traveling salesman problem

39
traveling salesman problem ZIP-Method deductive approach of an optimal solution of symmetrical Traveling-salesman- problems http://www.jochen-pleines.de

Upload: orea

Post on 09-Jan-2016

53 views

Category:

Documents


2 download

DESCRIPTION

traveling salesman problem. ZIP-Method deductive approach of an optimal solution of symmetrical Traveling-salesman-problems. http://www.jochen-pleines.de. new ideas. das Rundreiseproblem bisherige Lösungen New ideas Beispiel mit 6 Knoten Beispiel mit 10 Knoten - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: traveling salesman problem

traveling salesman problem

ZIP-Methoddeductive approach of an optimal solution of symmetrical Traveling-salesman-problems

http://www.jochen-pleines.de

Page 2: traveling salesman problem

new ideas ...

– das Rundreiseproblem– bisherige Lösungen– New ideas– Beispiel mit 6 Knoten– Beispiel mit 10 Knoten– Beispiel mit 26 Knoten (Ergebnisse)– Schlussfolgerungen und Ausblick

Page 3: traveling salesman problem

new ideas ...

• but first

a task for you:

• Please note in

arbitrary order the

numbers from 1 to

6.

5

2

1

4

3

6

Page 4: traveling salesman problem

new ideas ...

• If you connect the nodes, then it develops:

• 1-component G• with 6 edges • with 6 nodes • each node has

the grade 2

55

2

1

4

3

6

Page 5: traveling salesman problem

new ideas ...

we remember:

if n = 6 then:

n! = 720

(n-1)! = 120

(n-1)! / 2 = 60

55

2

1

4

3

6

Page 6: traveling salesman problem

new ideas ...

now we add the values of the nodes:

as well each node accurs twice:

55

2

1

4

3

6

– at the beginning

of an edge (1-6)

– and at the end

of an edge (4-1).

and that is evil !

1

Page 7: traveling salesman problem

new ideas ...

If each node accursonly once, thenoriginate from a graph:

a partial-graph with

all of the 6 nodes, but only with 3 edges:

for example:edges: 1-6, 5-3, 2-4

55

2

1

4

3

6

Page 8: traveling salesman problem

new ideas ...

... a complement partial-

graph with the same

structure remains like

the

edges: 1-4, 2-3, 5-6

55

2

1

4

3

6

Page 9: traveling salesman problem

new ideas ...

• So the graph gets

together:

• from the partial-graph

with edges:1-6,5-3,2-4

• and the partial-graph

with edges :1-4,2-3,5-6

55

2

1

4

3

6

Page 10: traveling salesman problem

new ideas ...

we remember:

With n = 6 nodes there exist

120 graphs respectively

60 symmetric graphs

How many partial-graphs

actual exist ?

1. partial-graph 1 - 2 3 - 4 5 - 6

2. partial-graph 1 - 2 3 - 5 4 - 6

3. partial-graph 1 - 2 3 - 6 4 - 5 4. partial-graph 1 - 3 2 - 4 5 - 6

5. partial-graph 1 - 3 2 - 5 4 - 6

6. partial-graph 1 - 3 2 - 6 4 - 5

7. partial-graph 1 - 4 2 - 3 5 - 6

8. partial-graph 1 - 4 2 - 5 3 - 6

9. partial-graph 1 - 4 2 - 6 3 - 5

10. partial-graph 1 - 5 2 - 3 4 - 6

11. partial-graph 1 - 5 2 - 4 3 - 6

12. partial-graph 1 - 5 2 - 6 3 - 4

13. partial-graph 1 - 6 2 - 3 4 - 5

14. partial-graph 1 - 6 2 - 4 3 - 5

15. partial-graph 1 - 6 2 - 5 3 - 4

not more !

Page 11: traveling salesman problem

new ideas ...By using the the Symmetry-rule and the Sort-rule

each of the 120 Graphs

can be devorced into 2 of the 15 partial-graphs.

1. partial-graph 1 - 2 3 - 4 5 - 6

2. partial-graph 1 - 2 3 - 5 4 - 6

3. partial-graph 1 - 2 3 - 6 4 - 5

4. partial-graph 1 - 3 2 - 4 5 - 6

5. partial-graph 1 - 3 2 - 5 4 - 6

6. partial-graph 1 - 3 2 - 6 4 - 5

7. partial-graph 1 - 4 2 - 3 5 - 6

8. partial-graph 1 - 4 2 - 5 3 - 6

9. partial-graph 1 - 4 2 - 6 3 - 5

10. partial-graph 1 - 5 2 - 3 4 - 6

11. partial-graph 1 - 5 2 - 4 3 - 6

12. partial-graph 1 - 5 2 - 6 3 - 4

13. partial-graph 1 - 6 2 - 3 4 - 5

14. partial-graph 1 - 6 2 - 4 3 - 5

15. partial-graph 1 - 6 2 - 5 3 - 4

Please try it with your own example !

Page 12: traveling salesman problem

new ideas ...

55

2

1

4

3

6

• Symmetry-Rule:

• The begin-node of an

edge has the lower

number then the end-

node: i < j:

-> f(1-6) + f(5-3) + f(2-4)

= f(1-6) + f(3-5) + f(2-4)

Page 13: traveling salesman problem

new ideas ...

55

2

1

4

3

6

• Sort-Rule:

• die edges will be sorted

by the begin-node of the

edges. • 1. edge 2. edge 3. edge

-> f(1-6) + f(3-5) + f(2-4)

= f(1-6) + f(2-4) + f(3-5)

Page 14: traveling salesman problem

new ideas ...

• How many partial graphs „matching“ to a partial graph, i.o. do all of the graphs form one together again ?

• Example: 1-2, 3-4, 5-6

No.5, 6, 8, 9, 10, 11, 13, 14altogether 8 (= 2 x 4)

1. partial-graph 1 - 2 3 - 4 5 - 6

2. partial-graph 1 - 2 3 - 5 4 - 6

3. partial-graph 1 - 2 3 - 6 4 - 5

4. partial-graph 1 - 3 2 - 4 5 - 6

5. partial-graph 1 - 3 2 - 5 4 - 6

6. partial-graph 1 - 3 2 - 6 4 - 5

7. partial-graph 1 - 4 2 - 3 5 - 6

8. partial-graph 1 - 4 2 - 5 3 - 6

9. partial-graph 1 - 4 2 - 6 3 - 5

10. partial-graph 1 - 5 2 - 3 4 - 6

11. partial-graph 1 - 5 2 - 4 3 - 6

12. partial-graph 1 - 5 2 - 6 3 - 4

13. partial-graph 1 - 6 2 - 3 4 - 5

14. partial-graph 1 - 6 2 - 4 3 - 5

15. partial-graph 1 - 6 2 - 5 3 - 4

Page 15: traveling salesman problem

new ideas ...

Further considerations:

The smallest (complete-)graph gets together:

either: from the two found partial-graphs (smallest partial-graph with accompanying

smallest comp-partial-graph)

or: from two partial-graphs lying between this.

Page 16: traveling salesman problem

new ideas ...

• How to find out the lowest graph ?

• 1. step: on find out the lowest partial - graph

• 2. step:on find out the belonging lowest Comp-partial-graph.

1. partial-graph 1 - 2 3 - 4 5 - 6

2. partial-graph 1 - 2 3 - 5 4 - 6

3. partial-graph 1 - 2 3 - 6 4 - 5

4. partial-graph 1 - 3 2 - 4 5 - 6

5. partial-graph 1 - 3 2 - 5 4 - 6

6. partial-graph 1 - 3 2 - 6 4 - 5

7. partial-graph 1 - 4 2 - 3 5 - 6

8. partial-graph 1 - 4 2 - 5 3 - 6

9. partial-graph 1 - 4 2 - 6 3 - 5

10. partial-graph 1 - 5 2 - 3 4 - 6

11. partial-graph 1 - 5 2 - 4 3 - 6

12. partial-graph 1 - 5 2 - 6 3 - 4

13. partial-graph 1 - 6 2 - 3 4 - 5

14. partial-graph 1 - 6 2 - 4 3 - 5

15. partial-graph 1 - 6 2 - 5 3 - 4

Page 17: traveling salesman problem

new ideas ...

There perhaps the lowest graph is found !

But only: perhaps!

Page 18: traveling salesman problem

new ideas ...

example:• lowest partial-graph has a length of edge: 20• der lowest belonging Compl.-partial-graph: 40• result a graph: 60

that means,

• (a+b) < c -> a and/or b < (c/2)

and a < b or a = b -> a < (c/2)

Page 19: traveling salesman problem

new ideas ...

Further iteration steps:(up to half the edge length of the so far smallest found complet graph)

• starting out from the smallest partial-graph it this one is respectively greater partial-graph with his complement partial-graph checked most nearly, wether from this a smaler complete-graph can be put together.

• if yes: the new complete-graph is initial value for further iteration steps.

• if no: the smallest graph is already found

Page 20: traveling salesman problem

example with 6 nodes

– das Rundreiseproblem– bisherige Lösungen– neue Überlegungen– example with 6 nodes– Beispiel mit 10 Knoten– Beispiel mit 26 Knoten (Ergebnisse)– Schlussfolgerungen und Ausblick

Page 21: traveling salesman problem

example with 6 nodes

Given 6 nodes with the values of the edges:

• to 1 to 2 to 3 to 4 to 5 to 6

from 1 - 12 25 30 28 22

from 2 - 16 20 22 10

from 3 - 23 26 21

from 4 - 31 18

from 5 - 14

from 6 -

Page 22: traveling salesman problem

example with 6 nodes60 symmetric graphs

60 partial-graphs 60 partial-graphs

minimal graph

to divide

to sort

to compute

15 partial-graphs 15 partial-graphs

Page 23: traveling salesman problem

example with 6 nodes

Nr. 1.K. 2.K. 3.K. K.-Länge 1. 1 - 2 3 - 4 5 - 6 49 2. 1 - 2 3 - 5 4 - 6 56 3. 1 - 2 3 - 6 4 - 5 64 4. 1 - 3 2 - 4 5 - 6 59 5. 1 - 3 2 - 5 4 - 6 65 6. 1 - 3 2 - 6 4 - 5 66 7. 1 - 4 2 - 3 5 - 6 60 8. 1 - 4 2 - 5 3 - 6 73 9. 1 - 4 2 - 6 3 - 5 6610. 1 - 5 2 - 3 4 - 6 6211. 1 - 5 2 - 4 3 - 6 6912. 1 - 5 2 - 6 3 - 4 6113. 1 - 6 2 - 3 4 - 5 6914. 1 - 6 2 - 4 3 - 5 6815. 1 - 6 2 - 5 3 - 4 67

Partial-graphNr. 1.K. 2.K. 3.K. K.-Länge 1. 1 - 2 3 - 4 5 - 6 49 2. 1 - 2 3 - 5 4 - 6 56 3. 1 - 2 3 - 6 4 - 5 64 4. 1 - 3 2 - 4 5 - 6 59 5. 1 - 3 2 - 5 4 - 6 65 6. 1 - 3 2 - 6 4 - 5 66 7. 1 - 4 2 - 3 5 - 6 60 8. 1 - 4 2 - 5 3 - 6 73 9. 1 - 4 2 - 6 3 - 5 6610. 1 - 5 2 - 3 4 - 6 6211. 1 - 5 2 - 4 3 - 6 6912. 1 - 5 2 - 6 3 - 4 6113. 1 - 6 2 - 3 4 - 5 6914. 1 - 6 2 - 4 3 - 5 6815. 1 - 6 2 - 5 3 - 4 67

compl.-partial-graph

Length of the graph: 111 (49 + 62) : 2 = 55,5

Page 24: traveling salesman problem

example with 10 nodes

– das Rundreiseproblem - Fragestellung– Problem und bisherige Lösungen– neue Überlegungen– Beispiel mit 6 Knoten– Example with 10 nodes– Beispiel mit 26 Knoten (Ergebnisse)– Schlussfolgerungen und Ausblick

Page 25: traveling salesman problem

example with 10 nodes development of the ZIP-term with n = 10:

1 · 3 · 5 · 7 · 9 =

9! ————————————— = (1 · 2) · (2 · 2) · (3 · 2) · (4 · 2)

9! ————————————— = ( 1 · 2 · 3 · 4 ) · ( 2 · 2 · 2 · 2 )

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9————————————— = 2 · 4 · 6 · 8

9! ————————————— = 4! · 24

(10 – 1)! ————————————— = (5 – 1)! · 2(5-1)

Page 26: traveling salesman problem

example with 10 nodes

(n – 1)! —————————

( n/2 – 1 ) ! · 2 n/2 - 1

by that:

{ ( n/2 – 1 ) ! } (Sort-rule) Partial-graph: — — — — —(number of edges =n/2)

1 x 2 x 2 x 2 x 2 (Symmetry)

Begin-edge = x1

Page 27: traveling salesman problem

example with 10 nodesnachvon

1 2 3 4 5 6 7 8 9 10

1 - 16 44 93 1 30 30 5 78 42

2 - 68 61 42 77 41 79 22 32

3 - 39 48 21 36 28 40 80

4 - 43 8 66 46 30 35

5 - 67 69 11 84 91

6 - 97 43 63 67

7 - 85 89 18

8 - 2 85

9 - 5

Page 28: traveling salesman problem

cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -102 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -103 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 94 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -105 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 96 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -107 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -108 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -109 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9

10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 911 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 9 min.p-gkomp

12 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -1013 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10

....until 945

min.p-g

min. p-g + min.p-gkomp = 176; 176 / 2 = 88Sorting of the 945 partial-graphs after edge-length

example with 10 nodes

Page 29: traveling salesman problem

cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -102 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -103 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 94 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -105 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 96 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -107 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -108 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -109 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9

10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 911 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 912 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -1013 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10

....until 945

example with 10 nodes

Page 30: traveling salesman problem

cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -102 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -103 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 94 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -105 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 96 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -107 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -108 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -109 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9

10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 911 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 912 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -1013 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10

....until 945

example with 10 nodes

Page 31: traveling salesman problem

cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -102 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -103 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 94 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -105 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 96 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -107 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -108 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -109 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9

10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 911 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 9

min.p-gkomp

12 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -1013 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10

....until 945

min. p-g

min. p-g + min.p-gkomp = 175; 175 / 2 = 87,5

example with 10 nodes

Page 32: traveling salesman problem

cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -102 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -103 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 94 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -105 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 96 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -107 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -108 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -109 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9

10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 911 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 912 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -1013 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10

....until 945

opt. p-g

opt. p-gkomp

example with 10 nodes

Page 33: traveling salesman problem

example with 10 nodes

0

20

40

60

80

100

120

61-80

101-120

141-160

181-200

221-240

261-280

301-320

341-360

381-400

421-440

Qua

ntity

of

part

ial-

grap

hs

Sum of the values of edges after the 1. pass through: only 11 of 945 partial-graphs of altogether 181.440 graphs

Page 34: traveling salesman problem

example with 10 nodes

• From altogether 945 partial-graphs will eliminate with back tracking of the limited Enumeration:

• Stop after the 5th edge: 0 edge

• Stop after the 4th edge: 1 edge

• Stop after the 3th edge: 3 edges

• Stop after the 2th edge: 15 edges

• Stop after the first edge: 105 edges

earliest stop if possible!!

Page 35: traveling salesman problem

example with 10 nodes

Relation between begin-node and place of the edge:

1. Edge 2. Edge 3. Edge 4. Edge 5. Edge

1-2...1-10 2-3...2-10 3-4...3-10 4-5...4-10 5-6...5-10or or or or

3-4...3-10 4-5...4-10 5-6...5-10 6-7...6-10or or or

5-6...5-10 6-7...6-10 7-8...7-10or or

7-8...7-10 8-9...8-10or

9-10.

Page 36: traveling salesman problem

example with 10 nodes

Anfangs-Knoten

1.Kante 2.Kante 3.Kante 4.Kante 5.KanteSumme je

KnotenNr.1 945 - - - - 945Nr.2 - 840 - - - 840Nr.3 - 105 630 - - 735Nr.4 - - 270 360 - 630Nr.5 - - 45 360 120 525Nr.6 - - - 180 240 420Nr.7 - - - 45 270 315Nr.8 - - - - 210 210Nr.9 - - - - 105 105

Nr.10 - - - - 0 0Summe

derKanten

945 945 945 945 945

Page 37: traveling salesman problem

example with 6 nodes

Some more ideas:

• Numbering-rule

(the greatest difference first)

• Minimal-edge-rule

(calculation of the smallest edge still outstanding for every single edge-place; no more for everyone – see page before: relation between begin-node and place of the edge)

Page 38: traveling salesman problem

example with 6 nodes

40

90

45

50

30

0 10 20 30 40 50 60 70 80 90

1. Kante

2. Kante

3. Kante

4. Kante

5. Kante

Example: node xi with his 5 edges

Numbering-ruleMinimal-edge-rule

Page 39: traveling salesman problem

traveling salesman problem

Thank you for your interest