at

    ----zF-*

    56.

    a3

    FT 4A

    l(sin

    ot

    cosh

    ct

    * cos

    at

    sinh

    at )

    2e

    s7.

    s3

    {77&

    cos al

    cosh

    ot

    58.

    t

    F*7

    1|-{rittt

    ot

    -

    sin

    ot)

    59.

    s

    s 4 * 4 4

    ,|'t"ost

    oi

    -

    eos

    at)

    60.

    sz

    F-7

    fi-{.introt

    *

    sinol)

    6l

    83

    il-:;a

    $(cosh

    at

    * cos

    af )

    62.

    1

    V s * o

    *

    V s * b

    e-bt

    -

    e-a t

    -_-.-*....*:

    2(b

    -

    a){rF

    63.

    I

    * { r * o

    erf

    dat

    na

    u.

    Vr (s -o )

    eet

    e$l&,

    {a

    ..'

    '

    I

    6:?+

    0

    *'{+-

    a b""rrc

    6r/l)}

    LVrt

  • 8/12/2019 Tranform Laplace

    29/34

    /(s)

    r(r)

    1 6 . -

    I

    I

    I

    { e z * d

    Jn@tl

    I

    cr.

    1

    1/62

    -

    q'z

    Is(at)

    58.

    1r/Ploz

    -

    t1n

    n >

    * l

    {st

    * az

    *n

    Jn{atJ

    69.

    ( s

    -

    \ / 8 2 = e 2 ) "

    n )

    - 1

    ,ls'z

    e'

    ei

    I"(et\

    70.

    ,uts

    -

    y'rETE

    I

    {sz

    |

    6z

    to@,/&TdEtt

    7l

    "-vt{FiF

    \F+e

    J o o r / t r - t )

    t > b

    f o

    t < b

    72.

    (82

    +

    a2)s/2

    t

    J1{at)

    a

    73.

    . a

    (az

    +

    a2lx/2

    t

    J

    o(ot)

    74.

    g2

    FTTF

    J o f u t ) o t J l @ t \

    75.

    lsz

    -

    oz)slr

    t

    lr{at\

    (r,

    76,

    a

    @-wn

    t Is{o,tl

    77.

    a2

    @:wn

    Ie(ot)

    *

    o,tl1@t\

    78,

    1 - ___3::_

    e(et

    -

    1) a( l

    -

    e-s1

    Lihat

    juga

    entri

    141,

    Halsmttl 264

    F ( t 1 n , n S t < - n * L , n = 0 , 1 , 2 , .

    79.

    1

    =

    ____g:_

    e(es

    r)

    e(l

    *

    re-s;

    Iu

    r ' ( 0 =

    E f k

    k = l

    di

    mana

    [fl

    =

    bilangan

    bulat

    terbeear{

    t

    80.

    e s - 1

    1 - e - t

    o(et

    -

    r )

    s( l

    -

    re-r ;

    Lihat

    juga

    entti 143, Halaman 254

    f ( t J = q ' * ,

    n = t 1 n * I ,

    n

    = 0 ,

    1 ' 2 , .

    8 l

    g - a l s

    Va

    eos2{A

    t/

    rt

  • 8/12/2019 Tranform Laplace

    30/34

    f(s)

    F(r)

    82.

    e -a /8

    FiT

    sin

    2lat

    {"a

    83.

    *T1-

    n

    )

    -1

    / r \ n / 2

    ( ; )

    r^Q\/at)

    84.

    e - o G

    V s

    e*

    a2/4t

    -.--.:

    'l

    "t

    85.

    *o

    Vi

    --3-

    e-a2/4t

    2Gts

    86.

    1

    -

    e * o G

    I

    efi(a/hfi)

    87.

    e * o G

    a

    er{.i(allfi)

    88.

    e - o G

    v 8

    ( v s

    +

    D )

    eb(br+a)

    rtc

    Utft

    +

    -i=)

    \

    2\/t

    /

    89.

    s-at

    {i

    ?TT-

    n )

    - 7

    #*,

    I

    r-

    "n

    c*u2/442tz.(^t/ilt

    du

    90.

    r , / "19 )

    \ 8 + D /

    e -b t

    -

    e -a l

    t

    9 t .

    ln

    l(sz

    *

    az)/q,21

    -----?;--

    Ci

    (at)

    92.

    ln

    [(s

    + oilcr.]

    s

    Ei

    (ot)

    93.

    *

    (y

    * lns)

    a

    y

    =

    tetapan Euler

    =

    0,5772156.

    l n t

    94.

    , , 1 s 2 * a 2 \

    --

    \sz

    + bz/

    2

    (cos

    ot

    -

    cos

    bt )

    95.

    , 2

    ,

    ( v * l n s ) 2

    6 " * -

    8 -

    y =

    te tapanEuler=

    0,5??2156. .

    lnz

    t

    96.

    l n s

    I

    * ( l n t * y )

    7

    =

    tetapanEuler

    =

    0,57?2156

    97.

    ln2

    s

    a

    ( l n t * Y ) z

    *

    { 7 2

    7

    =

    ttapanEuler=

    0,5?72156

  • 8/12/2019 Tranform Laplace

    31/34

    tF)

    r(r)

    9 8

    r ' ( n * 1 )

    - r ( a * 1 ) l n e

    n > _ L

    5 t * l

    t n l n ,

    99

    ,un_r

    (als)

    sin ai

    t

    1 0 0 .

    ,rr.,_r

    (o/s)

    s

    Si

    (ot)

    l 0 l

    ? a / s

    U

    erfc

    (Vcls

    )

    e-2'l;i

    ---=-

    V T t

    I 02.

    "s2/aaz

    s;fc.

    (s/Za\

    ?L

    s*aztz

    r03.

    e"'/ao'

    erfc

    (s/Zol

    s erf (ot)

    I

    104.

    eos

    erfc

    Vii

    Vs

    I

    t["Q

    +

    ",

    I 05.

    eds Ei

    {os)

    1

    t - t d

    r06.

    *

    [.o*

    ""

    {;

    -

    tt

    (*)}

    -

    sin

    as

    ci

    (cs)]

    t

    + d............t

    lo7.

    "1","

    {i

    -

    si

    (as)}

    + cos

    as

    ci

    (cs)

    t

    FT|t

    r08.

    f - r

    cos

    as

    {z

    *

    Si

    (as)}

    -

    sin

    os

    Ci

    (as)

    I

    tan_

    |

    (t/a)

    t09.

    ,in

    o*

    i

    -

    si

    tas)I

    *

    cos s ci

    (c.s)

    l o )

    I

    1 ,

    / t 2 + o 2 \

    , '"

    \__F_

    t to.

    [u

    -

    .t,*,]' * 6iz

    (as)

    I

    1r,

    t'

    +=cr'''

    t \ a z /

    i l l

    0

    a((0

    l t2 .

    I

    8(r )

    I t 3 .

    e -

    as

    6(t

    -

    o)

    I t4 .

    e-

    as

    a

    Lihat

    juga

    entri 139, Halaman 254

    u(t

    -

    a,

  • 8/12/2019 Tranform Laplace

    32/34

    f(a)

    r(a

    | 15 .

    sinh s*

    s

    sinh sa

    i

    *

    1

    , I

    .in

    i

    cosT:

    l l 6 .

    sinhsr

    il;E;;

    4

    S

    (-1) '

    . ' -

    r f r 1 2 n - 1 " "

    -

    l ) ru

    - Slll

    I 17.

    eosh.so

    s sinh so

    i *?2, ( - l ln"o , rys in 'Y

    I t8.

    cosh

    sr

    il;fr;

    1

    l 19 .

    sinh

    so

    ez

    sinh so

    r t , 2 a ( - l ) o . n T t . n r t

    " - 7 , 4 r V s r n - s r n -

    120.

    sinh eo

    ;%;ffi;

    sln n

    -

    llrn

    -

    fOS

    t 2 l

    cosh

    so

    p;frfi;

    *.

    #" ,

    #

    "o,ff( '-

    "Y)

    122.

    eoshso

    p;;fr;

    ,+gi

    x

    n = l

    ( -1 ) " (2n

    l \ r r

    (2"

    -TF

    cos

    t;-

    srn

    t23.

    cosh

    slr

    F;;fr;

    +(t2

    xz a2)

    +F "i, #+ "ou? n

    (2n

    -

    l )nt

    cos

    za

    124.

    sinh

    rfi'

    ;;h

    "v?

    :1 s

    f,z

    ,3t

    (- lt

    n

    p'*zrttto,

    rinT

    r25.

    coshcVF

    cosh

    a.y'3

    126.

    sinh

    oy'T

    VE-cosh

    ,V?

    a # t

    lZn

    *

    llrr

    (*1)"-

    t

    e-

    t

    2n t)2t2t

    /

    4a2

    sin

    -;:r*:

    127.

    eoshoVF

    {T

    sinh oy'a

    +

    -

    i, i,

    {-t)"

    e-n2r'ttoz

    "o"W

    t28.

    sinh

    oV?

    e sinh

    oy'?

    g

    +

    ?

    3

    ( -1 \n

    " -no r t / o r

    s i n ,o "

    e

    o G t

    n

    -

    - " ' a

    r29.

    coshsVF

    o eosh

    ay'?

    t

    *

    ;

    , : ,

    t

    "- ,rn

    t)zr2t/4o'

    "o"@; l

    t30.

    sinh

    oV?

    er

    sinh

    oV

    r t

    * 2 a 2 $

    & ' , g # t

    / - 1 \ n

    * tf

    _

    e-n2n2t/s2\

    sin

    ,."-

    ' a

    t 3 t .

    cosh

    cV;

    su cosh

    oV '

    $(x2-o2l

    +

    t

    -

    Y.i,

    #+

    e-.2^-t,znztt+oz

    oa

  • 8/12/2019 Tranform Laplace

    33/34

    f(e)

    r(4

    r32.

    Jsli*,r/l)

    ffi

    1

    -

    2

    3

    e-*t/dJo'(^nrla)

    n=1

    I,

    J1(trn)

    mana r1

    \2,

    ... adalah

    akar-akar

    positif

    dari J6(l)

    =

    i 0

    t33.

    Jo$sr/i)

    ezJo6.a\/t) l (az-oz l

    4

    t

    *

    mana1,1,

    r2,

    ...

    adalah

    ,ou#,.##y,

    akar-akar

    positif

    dari Je(1.)i

    0

    r34.

    #**

    (?)

    I

    0

    Fungsi gelombang

    segitiga

    t35.

    r"''h

    (?)

    tr'ungsi

    gelombang

    segi+mpat

    t36.

    Fungsi

    penyearahan

    gelombang

    sinu*

    rs7.

    v(L

    @FTAG4

    Fungsi

    penyearahan

    separuh

    gelombang

    sinus

    r38.

    1

    e - 6

    d,8z

    s(1

    _

    e-os)

    Fungsi

    gelombang gigi gergaji

    a 2 a g 6 4 a

  • 8/12/2019 Tranform Laplace

    34/34

    /{s)

    F(t',

    t39.

    e-as

    I

    Lihat juga entri 144, Halaman 251

    Fungri

    satuan Heaviside u( t

    -

    a)

    F.(.)

    140.

    a - o s

    ( 1

    -

    e - s )

    ..-

    a

    Fungsi

    pulsa

    t 4 l .

    I

    A 1 -

    ' = E

    Lihat

    juga

    entri

    ?8, Halaman 249

    2

    I

    0

    Fungsi tangga

    142.

    C- s

    +

    e -zs

    8(1

    -

    -s)2

    F(t,

    =

    n2,

    n < t < n * 7 , n = 0 , 1 , 2 , .

    r(o

    4 .

    0

    t43.

    1 * e - s

    Ai_?,-q

    Lihat

    juga

    entri 80, Halarnan

    249

    F(t)

    *

    ,4,

    n = t 1 n * L , n = 0 , 1 , 2 , .

    I

    rft)

    141.

    ro {1

    * e *os )

    d"282

    + T2

    (

    sin

    Gt/a\

    = a ,

    r(0