transfer matrix method using scattering matrices · 2020. 5. 1. · 5/1/2020 1 advanced...

16
5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices Outline Calculating reflected and transmitted power Simplifications for 1D transfer matrix method Notes on implementation Block diagram Slide 2 1 2

Upload: others

Post on 19-Jan-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

1

Advanced Computation:

Computational Electromagnetics

Transfer Matrix Method Using Scattering Matrices

Outline

• Calculating reflected and transmitted power

• Simplifications for 1D transfer matrix method

• Notes on implementation

• Block diagram

Slide 2

1

2

Page 2: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

2

Slide 3

Calculating Transmitted and Reflected Power

Recall How to Calculate the Source Parameters 

Slide 4

inc 0 inc

sin cos

sin sin

cos

k k n

0

ˆ ˆ 0

1zn a

incTE

inc

ˆ 0

ˆˆ 0

ˆ

ya

n ka

n k

inc TETM

inc TE

ˆˆ

ˆ

k aa

k a

Incident Wave Vector Surface Normal Unit Vectors in Directions of TE & TM

Composite Polarization Vector

TE TMTE TMˆ ˆP p p aa

Right‐handedcoordinate system

1P

In CEM, the magnitude is usually set to 1.

ˆxa

ˆya ˆza

Unit vectors along x, y, and z axes.

Can be any direction in the x‐y plane

3

4

Page 3: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

3

Solution Using Scattering Matrices

Slide 5

The external fields (i.e. incident wave, reflected wave, transmitted wave) are related through the global transfer matrix.

globalref inc

trn

c cS

c 0

This matrix equation can be solved to calculate the mode coefficients of the reflected and transmitted fields.

global globalref 11 12 inc

global globaltrn 21 22

c S S c

c 0S S

globalref 11 inc

globaltrn 21 inc

c S c

c S c

1inc ref

x

y

P

P

c W

rightinc not typically usedc

x

y

z

P

P P

P

𝑃 and 𝑃 are obtained from the polarization vector �⃗�.

Note that 𝑃 is not needed.

Calculation of Transmitted and Reflected Fields

Slide 6

The procedure described thus far calculated the mode coefficients cref and ctrn.  

The transmitted and reflected fields must be calculated from the mode coefficients.

ref

ref refref

trn

trn trntrn

x

y

x

y

E

E

E

E

W c

W c

5

6

Page 4: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

4

Calculation of the Longitudinal Components

Slide 7

The longitudinal field component 𝐸 must still be calculated on both the reflection and transmission sides.

These are calculated from 𝐸 and 𝐸 using Maxwell’s divergence equation. 

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0,0,

0

0

0

0

jk r jk r jk rx y z

jk r jk r jk rx x y y z z

x x y y z z

z z x x y y

x x y yz

z

E

E e E e E ex y z

jk E e jk E e jk E e

k E k E k E

k E k E k E

k E k EE

k

ref refref

ref

trn trntrn

trn

x x y yz

z

x x y yz

z

k E k EE

k

k E k EE

k

Note:

0 reduces to

0 when is homogeneous.

E

E

Calculation of Power Flow

Slide 8

2trn

trn r,trn

2 incr,incinc

Re

Re

z

z

E kT

kE

1 materials have loss

1 materials have no loss and no gain

1 materials have gain

R T

Reflectance 𝑅 is defined as the fraction of power reflected from a device.2

ref

2

inc

ER

E

2 22 2

x y zE E E E

Transmittance 𝑇 is defined as the fraction of power transmitted through a device.

It is always good practice to check for conservation of power.

Note: These formulas will be derived in a later lecture.

Note: Recall 1A R T

incE P

7

8

Page 5: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

5

Reflectance and Transmittance on a Decibel Scale

Slide 9

Decibel Scale

dB 1020 logP A

dB 1010 logP P

How to calculate decibels from an amplitude quantity A.

How to calculate decibels from a power quantity P.

2 2dB 10 10 10 log 20logP A P A A

Reflectance and Transmittance

Reflectance and transmittance are power quantities, so

dB 10

dB 10

10 log

10log

R R

T T

Slide 10

Simplifications for1D Transfer Matrix Method

9

10

Page 6: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

6

Analytical Expressions for 𝐖 and 𝛌

Slide 11

Using this relation, the matrix equation for 2 can be greatly simplified.

2zk I

Since 2 is a diagonal matrix, it can be concluded that

2 2

1 0

0 1

W I

λ Ω

The dispersion relation with a normalized wave vector is2 2 2

r r x y zk k k

0

0

zz

z

jkjk

jk

λ I

0

0

z

z

jk zz

jk z

ee

e

λ

1 0 identity matrix

0 1

I

For isotropic materials and diagonally anisotropic materials, it is not necessary to actually solvethe eigen‐value problem to obtain the eigen‐modes!  

A lot of algebra

2 2r r r r2

2 2r r r r r r

1 x y x x y x

y x y y x y

k k k k k k

k k k k k k

Ω PQ

2

2

0

0

z

z

k

k

Simplifications for TMM in LHI Media

Slide 12

Given that

1 0

0 1i

W I ,i z ijkΩ I i iλ Ω

The expression for the eigen‐vectors for the magnetic fields V reduces to

1 1i i i i i i

V Q Wλ QΩ

When calculating scattering matrices, the intermediate matrices Ai and Bi reduce to

1 1 1g g g

1 1 1g g g

i i i i

i i i i

A W W V V I V V

B W W V V I V V

The fields and mode coefficients are now the same thing!

ref trn1

inc ref ref 11 inc 11 inc trn 21 inc 21 incref trn x x x x

y y y y

P P E E

P P E E

c W W S c S c W S c S c

11

12

Page 7: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

7

Simplified External S‐Matrices in LHI Media

Slide 13

The reflection‐side scattering matrix reduces to

ref 111 ref ref

ref 112 ref

ref 121 ref ref ref ref

ref 122 ref ref

2

0.5

S A B

S A

S A B A B

S B A

1ref g ref

1ref g ref

A I V V

B I V V

trn 111 trn trn

trn 112 trn trn trn trn

trn 121 trn

trn 122 trn trn

0.5

2

S B A

S A B A B

S A

S A B

1trn g trn

1trn g trn

A I V V

B I V V

The transmission‐side scattering matrix reduces to

,I

,I

r

r

r,g

r,g

0limL

,II

,II

r

r

r,g

r,g

refs

trns

0limL

Slide 14

Notes on Implementation

13

14

Page 8: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

8

Outline

Slide 15

• Step 0 – Define problem

• Step 1 – Dashboard

• Step 2 – Describe device layers

• Step 3 – Compute wave vector components

• Step 4 – Compute gap medium parameters

• Step 5 – Initialize global scattering matrix

• Step 6 – Main loop through layers

• Step 7 – Compute reflection side scattering matrix

• Step 8 – Compute transmission side scattering matrix

• Step 9 – Update global scattering matrix

• Step 10 – Compute source

• Step 11 – Compute reflected and transmitted fields

• Step 12 – Compute reflectance and transmittance

• Step 13 – Verify conservation of power

• Compute P and Q

• Compute eigen‐modes

• Compute layer scattering matrix

• Update global scattering matrix

Step 6: Iterate through layers

human does this

computer does the rest

Storing the Problem

Slide 16

How is the problem stored and described in the dashboard of TMM?

Note that this is a right‐handed coordinate system.

ˆ ˆ ˆx y za a a

15

16

Page 9: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

9

Storing the Problem

Slide 17

How is the problem stored and described in the dashboard of TMM?

Device is described in three 1D arrays.

ER = [ 2.50 , 3.50 , 2.00 ];UR = [ 1.00 , 1.00 , 1.00 ];L = [ 0.25 , 0.75 , 0.89 ];

Storing the Problem

Slide 18

External materials:

er1, er2, ur1 and ur2

How is the problem stored and described in the dashboard of TMM?

Device is described in three 1D arrays.

ER = [ 2.50 , 3.50 , 2.00 ];UR = [ 1.00 , 1.00 , 1.00 ];L = [ 0.25 , 0.75 , 0.89 ];

r1

r1

r2

r2

17

18

Page 10: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

10

Storing the Problem

Slide 19

External materials:

er1, er2, ur1 and ur2

How is the problem stored and described in the dashboard of TMM?

Device is described in three 1D arrays.

ER = [ 2.50 , 3.50 , 2.00 ];UR = [ 1.00 , 1.00 , 1.00 ];L = [ 0.25 , 0.75 , 0.89 ];

The source:

theta, phi, pte, ptm, and lam0

r1

r1

r2

r2

Storing the Problem

Slide 20

How is the problem stored and described in the dashboard of TMM?

r1

r1

r2

r2

After simulation!

19

20

Page 11: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

11

Storing Scattering Matrices

Slide 21

The scattering matrix S is often talked about as a single matrix.

11 12

21 22

S SS

S S

However, the scattering matrix S is rarely used this way.  Most commonly, the individual terms S11, S12, S21, and S22 are handled separately.

11 12

21 22

S SS

S S 11 12 21 22 , , , and S S S S

So, scattering matrices are best stored as the four separate components of the scattering matrix.

Initializing the Global Scattering Matrix

Slide 22

What are the ideal properties of nothing?

2. Does not reflect at all.

global global12 21 S S I

global global11 22 S S 0

Therefore, the global scattering matrix is initialized according to

global

0 IS

I 0This is NOT an identity matrix!Look at the position of the 0’s and I’s.

Before iterating through all the layers, the global scattering matrix must be initialized as the scattering matrix of “nothing.”

1. Transmits 100% of power with no phase change.

21

22

Page 12: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

12

Calculating the Parameters of the Gap Media

Slide 23

2 2 2,g r,g r,g

g

z x yk k k

W I

The analytical solution for a homogeneous gap medium is

2r,g r,g

g 2r,g r,g r,g

1 x y x

y x y

k k k

k k k

Q

Any choice of r,g and r,g is possible.  However, It is best to avoid the case of kz,g = 0.

2 2r,g r,g1.0 and 1 x yk k

Given this choice, the parameters reduce to

2

g 2

1

1

x y y

x x y

k k k

k k k

Q

g

g gj

W I

V Q

W is not even used in isotropic TMM!

g ,g

1g g g

zjk

λ I

V Q λ

To do this in a mathematically convenient way, choose

Mode Coefficients = Fields (Sometimes)

Slide 24

Recall that the fields are calculated from the mode coefficients through

This means that in TMM, the mode coefficients are the fields.

inc ref trn

inc inc ref ref trn trninc ref trn x x x

y y y

E E E

E E E

W c W c W c

However, for TMM using LHI materials, 𝐖 𝐈 always.

inc ref trn

inc ref trninc ref trn x x x

y y y

E E E

E E E

c c c

This is a special thing for TMM with LHI materials.  It does not hold for other methods or when anisotropic materials are being simulated.

23

24

Page 13: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

13

WRONG

Calculating 𝐗 exp 𝛀 𝑘 𝐿

Slide 25

0

0

0

0

0

z i

i i

z i

jk k Lk L

i jk k L

ee

e

ΩX

Recall the correct answer:

It is incorrect to use the function exp() directly on the matrix 𝛀 because in MATLAB exp()calculates a point‐by‐point exponential, not a matrix exponential.

X = exp(OMEGA*k0*L);X =

0.0135 + 0.9999i 1.00001.0000 0.0135 + 0.9999i

Approach #1: expm() Approach #2: diag()

X = expm(OMEGA*k0*L);

X =0.0135 + 0.9999i 0

0 0.0135 + 0.9999i

X = diag(exp(diag(OMEGA)*k0*L));

X =0.0135 + 0.9999i 0

0 0.0135 + 0.9999i

Efficient Calculation of Layer S‐Matrices

Slide 26

There are redundant calculations in the equations for the scattering matrix elements.

111 22

112 21

11

11

i ii i i i i i

i ii i i i

i i i i i i

i i i i i ii

A X B A X B

A

S

X B A

S X B A X A B

S S X A B AB BX

These are more efficiently calculated as

0

1g

1g

1

1 111 22

1 112 21

i i

i i

i i

k Li

i i i i i i

i ii i i i i i

i ii i i i i

e

λ

A I V V

B I V V

X

D A X B A X B

S S D X B A X A B

S S D X A B A B

25

26

Page 14: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

14

Efficient Star Product

Slide 27

After observing the equations to implement the Redheffer star product, some common terms can be identified.  Calculating these multiple times is inefficient so they should be calculated only once.

1B A B

21 22 11

1B A B

2

AB A B A11 11 11 21

AB B12 12

AB A21 21

AB B A B

1A B A

12 11 22

1

2

A B A12 1

21 2 1122 22 2 1

1 22

2

S

S

S I S S

S I S

S

S S S

I

S S

S

S S S

S S

I S S

S

S

S

1A B A

12 11 2

1B A B

21 22 1

2

1

F

D

S I S S

S I S S AB A B S S S

A B A11 11 11 21

B12 12

A21 21

B A B22 22 22 12

AB

AB

AB

AB

S S S S

S S

S S

S S SF S

F

D

D

Using the Redheffer Star Product as an Update

Slide 28

The global scattering matrix is updated using a Redheffer star product.

Close attention MUST be paid to the order that the equations are implemented so that values are not overwritten.

1global

12 11 22

1global global

21 22 11

global global22 22 22

global21 21

global global12 12

global global11 11

global1

1

2

1 21

i i

i

i

i

i i

D S I S S

F S I S S

S S FS

S FS

S DS

S S DS S

S

1global global

12 11 22

1global

21 22 11

global global global11 11 11 21

global12 12

global global21 21

global global22 22 22 12

i

i i

i

i

i i

D S I S S

F S I S S

S S DS S

S DS

S FS

S S FS S

global globali S S S global global i S S S

reverse order

standard order

27

28

Page 15: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

15

Can TMM Fail?

Slide 29

Yes!

The TMM can fail to give an answer and behave numerically strange any time kz = 0.  This happens at a critical angle when the transmitted wave is at or very near its cutoff.

This problem was prevented in the gap medium, but this can also happen in any of the physical layers or in the transmission region under the right conditions.

2 2r r x yk k

This happens in any layer where

Slide 30

Block Diagram of TMM

29

30

Page 16: Transfer Matrix Method Using Scattering Matrices · 2020. 5. 1. · 5/1/2020 1 Advanced Computation: Computational Electromagnetics Transfer Matrix Method Using Scattering Matrices

5/1/2020

16

Calculate Transmittance and Reflectance

2

ref

trn2 r,trn

trn incr,inc

Re

Re

z

z

R E

kT E

k

Finish

Calculate Longitudinal Field Components

ref refref

ref

trn trntrn

trn

x x y yz

z

x x y yz

z

k E k EE

k

k E k EE

k

Calculate Transmitted and Reflected Fields

ref

ref 11 srcref

trn

trn 21 srctrn

x

y

x

y

E

E

E

E

e S e

e S e

Calculate Source

TE TE TM TM

src

ˆ ˆ

1

x

y

P p a p a

P

P

P

e

yes

Connect to External Regions

global ref global

global global trn

S S S

S S S

Done?

no

Loop through all layers

Update Global Scattering Matrix

global global

1global global12 11 22

1global21 22 11

global global global11 11 11 21

global12 12

global global21 21

global global22 22 22 12

i

i

i i

i

i

i i

S S S

D S I S S

F S I S S

S S DS S

S DS

S FS

S S FS S

Block Diagram of TMM Using S‐Matrices

Slide 31

Calculate Scattering Matrixfor Layer i

01g

1g

1

1 111 22

1 112 21

i ik Li i i

i i

i i i i i i

i ii i i i i i

i ii i i i i

e

λA I V V X

B I V V

D A X B A X B

S S D X B A X A B

S S D X A B A B

Initialize Global Scattering Matrix

global

0 IS

I 0

Start

Calculate Parameters for Layer i

2 2,

2

2

1,

1

z i i i x y

x y i i x

ii y i i x y

i z i i i i

k k k

k k k

k k k

jk

Q

Ω I V QΩ

Calculate Gap Medium Parameters

2

g g g2

1

1

x y y

x x y

k k kj

k k k

Q V Q

Calculate Transverse Wave Vectors

inc

inc

sin cos

sin sin

x

y

k n

k n

How to Handle Zero Number of Layers

Slide 32

Follow the block diagram!!

Setup your loop this way…

NLAY = length(L);for nlay = 1 : NLAY

...end

If NLAY = 0, then the loop will not execute and the global scattering matrix will remain as it was initialized.

global

0 IS

I 0

For zero layers:

ER = [];UR = [];L = [];

31

32