tridas lhcc report cms level 1 trigger - university of …wsmith/cms/lhcc_jan99.pdf · wesley...

86
Wesley Smith, U. Wisconsin January, 1999 TriDAS LHCC Report TriDAS LHCC Report CMS Level 1 Trigger CMS Level 1 Trigger Wesley Smith, U. Wisconsin, 19.1.99 Overview & Recent Progress: Calorimeter Trigger Muon Trigger Global Trigger Organization, Cost, Schedule The pdf file of this talk is available at: http://cmsdoc.cern.ch/~wsmith/LHCC_Jan99.pdf See also CMS Level 1 Trigger Home page at http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/html/level1.html

Upload: trinhngoc

Post on 13-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Wesley Smith, U. Wisconsin January, 1999

TriDAS LHCC ReportTriDAS LHCC ReportCMS Level 1 TriggerCMS Level 1 Trigger

Wesley Smith, U. Wisconsin, 19.1.99

Overview & Recent Progress:• Calorimeter Trigger• Muon Trigger• Global Trigger

Organization, Cost, Schedule

The pdf file of this talk is available at:http://cmsdoc.cern.ch/~wsmith/LHCC_Jan99.pdfSee also CMS Level 1 Trigger Home page at

http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/html/level1.html

Wesley Smith, U. Wisconsin January, 1999

Detector Frontend

Computing Services

Readout

FilterFarms

Event Flow

Control Readout Network

Level 1Trigger

Controls

40 MHz

105 Hz

102 Hz

100 Tbyte/s

100 Gbyte/s

100 Mbyte/s

Collision rate 40 MHzLevel-1 Maximum trigger rate 100 kHzAverage event size ≈ 1 MbyteNo. of In-Out units (200-5000 byte/event) 1000Readout network (512-512 switch) bandwidth ≈ 500 Gbit/s Event filter computing power ≈ 5 106 MIPSData production ≈ Tbyte/dayNo. of readout crates ≈ 250No. of electronics boards ≈ 10000

CMS Trigger & DAQCMS Trigger & DAQ

Basic Structure

Wesley Smith, U. Wisconsin January, 1999

High trigger levels. Network and CPU farms- Clean particle signature- Finer granularity precise measurement- Kinematics. effective mass cuts and event topology- Track reconstruction and detector matching- Event reconstruction and analysis

Level-1. Specialized processors- Particle identification: high pT electron,

muon, jets, missing ET

- Local pattern recognition and energy evaluation on prompt macro-granular information from calorimeter and muon detectors

40 MHz

Up to 100 kHz

≈ 100 Hz

Detector Frontend

Computing Services

Event Manager Switch

Level 1Trigger

Detector Frontend

Computing Services

Event Manager Switch

Level 1Trigger

CMS Trigger LevelsCMS Trigger Levels

• •• ••

Wesley Smith, U. Wisconsin January, 1999

Synchronous 40 MHz digital system

- 160 MHz internal pipeline

- Readout and processing latency < 1µs

- Signal distribution latency ≈ 2 µs

Global Trigger 1

Accept/Reject LV-1

Trigger Primitive Generator

Front-End Digitizer

Local level-1Primitive e, γ, jets, µ

Pipeline delay ( ≈ 3 µs)

≈ 3 µs latency

loop

Level-1 trigger systemLevel-1 trigger system

Communication Loop:

Wesley Smith, U. Wisconsin January, 1999

Level 1 LatencyLevel 1 Latency

RPC DT CSC CALO

detector

CALOtrigger

global trigger

clk/control

local clk/control

RPCPACT

M. Kudla

J. Ero

J. Hauser W. Smith

link to detector~ 18 bx

W. Smith

linklin

k

R. Martinelli

logicalunitsinterconnections between logical units

links between detector and control room (18 bx)

66 bx

=>28 bx

126 bx

A. Taurok

5 bx5bx

frontend frontend frontend frontend

DTTPG

CSCTPG

CALOTPG

TRACKFINDERS

DT

global muon trigger79 bx

74 bx

80 bx

link

link

92 bx

A. Taurok

98 bx

77 bx

CSC

D. Acosta

Wesley Smith, U. Wisconsin January, 1999

CMS/LHC Trigger PhysicsCMS/LHC Trigger Physics

Standard model Higgs (high luminosity)

• H (80 GeV) → γ γ • H (120 GeV) → Z Z* (4 leptons)

• H (>500 GeV) → leptons ( + ν's)

• H (< 2MW Associated t or W or Z) → b b (lepton + X) SUSY Higgs (low luminosity)

• (standard model Higgs like channels)

• h, H, A → τ τ (lepton + X) or → µµ• A → Z h ; h → bb (lepton + X)

• p p → t t X; t → H+ b; H+ → τ ν; t → lepton + X; τ → X SUSY sparticle searches (low luminosity)

• MSSM sparticle → LSP (Missing Et) + n jets

• MSSM sparticle → Same sign dileptons + X Other new particles

• Z' → dileptons

• Leptoquarks: dileptons Top physics (low luminosity)

• t → lepton + X

• t → multijets Bottom physics (low luminosity)

• b → lepton + X

• b → ψks (leptons + X) QCD

• Low luminosity 100 GeV jets

• High luminosity 200 GeV jets ⇒ Trigger candidate requirements:

• High luminosity: lepton/γ (30 GeV), dileptons/γγ (15 GeV) missing Et (100 GeV), jets (200 GeV)

• Low luminosity: lepton/γ (15 GeV), dileptons/γγ (10 GeV) missing Et (50 GeV), jets (100 GeV)

Wesley Smith, U. Wisconsin January, 1999

Cal. Trigger requirementsCal. Trigger requirements Input

• ECAL trigger towers, 0.087φ x 0.087η• Matching HCAL towers

• Data every 25ns - including any corrections for time development of calorimeter signal

• 8 bit transverse energy

• 1 bit finegrain charecterization of energy deposit

• Data presynchronized across all channels, ECAL and HCAL

Output

• Top 4 nonisolated electrons/photons (Et and location)

• Top 4 isolated electrons/photons (Et and location)

• Top 6 jets (Et and location) & no. above threshold

• Total and missing transverse energy (Et, Ex, Ey)

• Minimimum ionization ID and isolation bits for use with muon trigger

Outut rate

• 75/2=37.5 kHz maximum for calorimeter trigger

• Simulations should indicate significant safety margin - i.e., ~15 kHz rate from calorimeter trigger simulation

Efficiency

• Trigger should contribute no more than a few percent inefficiency for any physics channel compared to other offline analysis cuts.

• Trigger efficiencies should be measurable

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsin

HA

C V

eto0.

017

η

φη

Hit

0.08

7 η0.

087

φ

Max

Had

EM

Nei

ghbo

r E

M

Tow

er V

eto

0.01

7 φ

Ele

ctro

n:

4x4

Jet

Reg

ion

EC

AL

HC

AL

∆η,∆

φ =

0.34

8

Tri

gg

erT

ow

er

Jet:

Jet

Et f

rom

su

m o

f E

CA

L&

HC

AL

trig

ger

to

wer

Et in

no

n-o

verl

app

ing

4x4

re

gio

ns

(als

o u

sed

fo

r E

x, E

y, E

t, E

tMis

s )U

se m

ult

ijet

trig

ger

sJe

t ca

nd

idat

es a

re s

ort

ed t

o f

ind

hig

hes

t en

erg

y je

ts

3 x

3 sl

idin

g w

ind

ow

ce

nte

red

on

EC

AL

/HC

AL

tr

igg

er t

ow

er p

airs

To

wer

co

un

t =

72φ

x 60

η x

2 =

8640C

alo

rim

eter

Tri

gg

ers

Cal

ori

met

er T

rig

ger

s

Fin

e-G

rain

EM

Vet

o

Nei

ghbo

r H

AC

Vet

oE

M N

eigh

bor

FG

V

eto

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsinHig

h L

um

ino

sity

Cal

Tri

gg

erH

igh

Lu

min

osi

ty C

al T

rig

ger

Lu

min

osi

ty =

1034

cm

-2 s

-1

QC

D B

ackg

rou

nd

:

CM

SIM

res

ults

:T

otal

cal

orim

eter

trig

ger

rate

at

15

kHz

nom

inal

and

lim

ited

to 7

.5 k

Hz

Sig

nal

Eff

icie

ncy

:H

igh

effic

ienc

y re

mai

ns fo

r al

l cha

nnel

s w

ith e

lect

rons

and

pho

tons

.T

he d

iffic

ult-

to-t

rigge

r to

p de

cay

even

ts

keep

hig

h ef

ficie

ncy,

ena

blin

g st

udie

s of

as

soci

ated

Hig

gs p

rodu

ctio

n.*I

nclu

sion

of m

uon

trig

ger

give

s fu

ll ef

ficie

ncy

Trigger

Type

No

min

al

Re

du

ce

d R

ate

Tri

gg

er

Et

Cuto

ff(G

eV

)

Incre

menta

lR

ate

(kH

z)

Tri

gg

er

Et

Cuto

ff(G

eV

)

Incre

menta

lR

ate

(kH

z)

Su

m E

t4

00

0.3

40

00

.3

Mis

sin

g E

t8

00

.98

00

.9

Ele

ctr

on

25

9.3

30

2.5

DiE

lectr

on

12

1.8

15

1.2

Sin

gle

je

t1

00

1.0

10

01

.0

Dije

t60

0.7

65

0.4

Trije

t30

1.3

45

0.1

Quadje

t20

1.1

25

0.5

Je

t+E

lctr

n5

0 &

12

0.3

50

& 1

00

.5

Cum

ula

tive

Ra

te (

kH

z)

16.7

7.4

Pro

cess

Effi

cien

cy (%

)

Nom

inal

Et

Cut

offs

Red

uced

Rat

e E

tC

utof

fs

H (8

0 G

eV)→

γ γ

9388

H (1

20 G

eV)→

Z Z

→ e

µ76

*70

*

H (2

00 G

eV)→

Z Z

→ e

e j

j95

94

p p

→ t

t→ e

X82

77

p p

→ t

t→ H

+ X

→ t

X76

72

LEB

Wor

ksho

p, S

epte

mbe

r199

8W

esle

y S

mith

, U. W

isco

nsin

Sig

nal

eff

icie

ncy

Hig

h ef

ficie

ncy

rem

ains

for

the

benc

hmar

k pr

oces

ses

invo

lvin

g to

p de

cays

and

SU

SY

spa

rtic

les.

Not

e:T

here

is a

lso

high

rat

e of

B s

igna

l in

leve

l-1 s

ampl

e.

Lo

w lu

min

osi

ty C

al. T

rig

ger

Lo

w lu

min

osi

ty C

al. T

rig

ger

(Lu

min

osi

ty =

1033

cm

-2 s

-1)

Trigger

Type

No

min

al

Re

du

ce

d R

ate

Tri

gg

er

Et

Cuto

ff(G

eV

)

Incre

menta

lR

ate

(kH

z)

Tri

gg

er

Et

Cuto

ff(G

eV

)

Incre

menta

lR

ate

(kH

z)

Su

m E

t1

50

1.0

15

01

.0

Mis

sin

g E

t4

01

.75

00

.7

Ele

ctr

on

12

9.1

20

3.4

DiE

lectr

on

71.9

10

1.3

Sin

gle

je

t5

00

.35

00

.4

Dije

t30

0.3

35

0.1

Trije

t20

0.1

20

0.2

Quadje

t15

0.0

415

0.1

Je

t+E

lctr

n1

5 &

93

.43

0 &

10

0.3

Cum

ula

tive

Ra

te (

kH

z)

17.8

7.6

Pro

ce

ss

Eff

icie

ncy (

%)

No

min

al E

tC

uto

ffs

Re

du

ce

dR

ate

Et

Cu

toff

s

p p

→ t

t→

e X

98

97

p p

→ t

t→

H+

X→

t X

94

94

SU

SY

CM

S T

P S

ce

na

rio

A

(ML

SP =

45

, M

sp

art ~

30

0 G

eV

)82

77

SU

SY

Ne

utr

al H

igg

s

(Ra

ng

e o

f ta

nb

an

d M

H va

lue

s)

40

- 9

63

0 -

95

QC

D B

ackg

rou

nd

:

CM

SIM

res

ults

:T

otal

cal

orim

eter

trig

ger

rate

at

15

kHz

nom

inal

and

lim

ited

to 7

.5 k

Hz

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsin

Cal

ori

met

erR

egio

nal

Tri

gg

er

Rec

eive

rE

lect

ron

Iso

lati

on

Jet/

Su

mm

ary

Cal

ori

met

er

Ele

ctro

nic

sIn

terf

ace

Glo

bal

T

rig

ger

P

roce

sso

r

Mu

on

Glo

bal

Tri

gg

erIs

o M

u M

inIo

n T

ag

Cal

. Glo

bal

Tri

gg

erS

ort

ing

, EtM

iss ,

ΣEt

Min

Ion

Tag

fo

rea

ch 4

φ x

4η r

egio

n

Co

pp

er 4

0 M

Hz

Par

alle

l4

Hig

hes

t E

t

iso

late

d &

no

n-i

sol.

e/γ

4 H

igh

est

jets

Ex,

Ey fr

om

eac

h c

rate

Et s

um

s

Lu

mi-

no

sity

Mo

nit

or

4K 1

.2 G

bau

d s

eria

l lin

ks w

/2

x (8

bit

s E

/H/F

CA

L E

ner

gy

+ fi

ne

gra

in s

tru

ctu

re b

it)

+ 5

bit

s er

ror

det

ecti

on

co

de

per

25

ns

cro

ssin

g

Cal

ori

met

er T

rig

ger

Ove

rvie

wC

alo

rim

eter

Tri

gg

er O

verv

iew

US

CM

S T

rig

ger

:U

. Wis

con

sin

US

CM

S H

CA

L:

FN

AL

/M

aryl

and

CM

S E

CA

L:

Lis

bo

n/

Pal

aise

au

US

CM

S H

CA

L:

U. N

ebra

ska

UK

CM

S:

Bri

sto

l

CM

S:

Vie

nn

a

72 φ

x 6

0 η

H/E

CA

LT

ow

ers

(.08

7φ x

.087

η fo

r η

< 2.

2 &

.174

-195

η, η

> 2

.2)

FC

AL

:2x(

12 φ

x 1

2 η)

E

CA

L U

LR

&T

CA

RD

VF

E C

ontr

olT

TC

inte

rfac

eB

ound

ary

Sca

nB

oard

Con

trol

Line

arT

PG

BC

idS

ync

Link

Pip

elin

e

Rea

dout

Con

trol

Link

Optical connectors

Optical receivers

De-serializer

TR

IGG

ER

DA

Q

VM

E

Link

to D

CC

Link

to T

rigge

r

DR

Filt

er

Lisb

onP

alai

seau

ET

H

CE

RN

October 28, 1998

5*12

5*12

TPG(1)

PIPELINE24

from ROC

LIN ADD Filter lvl-1

LIN ADD Filter lvl-11*12

1*12

(5) (1) (1)

LIN ADD Filter lvl-1

LIN ADD Filter lvl-11*12

1*12

(1) (1)

5*5(14+2)

from ROC

5*18 1*18

5*18 1*18

5*18 1*18

5*18 1*18

DAQ

(5) (1) (1)

(5)

(5) (1) (1)

(1)

TPGBOARD

Circuit

32

to board controller

out_link board24

PIPELINE

DES

(25)

DES

(25)5*5(14+2)

X5

X5

file=tpgupper

ECAL TRIGGER PRIMITIVES GENERATOR

BCID for benchmark e/ showers

�BCID = Nb of events with a peak for the right BC in a strip

Nb of events

Sync FIFO

• 2 Input Channels with time differenceand same Output Timing

Ch#1 Input

Ch#1 Output

Ch#2 Input

Ch#2 Output

Sync Tester Board

Sync Block Diagram

Differences from previous design:• Merge of the 2 circuits.• TTC Control Signals decoded on the BC.• Internal Accumulator.• FIFO Transparent Mode with programmable depth.• Latency Register (Tx_BC0 > Rx_BC0 distance).• BIST.

Wesley Smith, U. Wisconsin January, 1999

{20o{∆φ=5o

0.0

00

0.0

87

0.1

74

0.2

61

0.3

48

0.4

35

0.5

22

0.6

09

0.6

96

0.7

83

0.8

70

0.9

57

1.0

44

1.1

31

1.2

18

1.3

05

1.3

92

1.4

79

EB EE

{ ∆η=

0.0

87

{ {

{One RegionalTrigger Crate

1.5

66

1.6

53

1.7

40

1.8

27

1.9

14

2.0

01

2.0

88

2.1

75

2.2

62

2.4

36

2.6

10

{ { ∆η=

0.1

74

{ ∆η=

0.1

74

1 2 3 4 5 6 7 8 9 10 1211 13 14 15 16 17 1918 20 21 22 23 24 25 26 27 28

3.0

00

{ ∆η=

0.1

95

∆η=

0.0

87

{ ∆η=

0.1

95

29

HBHE{

Overlap

ReceiverCard

30

2.8

05

with 8 receiver cards

Calorimeter Trigger TowersCalorimeter Trigger Towers

η=2.436η=2.262η=2.175η=2.088η=2.001η=1.914η=1.827η=1.740η=1.653η=1.566η=1.479

η=1.392η=1.

305

η=1.

218

η=1.

131

η=1.

044

η=0.

957

η=0.

870

η=0.

783

η=0.

609

η=0.

695

η=0.

522

η=0.

435

η=0.

348

η=0.

261

η=0.

174

η=0.

087

η=0.

000

η=2.805

Scale

(meters)

0 1.00.5

4.33

2 m

5.68

0 m

2.93

5 m

3.90

0 m

1.290 m

1.811 m

2.900 m

η=3.000

1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17

18

19

20212223242526272829

11

30

η=2.610Tracker

EB/1

EE/1

HE/1

HB/1

2 x 9 x

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsin

Reg

ion

al C

alo

rim

eter

Cra

teR

egio

nal

Cal

ori

met

er C

rate

Dat

a fr

om

cal

ori

met

er F

E o

n C

u li

nks

@ 1

.2 G

bau

d

•Int

o 15

2 re

ar-m

ount

ed R

ecei

ver

Car

ds

160

MH

z p

oin

t to

po

int

bac

kpla

ne

•19

Clo

ck&

Con

trol

, 152

Ele

ctro

n Id

entif

icat

ion,

19 J

et/S

umm

ary,

Rec

eive

r C

ards

ope

rate

@ 1

60 M

Hz

Ele

ctro

n

ID C

ard

Bac

kpla

ne

Rec

eive

r C

ard

VM

E

C O N T R O L L E R

M O N I T O R

EI

EI

EI

EI

EI

EI

EI

EI

JSL T T C

Jet

Su

mm

ary

Car

d

19 X

(18

E/H

CA

L+

1 F

CA

L)

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsin

Inte

r C

rate

Cab

les

& S

tag

ing

Dat

a fr

om

Rea

r @

120

MH

z T

TL

Ph

ase

AS

IC:

Des

kew

,Mu

x @

160

MH

z E

rro

r b

it f

or

each

4x4

, Tes

t V

ecto

rsM

emo

ry L

UT

@ 1

60 M

Hz

Ad

der

AS

IC:

8 in

pu

ts @

160

MH

z in

25

ns.

D

iffe

ren

tial

Ou

tpu

t@16

0 M

Hz

LU

Ts

V

ME

Inte

rfac

e

Bn

dry

Sca

n &

Sel

f T

est

Ph

ase

Ph

ase

Ph

ase

Ph

ase

Ph

ase

Ph

ase

Ph

ase

Ph

ase

Ad

der

Ad

der

Ad

der

C L O C K D I S T R I B U T I O N

M E M O R Y S U P P O R T

Sta

gin

g &

Bac

kpla

ne

Dri

vers

Rec

eive

r C

ard

Rec

eive

r C

ard

Rea

r: 3

2 C

han

nel

s =

4 C

h. x

8 m

ezza

nin

e ca

rds

1.2

GB

aud

co

pp

er r

cvrs

18

bit

(2x

9) d

ata

+ 5

bit

err

or

Vit

esse

Ch

ip:

C

on

vert

s S

eria

l to

Par

alle

l

Fro

nt:

DC

/DC

3.3

V

EQ

Un

der

-bo

ard

co

nn

ecto

rs

Cab

le

Eq

ual

izat

ion

(2 c

ircu

its

on

fro

nt

& b

ack)

VM

E

Co

ntr

ol

AM

P S

trip

line

Hig

h D

ensi

ty

Co

nn

ecto

r

DC

-to

-DC

C

on

vert

erM

ezza

nin

e C

ard

des

ign

by

J. L

acke

y

V 7214

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

Vit

esse

In

terc

on

nec

t C

hip

po

wer

si

gn

als

9U x

400

mm

V 7214

V 7214

V 7214

V 7214

V 7214

V 7214

V 7214

Inp

ut

Cab

le C

on

nec

tors

Wesley Smith, U. Wisconsin January, 1999

Receiver Card PrototypeReceiver Card Prototype

160 MHz Prototype Card Under Test:• VME Interface working• Adder ASIC's functioning• Detailed timing under study

Wesley Smith, U. Wisconsin January, 1999

Vitesse 0.6µ H-GaAs Process: ECL I/O• 13 bits per operand x 8 operands• Single thirteen bit output• Latency: 25 ns @ 160 MHz• Full Boundary Scan support

Technical analysis by Vitesse• ~11,000 cells• 4 Watts• 308 MHz

Status:• 5 tested

devices delivered

• select nets exceed simulation speed by 10%

Receiver Card:

- J. Lackey

8 x 13-bit 160 MHz Adder ASIC8 x 13-bit 160 MHz Adder ASIC

Wesley Smith, U. Wisconsin January, 1999

160 MHz Backplane 160 MHz Backplane

std.2

conn. VMEarea

std.2

conn. VMEarea

triggerprocessing

area

triggerprocessing

area

singleVME

connector

singleVME

connector

- J. Lackey

Display 3 of 6 signal layers:

Receiver Cards

Electron Isolation Cards

Data Flow

Rear

3.56 cm center to centerPower Plane Dielectric

VME Section

Trigger DataSection

Not to scale: Traces

Top View:

Input clock to clock card:

0V

-1V0V

-1V

Last position on backplane*:

500 mV/div, 2 ns/div

Signal performance:rise < 1 ns:

Wesley Smith, U. Wisconsin January, 1999

Backplane Test SetupBackplane Test Setup

Front view of crate & backplane with clock board installed

Top rear view of crate & backplane with power supplies

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsin

Ele

ctro

n

Iso

lati

on

Dif

fere

nti

al R

ecei

vers

& S

tag

ing

Ele

ctro

n ID

& J

et/S

um

mar

y C

ard

sE

lect

ron

ID &

Jet

/Su

mm

ary

Car

ds

Su

mm

ariz

es f

ull

crat

e: S

ort

s 32

e's

,4x4

Et Æ

to

p 4

e's

, jet

s L

UT

s: E

x & E

y fro

m E

t fo

r 4x

4 ar

ea A

dd

er t

ree

for

Et,

Ex a

nd

Ey s

um

s Q

uie

t/M

inI b

its

for

each

4x4

reg

ion

Ele

ctID Je

t/S

um

Pro

cess

es 4

x8 r

egio

n @

160

MH

zE

lect

ron

iso

lati

on

on

AS

ICL

oo

kup

tab

les

for

ran

kin

gT

akes

Max

in e

ach

4x4 V

ME

Inte

rfac

e

C L O C K D I S T R

ISO

IS O

Bo

un

dar

yS

can

Co

ntr

olle

r

Ele

ctro

n Is

ola

tio

n

Dif

fere

nti

al

Rec

eive

rs &

Sta

gin

g

LU

T(E

x &

Ey)

To

Tri

gg

erP

roce

sso

r

V

ME

Inte

rfac

e

Bo

un

dar

yS

can

Co

ntr

olle

r

M E M O R Y S U P P

Ad

der

Ad

der

SO

RT

Clo

ckD

ist.

SO

RT

SO

RT

SO

RT

SO

RT

SO

RT

SO

RT

SO

RT

To

Mu

on

Tri

gg

er

E

Jet-Summary Card

t,Ey x,E

(18)

e/

●●

Jet

un-is

o-e/

γ

iso-

γ

Glo

bal C

AL

Trig

ger

Cra

te

tE

Glo

bal K

alor

imet

er T

rigge

r B

lock

diag

ram

m

E

Ale

xand

er M

ass,

Uni

vers

ity o

f Bris

tol

12.1

1.98

18-L

inks

each

19-L

inks

each

Lum

inos

ityDA

Q

Glo

bal S

umM

odul

et

4 hi

ghes

t Obj

ects

per

Link

4-Li

nks

Sor

t Pro

cess

or

Global Trigger Processor

Syn

c

Syn

c

Syn

cS

ync

Syn

c

Syn

c

Sor

t

Mod

ule

Fin

alF

ED

Sor

tA

SIC

Inpu

t

Mod

ule

Sor

t6

Link

sea

ch1

Link

each

Glo

bal

Trig

ger

Rea

dout

of a

ll in

put d

ata

Inte

rfac

e to

mis

erD

eran

do-

.OR

.

Late

ncy

Buf

fer

4040 40

10@16

0 M

Hz

Link

s

● ● ●13

1552 52 52

Glo

bal T

rigge

r In

ter.

52 b

it Li

nk-D

river

- In

put S

ort t

o F

inal

Sor

t

- F

inal

Sor

t to

Glo

bal T

r.

- S

ort t

o F

ED

Rea

r R

ecei

ver

Boa

rd

Sor

t-P

roce

ssor

Ale

xand

er M

ass,

Uni

vers

ity o

f Bris

tol

12.1

1.98

for

Inpu

t Sor

t Mod

ule

use

Mez

zani

ne C

ards

max

(3 o

ut o

f 9)

Com

pare

2

The

Sor

t-A

SIC

Ale

xand

er M

ass,

Uni

vers

ity o

f Bris

tol

12.1

1.98

9 w

ords

0

2 w

ords

1 w

ord

3 w

ords

4 w

ords

sele

ctM

UX

I

sele

ct

0 1 2 3clk

Tim

e M

UX

outp

ut

3 w

ords

MU

X II

Alg

orith

mO

bjec

t Sor

t

6 w

ords

Com

pare

1

max

(4 o

ut o

f 6)

Inpu

ts: 6

bit

rank

s +

loca

tion

Bou

ndar

y S

can

Inpu

t/Out

put d

ata

EC

L @

160M

Hz

use

SO

RT

AS

IC o

n al

l sor

t lev

els

● ● ● ● ●

Con

figur

able

:(6

bit

rank

)

Pre

Sor

t for

1. l

evel

Late

ncy:

50

nsec

(2

BC

)

b) 6

Lin

ks; s

orte

d 4

bit l

ocat

ion

Id

c) 3

Lin

ks; s

orte

d 7

bit l

ocat

ion

Id

a) 4

Lin

ks; u

nsor

ted

no lo

catio

n Id

Fur

ther

Opt

ions

:

- en

ergy

sum

s ab

ove

thre

shol

d (J

ets)

- co

unt o

bjct

s ab

ove

ener

gy th

resh

old

+ (

160M

Hz

-> 4

0MH

z) D

eMU

X +

160

MH

z cl

k ge

nera

tor

(R

AL)

- 64

bit

EC

L D

ata

Rec

orde

r/S

ourc

e, R

eado

ut v

ia c

usto

m fi

eldb

us (

Bris

tol)

160

MH

z S

ort A

SIC

Tes

t Sys

tem

- S

ort A

SIC

Tes

t Mod

ule:

4 r

ando

m p

atte

rn g

ener

ator

+ S

ort A

sic

●●

All

hard

war

e av

aila

ble,

Tes

t cur

rent

ly in

pro

gres

s

- O

bjec

t Sor

t for

(32

->

4)

- 4

Inpu

ts (

8 bi

t ran

k, 3

bit

loca

tion

Id)

@16

0MH

z

- E

CL

I/O (

Bou

ndar

y S

can)

- S

chem

atic

des

ign

- F

untio

n su

cces

sful

ly te

sted

@50

MH

z

Des

ign

of P

roto

type

Sor

t AS

IC (

man

ufac

ture

d 19

97)

Ale

xand

er M

ass,

Uni

vers

ity o

f Bris

tol

12.1

1.98

GC

T D

emon

stra

tor

Pro

ject

Task

s of

the

CM

S M

uon

Trig

ger:

•m

uon

iden

tific

atio

n•

tran

sver

se m

omen

tum

mea

sure

men

t•

bunc

h cr

ossi

ng id

entif

icat

ion

Bas

ic re

quire

men

ts:

•G

eom

etric

al c

over

age:

up

to |

η|=2

.4

•La

tenc

y: <

3.2

µs

•Tr

igge

r de

ad ti

me:

not

allo

wed

•M

axim

al o

utpu

t rat

e: <

15

kHz

for

lum

inos

ities

< 1

034

s-1

cm-2

•B

ackg

roun

d re

ject

ion:

trig

ger

rate

due

to b

ackg

roun

d sh

ould

not

ex

ceed

the

rate

of p

rom

pt m

uons

from

hea

vy q

uark

dec

ays

•Lo

w p

t rea

ch: s

houl

d be

lim

ited

only

by

muo

n en

ergy

loss

in th

e ca

lorim

eter

s

•T

he h

ighe

st p

ossi

ble

pt c

ut: ~

50-1

00 G

eV

•Is

olat

ion:

tran

sver

se e

nerg

y E

t dep

osite

d in

eac

h ca

lorim

eter

reg

ion

of ∆

φ ×

∆η =

0.3

5 ×

0.35

aro

und

a m

uon

is c

ompa

red

with

a th

resh

old

•O

utpu

t to

the

Glo

bal T

rigge

r: u

p to

4 h

ighe

st p

t muo

ns in

eac

h ev

ent

Wesley Smith, U. Wisconsin January, 1999

η=0

4T

2T

MS1 MS2 MS3 MS4RPC pattern recognition- pattern catalog- fast logic

Muon trigger systemMuon trigger system

track segment

muon station 4muon station 3

muon station 2muon station 1

2 x extrapolation

threshold

3 track segment pairs arecombined to one track string f2 - f 1

DT and CSC track finding:- combines vectors- forms a track- assigns p

t value

The CMS muon trigger is based on:1) Dedicated trigger detector (Resistive Plate Chamber)2) Muon chambers (Drift Tubes, Cathode Strip Chambers)

pt = 6 GeV

pt = 3.5 GeV

0

100

200

300

400

500

600

700

800

020

040

060

080

010

0012

00Z

(cm

)

R (cm)R

PC

CS

CD

rift T

ubes

Wesley Smith, U. Wisconsin January, 1999

Muon Trigger Summary - IMuon Trigger Summary - I

RPCs (barrel & endcap)• |η| < 2.1, strips of ∆η x ∆φ = 0.1 x 5/16°• 4 RPC stations compared to templates for

different pT ranges by Pattern Comparator ASICs• 144 φ segments/ring; 38 ring processors

Drift Tubes (barrel)• 2 φ, 1 z superlayers/stations (no z in station 4)• 6 rings (∆η = 0.35) of 12 φ segments• Bunch & Track Identifier forms superlayer r-φ

vectors by solving linear equations• Track Correlator combines two φ superlayers to

form a vector for each station• Trigger Server sorts vectors by quality & pT and

outputs 2 highest pT segments to Track Finder CSCs (endcaps)

• 6-layer CSC/station for 3 (upgrade to 4?) stations• Fast-shaped radial-strip pulses fed to Local

Charged Track processor to find coincidence in ≥ 4 out of 6 layers inside predefined roads

• Coincidence made with perpendicular anode wires to identify crossing

• Vector from each station sent to Track Finder

Wesley Smith, U. Wisconsin January, 1999

Muon Trigger Summary - IIMuon Trigger Summary - II

Drift Tube Track Finder• Accepts DT segments from Trigger Server• Accepts Segments from CSC Trigger in low

|η| barrel/endcap overlap region• Combines track segments into full tracks• Assigns pT and quality to each track

CSC Track Finder• Accepts CSC vectors from each station• Accepts Segments from DT Trigger in high |η|

barrel/endcap overlap region• Combines track segments into full tracks• Assigns pT and quality to each track

Global Muon Trigger• Separate Sort of 4 highest pT CSC, DT and 8

highest RPC PACT candidates forms Input• Examines "quiet bits" from calorimeter to

find isolated muons• Removes Ghosts• Outputs 4 highest pT muons to Global Trigger• Muons identified with ∆η x ∆φ ~ 0.1 x 2.5°• pT coded as 5 bits nonlinear; sign; quality

Muon Trigger structureRPChits

DThits

CSChits

PAtternComparator

Trigger

≤8 muontracks

(pt, η, φ, qual.)

local trigger

tracksegments

(φ, δφ, η, δη)

local trigger

tracksegments

(φ, δφ, η, δη)

regional triggerEndcap

Track Finder

≤4 muon tracks(pt, η, φ, qual.)

Global Muon Trigger

≤4 muons(pt, η, φ, quality)

regional triggerBarrel

Track Finder

≤4 muon tracks(pt, η, φ, qual.)

Track Finder

DT/CSC sorter

RPC

PACTprocessors

RPC ring sorter

RPC s/ring sorter

DT

BTI, TraCoTrig. Server

CSC

strip cardswire cards

motherboards

Global Trigger

Global Muon TriggerCALO quiet regions

CALO trigger

Port Cards

Bari

Warsaw

USADUBNA

BariWarsaw

Vienna

KoreaHelsinki

Padova, Bologna

Vienna

USABologna

RPC Pattern Comparator Trigger

Principle: pattern of hit strips is compared to predefined patterns corresponding to various p t.

MS 4

MS 3

MS 2

MS 1

LATCHES

LATCHES

pt

coding

4T

2T

MS4 MS3 MS2 MS1

RPC configuration in CMS

Interaction point

High Pt Muonpattern: (0,0,0)defined on 4 layerscode: (1,1,F)

Medium Pt Positive Muon pattern: (-4,4,4)defined on 3 layerscode: (0,0,A)

Segment i Segment i+1

code bit (5) - quality bit set to 1 if Muon defind on hits from 4 chamber;code bit (4) - Muon sign bit;code bits (3..0) - Muon Pt code

RPC Muon Station 4

Medium Pt Negative Muonpattern: (2,-1,-1)defined on 4 layerscode: (1,1,A)

RPC Muon Station 3

RPC Muon Station 1

RPC Muon Station 2 (reference)

Pattern Comparator (PAC) - idea

RPC Muon Trigger System

CMS Tridas Review, CERN November 9-13, 1998 Ignacy Maciek Kudla, Warsaw University

CO

UN

TIN

G R

OO

M

Bar

rel

Tri

gger

13 C

rate

s

End

cap

1T

rigg

er9

Cra

tes

End

cap

2T

rigg

er9

Cra

tes

DE

TE

CT

OR

4 hi

ghes

t Pt m

uons

4 hi

ghes

t Pt m

uons

4 hi

ghes

t Pt m

uons

T o G L B A L F L T

RPC

Muo

n Tr

igge

r Sys

tem

~122

4 da

ta li

nks

CM

S Tr

idas

Rev

iew

, CE

RN

Nov

embe

r 9-

13, 1

998

I

gnac

y M

acie

k K

udla

, War

saw

Uni

vers

ity

21

1211

310

49

58

67

RPC

Muo

n T

rigg

er C

rate

Int

erco

nnec

tions

PAC

Inpu

ts

Sort

ers

Gho

stB

uste

rs

Tri

gger

car

dsSo

rter

,C

ontr

ol,

Tim

ing

Car

d3

12

DA

Q c

ards

VM

EC

rate

Cnt

rl

12

34

56

78

910

1112

1314

1516

17

Tri

gger

Tow

ers

Rin

g Se

ctor

s

Tri

gger

car

ds

Tri

gger

Cra

te

CM

S Sy

nchr

oniz

atio

n W

orks

hop,

CE

RN

Nov

embe

r 11

, 199

8

Ign

acy

Mac

iek

Kud

la, W

arsa

w U

nive

rsity

RPC

Muo

n Tr

igge

r Sys

tem

PAC

Lin

k C

ard

GH

OST

BU

STE

R

PH

I

RX

VM

E

PAC

Hig

h P

t L

ow P

t

SOR

TE

R

.0 cm

.0 c

m

.0 cm

.0 c

mL

DE

MU

X

TQ

FP 1

44B

GA

225

BSC

AN

CT

RL

BS

BU

FF

ER

ME

MO

RY

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

PAC

LD

EM

UX

LD

EM

UX

LD

EM

UX

LD

EM

UX

LD

EM

UX

LD

EM

UX

LD

EM

UX

LD

EM

UX

LD

EM

UX

RX

RX

RX

RX

RX

RX

RX

RX

SOR

TE

R

SOR

TE

R

TR

IGG

ER

CH

EC

K

GH

OST

BU

STE

R

PH

I

TR

IGG

ER

CR

AT

E

CM

S Sy

nchr

oniz

atio

n W

orks

hop,

CE

RN

Nov

embe

r 11

, 199

8

Ign

acy

Mac

iek

Kud

la, W

arsa

w U

nive

rsity

RPC

Muo

n Tr

igge

r Sys

tem

Tri

gger

Boa

rd (b

arre

l)

RPC Muon Trigger System

CMS Tridas Review, CERN November 9-13, 1998 Ignacy Maciek Kudla, Warsaw University

40 dies (10 packed, 30 unpacked) delivered March 98

All building blocks of every packed PAC tested.The results are following:

- PAC programming (via JTAG - 10 MHz clock): - 8 PAC's - OK; - 1 PAC - 1 pattern bank not accesible; - 1 PAC - intermittent error.

- cascade, mask circuit: - 10 PAC's - OK;- encoding circuit: - 10 PAC's - OK;- code selection circuit (demuxes): - 10 PAC's - OK;- pattern selection circuit (muxes): - fast test - logically OK but timing problem found at level of input buffer and dynamic logic: - 3/4 tracks are working from 30 ns clock, - 4/4 track code are extended to 2 bx's.

PAC test results :

SORTER &MERGER

MERGERMERGER

SORTER &MERGER

SORTER &MERGER

MERGER

SORTER &MERGER

VME CARD 2

VME CARD 1

VME CARD 3

VME CARD 4

SORTER &MERGER

MERGERMERGER

SORTER &MERGER

SORTER &MERGER

MERGER

SORTER &MERGER

VME CARD 6

VME CARD 5

VME CARD 8

VME CARD 9

SORTER &MERGER

SORTER &MERGER

MERGER

SORTER &MERGER

VME CARD 11

VME CARD 10

VME CARD 12

VME CARD 13

SORTER &MERGER MERGER

MERGER

MERGER

VME CARD 7

MERGER

MERGER

Sorting tree in Ring Trigger Crate

6*(7+1)

4*(7+4)

4*(7+5)

4*(7+6)

4*(7+7)

4*(7+8)

In Ring Trigger Crate:- 12 Sorter&Mergers,- 12 Mergers.Total all 33 Ring Trigger Crates:- 792 Sorter or Mergers

TRIGGER CRATE

RPC Muon Trigger System

CMS Tridas Review, CERN November 9-13, 1998 Ignacy Maciek Kudla, Warsaw University

Wesley Smith, U. Wisconsin January, 1999

Muon Chamber TriggersMuon Chamber Triggers

strips

wires

Q2Q1

Q3

+-

+ -- +- +

threshold

CSC

Comparators give 1/2-strip resol.

Hit strips of 6 layers form a vector.

m

43

21

12

34

Drift Tubes

Meantimers recognize tracksand form vector / quartet.

Correlator combines theminto one vector / station.

(DT)Drift Tubes (DT) Cathode Strip Chambers (CSC)

Out 0 Out 1 Out 2 Out 3 Out 4 Out 5 Out 6 Out 7 Out 8 Out 9 Out 10 Out 11

In 0 In 1 In 2 In3

OuterLayer

InnerLayer

µ

Xcal

Kcal

D = 23.7 cm

Track Correlator

Correlates BTIs in the inner and outer SuperlayersRefines the track measurement Applies noise filtering using θ-view information

Track Correlator

µ

1

4

3

2 9

9

6

7

8

5

Bunch and Track Identifier

Bunch crossing is detected using a generalized mean-timer methodAt the same time the track inclination and position are measured

HTRG Alignment of four hitsLTRG Alignment of three hits

Triggers

LTRG triggers close to a HTRG are suppressed (LTS mechanism)

Bunch and Track Identifier

0

100

200

300

400

500

600

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

10

20

30

40

50

60

-15 -10 -5 0 5 10 15

Position Difference [mm]

All Triggers

Position Difference [mm]

Low Quality

Position parameter quality

σ ~ 0.7 mm

σ ~ 1.15 mm

BTI # 6in the right time slot

Time slot

Time slot

HTRG

LTRG

Time distribution of BTI triggers

Fron

t-en

dFr

ont-

end

tran

sver

se v

iew

long

itudi

nal v

iew

... ......

TSϕ

TSθ

ΒΤΙ

s in

ner

SL

ΒΤΙ

s ou

ter

SLB

TIs

...T

DC

s...

TD

Cs

RO

S

RO

S m

aste

r

To

Muo

n R

egio

nal T

rigg

er

To

DA

Q

1 B

TI

/ 4 w

ires

1 T

RA

CO

/ 4

BT

Is

...T

RA

CO

s

1 B

TI

/ 4 w

ires

TR

1 T

DC

/ 32

wir

es

From

oth

er c

ham

bers

of th

e sa

me

sect

or

1 T

SS /

4 T

RA

CO

s

...T

SSs

TSM

Ove

rvie

w o

f th

e el

ectr

onic

s la

yout

of

a ch

ambe

r

BT

I50

000

TR

AC

O 4

400

TSS

110

0T

SM

240

Tri

gger

ASI

CS{

A.M

onta

nari,

Trid

as w

eek

13-

Nov

-199

83

7KH�7

ULJJHU�6HUY

HU�DUF

KLWHFWX

UH����

7ZR�OD\H

UV�RI�SURF

HVVLQJ

�XQLWV�LQ

�φ�

❚�ILUVW�OD

\HU�

��RQ

H�7UDFN�6R

UWHU�6ODYH

��76

6�

��HY

HU\���75

$&2V�

❚�VHFR

QG�OD

\HU��

��RQ

H�7UDFN�6R

UWHU�0

DVWHU��7

60�

��SH

U�FK

DPEH

U

,Q�WKH

�θ�YLHZ�WKH

�7ULJ

JHU�6H

UYHU

7KHWD��7

67��SURY

LGHV�WKH

�25�RI

JURX

SV�RI�%7

,V��HY

HQWXDOO\�XVHG�

LQ�φ�DV�WULJJH

U�YD

OLGDWLRQ

❚�,Q�RUGHU�WR�PLQLP

L]H�WKH�VS

HHG�DQ

G���WKH�ORJLF��WKH

�EHVW�VROXWLR

Q�LV�D�

��SD

UDOOHO�VRUWLQ

J��EDVHG

�RQ�D��E

\��

��IDVW�FRP

SDUDWRU��DPRQ

J�JURX

SV�RI�

����75

$&2V�

A.M

onta

nari,

Trid

as w

eek

12-

Nov

-199

84

)XOO�SHUIRUP

DQFH�$

6,&

�SUR

WRW\

SH�RI�766

❚�7H

VW�SHUIRUP

HG�Z

LWK�SURJUDP

PDE

OH�GHY

LFHV��;LOLQ

;��$OWH

UD��4XLFN/R

JLF���

���UHY

HDOHG�WKH�QH

HG�RI�XV

LQJ�$6

,&�WR�ILW�WKH

�VSH

HG�UHT

XLUHPHQ

W�

❚���

�$6,&�SURWRW\S

HV�Z

HUH�UHDG

\�DW�WKH

��EH

JLQQ

LQJ�RI�WKLV�\H

DU�

����&0

26�����

µP��(6

��WKURXJ

K�(X

UR3UDFWLF

H�������

�PP��6LOLFR

Q�DUHD

������

��,�2�SDG

V

����-7

$*�DQG

�EDFNX

S�SD

UDOOHO�LQWHUIDFH

����IXOO�SURJ

UDPPDE

LOLW\�RI�VRUWLQJ

A.M

onta

nari,

Trid

as w

eek

12-

Nov

-199

87

6LP

XODWLRQ�RI�WK

H�7

ULJJHU�6HUY

HU

❚�7K

H�76

�DOJRULWK

P�KDV�EHH

Q�WHVWHG

�LQ�WKH

�IUDPH�RI�WKH

�VLP

XODWLRQ�RI�&06

❚�7K

H�LGHD

O�DOJRULWK

P�VKR

XOG�ILQ

G��������RQO\�RQ

H�WUDFN�VHJP

HQW�LQ�VLQJOH�PXR

Q�HY

HQWV

��������UHMHFW�JKR

VWV�SURG

XFHG

�E\�QH

DUE\

�75$&

2V�

�������WZR�FR

UUHFW�VHJP

HQW�LQ�WZR�PXR

Q�HY

HQWV

��������KLJK

�HIILFLHQF

\�DQ

G�SX

ULW\�RQ

�VHFRQ

G�VHJP

HQW�

❚�6LPXODWLRQ�ZLWK

�RQH

�RU�WZ

R��PXR

QV�RI���

��*H9

�JLYHV

��SR

VLWLY

H�UHVXOWV

(IILFLHQF\�IRU��QG�WUDFN

����

(IILFLHQF\�IRU��QG�WUDFN

LQ�RSHQ�SDLUV

����

3URE��RI�FR

UUHFW�LG�RI�ERWK�WUDFN

V����

3URE��RI�FR

UUHFW�LG�RI�ERWK�WUDFN

VLQ�RSHQ�SDLUV

����

3URE��RI�JHQHUDWLQJ�D�IDNH��

QG

WUDFN

�LQ�RQH�P

XRQ�HYHQWV�

�����

��2SHQ�SDLUV� �WZR�PXRQV�GLVWDQW�PRUH�WKDQ���75$&2

CM

S R

evie

w 1

3 N

ovem

ber

1998

Jan

os E

rö/H

EP

HY

-Vie

nna

Fin

d a

Muo

n T

rack

Inte

ract

ion

Poi

nt

Sta

tion

#1Sta

tion

#4

Sta

tion

#3

Sta

tion

#2

TS

1-1

TS

1-2

TS

2-1

TS

3-1

(Phi

onl

y)

TS

2-2

TS

3-2

TS

4-2

Phi

Phi

_b

TS

: 11b

it P

hi +

8bit

Phi

_b +

3bi

t LQ

(qu

ality

)

Not

e th

e di

rect

ion

CM

S R

evie

w 1

3 N

ovem

ber

1998

Jan

os E

rö/H

EP

HY

-Vie

nna

Tra

ck F

inde

r P

roce

ssor

Fun

ctio

nal B

lock

s

Inpu

t R

ecei

ver

Uni

t

Ext

rapo

lato

rU

nit

Tra

ck

Ass

embl

ing

Uni

t

Par

amet

erA

ssig

nmen

tU

nit

8TS

Dat

a Inpu

ts fr

om

Nei

ghbo

urs

Out

puts

to

Nei

ghbo

urs

Inpu

ts fr

om

Nei

ghbo

urs

21 A

ddre

sses

max

. 8 A

ddre

sses

TS

Dat

a

2 T

rack

sw

. Par

amet

ers

CM

S R

evie

w 1

3 N

ovem

ber

1998

Jan

os E

rö/H

EP

HY

-Vie

nna

Cra

te w

ith S

ecto

r R

ecei

vers

Con

trol

ler

Pro

cess

or

Sec

tor

Rec

eive

r

Wed

geS

orte

r

Wesley Smith, U. Wisconsin January, 1999

ViennaPrototypeTrack-FinderTest Setup

Drift Tube Regional TriggerDrift Tube Regional Trigger

D. A

cost

a, U

niv.

of F

lorid

aTr

iDA

S R

evie

w, N

ov. 1

998

5

Trig

ger

Reg

ions

in η

0.9

2.4

D. A

cost

a, U

niv.

of F

lorid

aTr

iDA

S R

evie

w, N

ov. 1

998

2

CS

C M

uon

Trig

ger

Sch

eme

Str

ip F

E c

ards

Wire

FE

car

ds

Mot

herb

oard

TM

B

Por

t Car

d

PC

Sec

tor

Rec

eive

rS

ecto

r P

roce

ssor

OP

TIC

AL

SR

SP

CS

C T

rack

-Fin

der

CS

C M

uon

Sor

ter

Glo

bal µ

Trig

ger

DT

RP

C

FE

FE

Glo

bal L

1

2µ /

cha

mbe

r3µ

/ p

ort c

ard

3µ /

sec

tor

LCT

LCT

Str

ip L

CT

car

d

Wire

LC

T c

ard

On

cham

ber

In c

ham

ber

crat

e

In c

ount

ing

hous

e

Jay Hauser, UCLA TRIDAS Week, November 1998 11

Type Board SlotsCLCT 9 9ALCT 9 18MBT 5 5MBD 5 5MPC 1 1Total 29 38Fits two 9U crates

Trigger Crates

Each iron disk handles 12 sectors30o sectors on YE1 for ME1,60o sectors on YE2 for ME2 and ME3

Per sector:

Positions of 24 crates around the iron disks is under discussion.

Jay Hauser, UCLA TRIDAS Week, November 1998 5

‘98 Prototypes:48-ch LCT Card

Channel linkTo TMB

Input Gate Array Altera 10K50

Data selection

RAM tables128K x 8 bit

P0 Mezzanine Card

Comparators, A/D conversion

Output Gate ArrayAltera 10K20Priority encoders,

Sequencer

Buffers

Test points, LEDs

JTAG ports,Analog inputs,Ext Clk, Trig,

LEDs

CAMACGate Array

Altera 10K20

Software configurable as anode or cathode LCT

Jay Hauser, UCLA TRIDAS Week, November 1998 11

Comparator Study #2

Fit track in Layers 1,2,4,5,6, look at comparator bits in Layer 3.

Simple tracking results are good•No corrections for gain, xtalk, etc.→Energy-weighted means →Corrected means by sin(x) gives ~300um resolution

Jay Hauser, UCLA TRIDAS Week, November 1998 18

Anode BX Efficiency Summary

Run 183 at H2old gas, HV=3.9kV, θ=25o, φ=0o, µ+(225), 4x4cm triganode thresholds 15~58fC

Coincidence Level

Relative Timing

BX Efficiency

1 0ns 98.0 ±1.0%

2 +3ns 99.2 ±0.3%

3 +8ns 99.2 ±0.3%

4 +12ns 99.1 ±0.5%

5 +14ns 98.5 ±0.6%

6 +19ns 98.0 ±0.8%

Wesley Smith, U. Wisconsin January, 1999

CSC Trigger LayoutCSC Trigger LayoutTrigger Mother Boards in Iron Disk Peripheral Crates: US & Dubna EMU

Peripheral Crates:Rice

Backplane

Optical Links:Rice

Counting RoomCrates: UCLA

Counting RoomCrates: UCLA

Counting RoomCrates: Florida

6 Sector ProcessorCrates

10° 10° 10° 10° 10° 10°

20° 20° 20°

10° 10° 10° 10° 10° 10°

20° 20° 20°

10° 10° 10° 10° 10° 10°

10° 10° 10° 10° 10° 10°

10° 10° 10° 10° 10° 10°

ME1/3

10° 10°10°10° 10°10°

ME1/1

ME1/2

ME1/A

ME2/2

ME2/1

ME3/2

ME3/1

ME1 Left ME1 Right

MuonPortCard

MuonPortCard

MuonPortCard

MuonPortCard

20°Sector

20°Sector 60° Sector 60° Sector

SectorReceiver

SectorReceiver

CSCSector

Processor

OVRSector

Processor

20°Sector

ME1 Center

18µ

MuonPortCard

16µ16µ 16µ 18µ

2µ2µ2µ 3µ3µ

6µ 6µ

Barrel

Barrel Barrel

D. A

cost

a, U

niv.

of F

lorid

aTr

iDA

S R

evie

w, N

ov. 1

998

10

Inpu

ts to

CS

C S

ecto

r P

roce

ssor

•1

CS

C s

tub

= 1

2 ϕ

bits

+ 6

Ψ b

its +

5 η

bits

+ 3

Q b

its =

26

bits

•1

Por

t Car

d se

nds

3 st

ubs

•1

Sec

tor

Rec

eive

r a

ccep

ts 2

Por

t Car

ds =

6 s

tubs

•1

Sec

tor

Pro

cess

or a

ccep

ts 6

+ 3

+ 3

+ 3

= 1

5 st

ubs

(div

ided

bet

wee

n 2.

5S

ecto

r R

ecei

vers

)

•15

stu

bs ×

26

bits

= 3

90 b

its

CSC

cra

te:

9U V

ME

with

cus

tom

poi

nt-to

-poi

nt b

ackp

lane

for l

ast 3

US R C S C

SP

S R C S C

S R C S CM

E 1

ME

2,3

ME

4

156

156

78

S R C S C

SP

S R C S C

S R C S CM

E 1

ME

2,3

ME

4

156

156

78

S R C S C

SP

S R C S C

S R C S CM

E 1

ME

2,3

ME

4

156

156

78

D. A

cost

a, U

niv.

of F

lorid

aT

riDA

S R

evi

ew

, Nov

. 199

815

Sec

tor

Pro

cess

or B

lock

Dia

gram

�������������

�������������

43x

21

��

EU

3 -

4

N

OV

EM

BE

R, 2

nd.

EU

2 -

4 E

U 2

- 3

33x

21

43x

21

23x

21

33x

21

23x

21

QSU

5(

3 -

4 )

( 2

- 4

)Q

SU 4

QSU

3(

2 -

3 )

VME BUS

INTERFACEREADOUT

DOWNLOADING/

CONNECTOROUTPUT

Pt

LO

OK

-UP

MU

X

33x

21

1**

3x21

EU

1**

- 3

EU

1*

- 3

33x

213x

211*

EU

1**

- 2

23x

21

1**

3x21

EU

1*

- 2

23x

213x

211*

QSU

2(

1 -

3 )

QSU

1

( 1

- 2

)

3 - 4

2 - 4

2 - 3

1 - 3

FSU

TA

U 1

(1-2

-3,

1-2

-4,

1-3

-4,

2-3

-4 ) 2-3-4

1-3-4

1-2-3

1-2-4

3 - 4

2 - 4

2 - 3

1 - 3

1 - 2

CL

OC

KE

D

TA

U 2

( 1-

2-3-

4 )

F

IFO

FIG

.1.

TR

AC

K F

IND

ING

PR

OC

ESS

OR

. BL

OC

K D

IAG

RA

M.

TT

A

QT

A

CONTROLINTERFACE

BACKPLANECUSTOM

9U

INPUT DATA &

1 - 2D

ata

Con

trol

Out

put

Dat

a

3x2

2 =

66

Input Data

LID

STA

15x1

3x21

DT

A

9x21*- 2

9x21** - 2

9x21* - 3

9x22 - 3

9x22 - 4

9x2

1** - 39x2

3 - 4

- C

ontr

ol L

ine

- D

ownl

oadi

ng/

R

eado

ut L

ine

- D

ata

Lin

e

15x26=390

EU

- E

xtra

pola

tion

Uni

tQ

SU -

Qua

lity

Sele

ctio

n U

nit

TA

U -

Tra

ck A

ssem

blin

g U

nit

FSU

- F

inal

Sel

ecti

on U

nit

Ass

embl

age

TT

A -

Tri

pple

Tra

ckD

TA

- D

oubl

e T

rack

A

ssem

blag

eQ

TA

- Q

uadr

uple

Tra

ck

A

ssem

blag

e

LID

- L

ook-

Up

Inpu

t D

ata

STA

- S

elec

ted

Tra

ck A

ddre

ss

3x7

3x7

3x7

3x7

3x7

3x10

3x16

3x22

3x7

3x7

3x7

3x7

3x7

3x11

3x11

3x11

3x11

Ext

rapo

latio

n U

nits

Qua

lity

Sel

ectio

nU

nits

Tra

ck A

ssem

bler

Fin

al S

elec

tion

Uni

t

Ass

ignm

ent U

nit

and

Out

put

FIF

O

Inpu

t

GM

T:P

rese

ntD

esig

n

8S

YN

CF

IFO

s24

Tab

les

PQ

_i *

SR

K_j

µ R

PC

QU

IET

BIT

Sfr

om C

alor

imet

er

VM

E

VM

E a

ddr

Pre

proc

essi

ng

Syn

chro

nisa

tion

Cal

cula

te M

AT

CH

QU

ALI

TIE

S

VM

E a

ddr

1 bi

t x 8

MUX

4

tabl

e

8

SU

B

SU

B

tabl

e

MUX

ij∆ϕ

DA

TA

pip

elin

e

4 µ

RP

C4

µ D

T/C

SC

SE

LEC

T M

AT

RIX

SE

L_ij

= 1

...ta

ke R

PC

=

0 ..

.take

DT

/CS

C

8

PA

IR_i

j

(if S

RK

_i =

SR

K_j

->

take

RP

C)

SE

L_ij

Com

pare

ran

ks o

f RP

C a

nd D

T/C

SC

muo

ns

1 bi

t x 1

6

8 bi

ts(?

) x

8

4

∆ϕ

+ ω

∗∆η2

2

∆η w*

+ 2∆ϕ

If M

Q_i

j is

bette

r th

an a

ll ve

rtic

al a

nd h

oriz

onta

l nei

ghbo

urs,

then

it is

the

best

mat

ch fo

r2

muo

n ca

ndid

ates

4

256*

6 bi

ts

4

PA

IR L

OG

IC

Fin

d R

PC

- D

T/C

SC

Muo

nPai

rsus

ing

the

MA

TC

HQ

UA

LIT

Ys

of a

ll po

ssib

le c

ombi

natio

ns

4x4

mat

rix

MQ

_ij

P

AIR

QU

ALI

TY

ass

ignm

ent

= P

Q_i

= 1

for

sing

le m

uons

= 0

for

loos

ing

mem

ber

of p

air

= M

Qxx

for

win

ning

mem

ber

of p

air

PQ

_DT

1.

..4P

Q_R

PC

1...

4

RA

NK

TA

BLE

Sfo

r 8

muo

ns

8 --

> 4

SO

RT

ER

RK

_i =

Sin

gle

Ran

k of

8 m

uon

cand

idat

es (

SR

K_i

)re

duce

d re

solu

tion

for

η ϕ

pt a

nd Q

8 sy

ncS

RA

M c

hips

SIN

GLE

-RA

NK

TAB

LES

for a

ll 8

muo

n ca

ndid

ates

Cal

cula

te if

a m

uon

poin

ts to

an a

ctiv

e Q

UIE

T b

it

appe

nd

QU

IET

_i

8 m

uon

cand

idat

es

MQ

_ij

if E

MP

TY

_ij =

1 th

enlo

w M

Q_i

j

p t

MQ

_ij

4x4

mat

rix

8 bi

ts x

81

bit x

8

EM

PT

Y_i

j=

1 if

pt_

i=0

or p

t_j=

0

8 th

resh

old

com

para

tors

QU

IET

BIT

LO

GIC

VM

E

VM

E

VM

E a

ddr

VM

E a

ddr

VM

E

VM

EIn

tern

al V

ME

bus

to lo

ad lo

ok-u

pta

bles

ant

to s

py r

esul

ts

6 bi

ts x

16

Uni

t-C

onve

rter

s

MA

TC

HQ

UA

LIT

Y

Fin

d M

AT

CH

ING

MU

ON

S

geMUX

2

6 bi

ts x

8 VM

E

4 m

uons

GLO

BA

LT

RIG

GE

R

VM

E

µ D

T/C

SC

3T

able

ϕ p t

3T

able

ϕ p t

µµ

1 bi

t x 1

6

6 bi

ts x

16

SR

K_j

η ϕSR

K_i

18

ij∆η

4 µ

RP

C4

µ D

T/C

SC

k

SR

K_i

Nor

bert

Neu

mei

ster

,HE

PH

YV

ienn

aTr

igge

rR

evie

w,N

ov.

1998

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6

η

Effi

cien

cy

Φ

Effi

cien

cy

pT [GeV/c]

Effi

cien

cy

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Trigger efficiency [%] for 1 µ events

|η|<0.8 0 µ 1 µ >1 µ

RPC 4.49 ±0.10 95.49 ±0.61 0.02 ±0.01

DT 6.08 ±0.11 93.70 ±0.60 0.22 ±0.02

GMT 1.04 ±0.05 98.78 ±0.70 0.18 ±0.02

Trigger efficiency [%] for 2 µ events

|η|<0.8 0 µ 1 µ 2 µ >2 µ

RPC 0.24 ±0.03 8.98 ±0.22 90.72 ±0.93 0.05 ±0.02

DT 0.39 ±0.04 12.75 ±0.27 86.40 ±0.90 0.46 ±0.05

GMT 0.00 ±0.01 2.70 ±0.12 96.87 ±0.98 0.42 ±0.05

Global Muon Trigger

LV2 input 100 kHz / safety factor 3 = LV1 output 15+15 kHz

LV2 input 75 kHz / safety factor 3 = LV1 output 12+12 kHz

threshold 2-4 GeV means the minimal possible muon p t cut~4 GeV in the barrel, ~2 GeV in the endcap

L = 1033cm-2s-1 L = 1034cm -2s-1

trigger threshold rate [kHz] threshold rate [kHz]type [GeV] indiv. cumul. [GeV] indiv. cumul.ΣEt 150 1.0 1.0 400 0.5 0.5

Etmiss 40 2.1 2.8 80 1.3 1.7

e 12 10.3 12.3 25 6.8 8.3e e 7 1.5 13.1 12 1.5 9.5

j 50 2.0 13.5 100 2.1 10.7j j 30 1.6 13.9 60 2.2 11.6j j j 20 1.0 14.1 30 3.2 13.3j j j j 15 0.7 14.2 20 3.0 14.3e j 9, 15 6.0 15.2 12, 50 1.4 14.9µ 7 7.0 7.0 20 7.8 7.8

µ µ 2-4 0.5 7.3 4 1.6 9.2µ e/γ 2-4, 7 2.4 9.2 4, 8 5.5 14.4µ eb 2-4, 4 5.2 12.8µ j 2-4, 10 4.2 14.4 4, 40 0.3 14.3

µ Etmiss 2-4, 40 0.2 14.4 4, 60 1.0 15.3

µ ΣEt 2-4, 100 0.7 14.4 4, 250 0.2 15.3

µ 7 7.0 7.0µ µ 2-4 0.5 7.3

µ e/γ 2-4, 7 2.4 9.2µ eb 2-4, 4.5 3.3 11.1µ j 2-4, 15 2.0 11.9

µ Etmiss 2-4, 40 0.2 11.9

µ ΣEt 2-4, 100 0.7 11.9

Muon and Calorimeter Trigger Rates

LV1 output rate is reduced to the required limit by adjusting the trigger thresholds

Wesley Smith, U. Wisconsin January, 1999

Global Trigger SystemGlobal Trigger System

Final level-1 decision logic• 32 inputs with energy, coordinate, quality bits

• 4 muons, 4 isolated e/γ, 4 non-isolated e/γ• 6 jets & total number of jets above threshold• Total ET, Missing ET

• 128 Output Triggers• example:

1 µ > 20 GeV & 1 isolated e/γ > 10 GeV

Cards:• Pipeline Synchronizer & Buffer

• Aligns data from different subsystems• Global Trigger Logic

• Threshold & Comparator stages• Cuts on ET, pT, quality, η

• Global Trigger Final• Combinatorial logic array• Prescales

GLOBAL TRIGGERCRATE

10.11.98 A.T. HEPHY VIENNA

144 ISOLATION BITS=9 Channels with 16 bits

MUONS:4 RPC4 DT

4 CSC

GLOBALMUONTRIGGER

4EG4IEG4HAD

6JETETT

ETM

TECHNICALTRIGGERS12 CHAN=

12.24=288bits

AMP-Z-PACK 2mm BACKPLANECONNECTORS 488 pins

GLOBAL TRIGGER

CHANNEL LINK for 28 bits5LVDS pairs =10lines

CUSTOM BACKPLANE: VME + fast links

TTC

CAPACITY of Backplane: 40 ChannelLinks+88 CTRL lines

12 FREECHAN.

PSB12PSB12

9CHISO-bits

GTMU GTMU PSB12 PSB12 PSB12 GTL GTL GTF GTL PSB12

3 free

TIM

36 (40)CH24 CH<40 xx bits

GTFE

CLK+CTRL

GTFE LINKto GTFE

8GTFE LINKS

1-2DAQLINKS

DAQ TTC

Send 4MUONS viabackplane or frontpanel

4MUONS

**

**

PSB12=12Ch.PipelineSynchronisingBufferGTL =GlobTrigg Logic moduleGTF =GlobTrigg Final moduleGTFE=GlobTrigg FrontEnd moduleTIM = Timing ModuleGTMU=Global Trigger for MUONS

optional 80MHzparallelSYP

orXIN

28bits->5 diffPar->Ser

DPmem

VME

CLK, BCResStart

JTAG

1 of 12 CHANNELsoptionalparallel

28 bits LVDS

PSB OVERVIEW

5diff->28 bitsSer->Par

X_DPMBC_nrEvent_nr

24.10.98 A.T. HEPHY VIENNA

CHANNELLINK

MIN. LATENCY: 3 bx PIPELINE DELAY5 bx FIFO DELAY

GTFELink

Readout processor

PIPELINE or FIFO DELAYSYNCHRONISATION by TTCrx40 MHz CLKBCRes....every LHC-cycleBC-counters

GTFEFrontEnd

Card

1 or 3 BX 1 BX1 BX

TIM

TIM

VME

TTC

GTL Logic module

29.10.98 A.T. HEPHY VIENNA

PSB

FPGA

GTL-ovw.cdd

OR- LOGIC

CLK40CLK80

BCntRes

4 CHANNLINKS

PSB 4 CHANNLINKS

SETUPREGS

ALGO chip64 algorithms

PSB 4 CHANNLINKS

36 (40) CHANNELS=9(10) groups

128ALGORITHMS

128 CABLEDRIVERS

LATENCY 4 BX

OR CHIP:(3840+128)=3968 IO pins3968/12= 331 IO-pins

-->12 OR chips

24x4=96 signals

768x10=7680 bits--> 3840 nets

128 algo bits

96x10=960 input bits

80MHz transfer between ALGO and OR chips: bits/2=nr.of nets

ALGO CHIP: logic for 64 algorithms6 bits x 64 algor.=384bits384/2= 192 OUT-pins (80MHz)96 IN-pins(40MHz) ---> 288 IO-pins

-->20 ALGO chips

40MHz

80MHz

40MHz

ALGO chip64 algorithms

ALGO chip64 algorithms

1BX 1BX1BX 0.5BX 0.5BX

GTF

VME

ALGO chip forCalorimeter

Particles2.11.98

HEPHY VIENNA

PSB

FPGA

GTL-Algo_Calo.cdd

4 PARTICLES

SETUPREGS

LATENCY 3 BX

24x4=96 INPUTS at 40 MHz

80MHz transfer between ALGO and OR chips: bits/2=nr.of nets

COMP.MATRIX

1BX 1BX1BX

OR-chip

16 WindowComparatorsin ETA, PHI

TH(J)

ET(I) of4

Particles

ET(I,J)

FIND A-particlesFIND B-particles...........FIND F-particles

VME

LOGIC to FIND A-particles

Calculate 6 different numbersof calorimeter particles

6 bits

LOGIC for 1 CALO-ALGORITHM

64 CALO-ALGORITHMS

6bits x 64 algo. = 384 bits384/2=192 OUTPUTS at 80 MHz

N.(N+1)/2=10 COMP

GTF Final Logic module4.11.98 A.T HEPHY VIENNA

GTF-ovw.cdd

128ALGORITHM

BITS

GTLTTC

CLK40CLK80

BCntRes

JTAG

READOUT X_DPM

BC-numberEventnr

GTFEFrontEnd Card

128Pre-

scalers

FinalOR

logic

DPMTIM

DPM

DPM=Dual Port Memory

L1_ACCEPT

VMEReadout processor

GTFELink

setup by VME

Local Monitoring + Tests

CableDrivers

Events + Global Monitoring

Rec

eive

r +

reg

iste

r

MonitoringCOUNTERS

A.Taurok 2.11-98

Timing ModuleTIM

TIM-Ovw.cdd

TTCrx

FIFO32 bits

20 MHz

BCnrBCnr

GT-Backplane

Eventnr

Local 40MHz ClockClockChip

40 MHz Clock

80+20 MHz Clock

40 MHz

Eventnr*

Bus to allPSB+GTFmodules

Point2pointto all

modulesBCntRes

40 MHz Clock

LocalBC_Cntr

LocalEvent_Cntr

NewRun

L1Acc

SimL1Acc

X_DPM extracts data from DPM on GTF + all PSB boards.L1Acc extracts EVENT data.SimL1Acc simulates L1Acc.Read_Mon_Bx reads DPM data for Global Monitoring.

X_DPM

BCntRes

3to1MUX

X_DPM

*)Eventnr. with Mon/Event flag

L1Acc

2to1MUX

Mon BCnrLocal BCnr

VME

Global MonitoringRead_Mon_Bx

green=VME

SimL1Acc

TTC_ON

ClockFanout

BCntResFanout

TTC_onFanout

'

&

$

%

| CMS Synchronization Workshop, Nov 1998 |

Distribution of CLK and L1 to Front{End

TTCvi

DAQ

APVs

Underground counting room

FED FEC

FEM CCUM

TTCrx TTCrx

PLLPLL

Experimental hall

7)

5)

6)

4)

3)2)

1)

CLK + L1

L1LHC CLK

L1BX #

EV #CLK

B0

L1 delay along the critical path TTCvi ! FEM:

1) TTCvi (input) ! TTCrx (output): ' 135ns + 5ns/m (10 BX with

20m �bre)

2) TTCrx on FEC: programmable delay, foreseen to be set to zero

3) FEC, opto!electrical conversion: < 50ns ( < 2 BX)

4) FEC ! CCUMs: 90 to 120 m optical �bre ! 450 to 600 ns (18 to

24 BX)

5) Ring of CCUMs: ' 2m of electrical cables ! ' 20ns (< 1 BX)

6) CCUM: opto!electrical conversion + distribution via electrical cables

to the PLLs in the FE + (CLK+L1) decoding ! ' 75ns (3 BX) (?)

7) PLL on the FEM: programmable (�ne and coarse) delay

Impact on the latency

3

Initi

al lu

min

ositi

es

for

1 ex

perim

ent,

125

ns

bunc

h sp

acin

g

•bu

nch

spac

ing

25 n

s⇒

lum

inos

ity

× 4-

5(n

ot p

ossi

ble

for

Pb-

Pb)

•2

expe

rimen

ts

⇒ lu

min

osity

/ 3-

4•

3 ex

perim

ent

s⇒

lum

inos

ity /

6-9

pp

O O

C

a C

a N

b N

b P

b P

b

lum

inos

ity [c

m-2

s-1]

1034

3.2

⋅ 1031

2.5

⋅ 1030

9⋅ 1

02810

27

aver

age

colli

sion

rat

e [k

Hz]

550

000

32 0

00

5200

40

0 7.

6

1µ tr

igge

r ra

te [k

Hz]

190

120

53

10

0.5

Pb

Pb:

exp

erim

ents

1 2

3

lum

inos

ity [c

m-2

s-1]

1027

3.3

⋅ 1026

1.7

⋅ 1026

aver

age

colli

sion

rat

e [H

z] 76

00

2500

13

00

1µ tr

igge

r ra

te [H

z] 50

0 16

5 85

2µ tr

igge

r ra

te [H

z] 60

20

10

Hea

vy Io

n Lu

min

osity

and

trig

ger

rate

s

•T

he p

t spe

ctra

ab

ove

1 G

eV i

nA

A c

ollis

ions

at

=

5-7

TeV

are

not

muc

h di

ffere

nt f

rom

thos

e i

npp

col

lisio

ns a

t

= 1

4 Te

V

•S

impl

e sc

alin

g by

A2

⋅0.9

5 w

orks

wel

l

•T

hus

one

can

use

a lo

t of p

redi

ctio

ns c

alcu

late

d fo

r th

e pp

cas

e—

For

exa

mpl

e on

e ge

tsP

b-P

b ra

tes

atL=

1027

cm-2

s-1

mul

tiply

ing

pp r

ates

at

L=10

34cm

-2s-1

by

0.00

25

•F

or P

b-P

b at

L=1

027

cm-2

s-1 o

ne c

an e

xpec

t sin

gle

muo

n tr

igge

r ra

te:

—21

0 H

z fr

om p

rom

pt m

uons

(c-

and

b-qu

ark

deca

ys)

—28

0 H

z fr

om h

adro

nic

punc

hthr

ough

and

dec

ays

(mai

nly

π an

d K

)

s

s

Hea

vy Io

n T

rigge

r S

umm

ary

Ass

umpt

ions

—L=

1027

cm-2

s-1 (

1 ex

perim

ent r

unni

ng a

t the

tim

e) f

or P

b-P

b—

mas

s st

orag

e ca

paci

ty: ~

100

MB

/s—

equa

l rat

es fo

r m

uon

and

calo

rimet

er tr

igge

rs—

max

. eve

nt s

ize

(cen

tral

col

lisio

ns):

Trig

ger

stra

tegy

•R

equi

re s

ingl

e m

uon

trig

ger

(|

η|<

1.5)

at t

he fi

rst l

evel

500

Hz

•S

earc

h fo

r a

seco

nd m

uon

(|

η|<

1.5)

at t

he s

econ

d le

vel

60

Hz

•Li

ttle

or n

o re

duct

ion

need

ed a

t hig

her

leve

ls

Det

ecto

rO

ccup

ancy

k B

ytes

Pix

el b

arre

l<

0.5

%30

0

MS

GC

4 la

yers

+ 4

dis

ks~

10 %

826

EC

AL

full

(1 ti

me

slic

e)10

0 %

260

HC

AL

full

100

%28

Muo

n D

T+C

SC

+RP

C<

0.1

%54

TOTA

L~1

.5 M

B

Str

ateg

y fo

r dim

uon

trig

ger

Wesley Smith, U. Wisconsin January, 1999

CMS Trigger OrganizationCMS Trigger Organization

TriDASS. Cittolin

Trigger:W. Smith

DAQ:S. Cittolin

Calorimeter: W. Smith

Muon: G. Wrochna

Global: C. Wulz

Primitives:P. Busson

Regional: W. Smith

Global: G. Heath

Rd.& Ctrl: S. Silva

RPC: Krolikowski

CSC: J. Hauser

DT: P. Zotto

Trk Find:F. Szoncso

Global:A. Taurok

Processor

Monitoring

The Compact Muon Solenoid. SC 1998

Trigger cost book 9

103

CMS Cost Estimate - Version 9 Release Date: March 31, 1998

No. Item Unit Type # Units Unit Cost Total Cost

6.1.1 CALORIMETER TRIGGER 5225 0

6.1.1.1 Regional trigger System 1 4050.020 4050

6.1.1.2 Global Cal. Trigger System 1 400.000 400

6.1.1.3 Readout & Control System 1 255.000 255

6.1.1.4 Data Communication System 1 520.000 520

6.1.2 CSC TRIGGER 1100 0

6.1.2.1 Muon Port Card Board 63 7.475 471

6.1.2.2 Sector Receivers Board 65 4.217 274

6.1.2.3 Sector Processors Board 15 7.020 102

6.1.2.4 Overlap Processors Board 15 7.020 105

6.1.2.5 Clock and Control Card Board 12 5.233 63

6.1.2.6 Crate Monitor Card Board 10 1.300 13

6.1.2.7 Trigger Crate Crate 10 7.107 71

6.1.2.7 Institute Manpower Manyears 0 0.000 0

6.1.3 DT TRIGGER 780 0

6.1.3.1 Trigger Crate Crate 4 6.000 24

6.1.3.2 Sector Processor Card Board 60 8.000 480

6.1.3.3 Muon Sorter Card Board 5 8.000 40

6.1.3.4 Clock and Control Card Board 4 4.000 16

6.1.3.5 Crate Monitor Card Board 4 2.000 8

6.1.3.6 Cables Cables 1 50.000 50

6.1.3.7 Readout and Control System 1 32.000 32

6.1.3.8 Monitoring and Test System 1 70.000 70

6.1.3.9 Prototypes and spares System 1 60.000 60

6.1.3.10 Institute Manpower Manyears 0 0.000 0 0

6.1.4 RPC TRIGGER 3695 0

6.1.4.1 Link Board Board 936 0.475 445

6.1.4.2 Data Communication System 1 755.160 755

6.1.4.3 Trigger Board (Barrel) Board 156 3.830 597

6.1.4.4 Trigger Board (EndCap) Board 240 3.350 804

6.1.4.5 Final Sorter Board Board 33 1.600 53

6.1.4.6 Readout board Board 396 0.700 277

6.1.4.7 Readout Concentrator Board Board 33 1.000 33

6.1.4.8 Clock Control Board Board 33 4.000 132

6.1.4.9 Trigger Crate Crate 33 8.600 284

6.1.4.10 Readout and Control System 1 15.300 15

6.1.4.11 ASICs Development Service 1 200.000 200

6.1.4.12 Prototypes and spares System 1 100.000 100

6.1.4.13 Institute Manpower Manyears 0 0.000 0 0

6.1.5 GLOBAL TRIGGER 1340 0

6.1.5.1 Global Trigger Crate Crate 1 27.046 27

6.1.5.2 PipelineSyncBuffer Board 5 8.290 41

6.1.5.3 Global Trigger Logic Board 5 12.168 61

6.1.5.4 Global Trigger Final Board 1 5.199 5

6.1.5.5 Cables Cables 1 4.070 4

6.1.5.6 Global Muon Trigger System 1 158.272 158

6.1.5.7 Readout and Control System 1 30.000 30

6.1.5.8 Prototypes System 1 32.700 33

6.1.5.9 Monitoring & Test System 1 80.000 80

6.1.5.10 Trigger Throttle System System 6000 0.150 900

6.1.5.11 Institute Manpower Manyears 0 0.000 0 0

Wesley Smith, U. Wisconsin January, 1999

M&S for Crates, Boards & Cables:

WBS Item Unit Cost Number Total 3.1.2.4 Power Supplies 3,600 22 79,200 3.1.2.5 Crates 600 22 13,200 3.1.2.6 Backplane 5,910 22 130,020 3.1.2.7 Clock & Control Card 2,960 22 65,120 3.1.2.8 Receiver Card 8,870 176 1,561,120 3.1.2.9 Electron ID Card 3,690 176 649,440 3.1.2.10 Jet Summary Card 4,670 22 102,740 3.1.2.11 Cables $1/ft 7,300 7,300

Cost Detail Ex: Regional Cal. Trig $Cost Detail Ex: Regional Cal. Trig $

Detail for Boards:

Card Size Board Assmbl. Parts TotalBackplane crate 1,000 300 4,610 5,910Clock & Control 9Ux280mm 600 400 1,960 2,960Receiver 9Ux400mm 800 650 7,420 8,870Electron ID 9Ux280mm 400 300 2,990 3,960 Jet Summary 9Ux280mm 600 500 3,570 4,670

Detail for ASICS (WBS 3.1.2.2):

ASIC NRE Cst/Prt #/RC #/EIC #/JSC Tot.#Adder (GaAs) 50,000 179 3 0 2 520 Phase (GaAs) 50,000 360 8 0 0 1,280 Sort (GaAs) 80,000 300 0 1 2 200 Electron ID(GaAs) 80,000 300 0 2 0 320 Bndry. Scan(GaAs) 50,000 150 1 1 1 340

(costs per part are included in board parts costs above)

Tas

k N

ame

Tri

gg

er S

yste

m

Initi

al T

rigge

r D

esig

n

Com

plet

e In

itial

Des

ign

Pro

toty

pe D

esig

n

Com

plet

e P

roto

type

Tes

ts

Pro

toty

pe T

ests

FIn

al D

esig

n

Fin

al D

esig

n R

evie

w

Pro

duce

TD

R

Sub

mit

TD

R

Set

up p

rodu

ctio

n

Pro

duct

ion

Par

ts O

rder

s

Trig

ger

Pro

duct

ion

Beg

ins

Pro

duct

ion

Fab

ricat

ion

Pro

duct

ion

Ass

embl

y

Beg

in P

rodu

ctio

n T

est

Pro

duct

ion

Tes

ting

Trig

ger

Sys

tem

Tes

ts

Beg

in T

rigge

r D

eliv

ery

Del

iver

y of

Trig

ger

Sys

tem

s

Inte

grat

ion

& T

est w

/DA

Q &

FE

Inte

g.&

test

Trig

ger

Sys

tem

s

Fin

ish

trig

ger

com

pone

nts

Fin

ish

trig

ger

prod

uctio

n

Fin

ish

trig

ger

deliv

ery

Fin

ish

trig

ger

com

mis

sion

/3/9

711

/4/9

8

11/4

/98

11/4

/98

11/3

/99

11/3

/99

11/4

/99

11/2

/00

11/4

/99

11/2

/00

11/2

/00

8/24

/00

12/7

/00

12/7

/00

11/2

/00

4/9/

01

4/10

/01

10/1

/01

7/1/

01

7/3/

017/

1/03

1/1/

021/

2/04

7/1/

02

7/2/

026/

30/0

4

3/3/

039/

2/04

8/27

/03

8/28

/03

2/25

/05

10/2

/03

4/5/

05

12/3

1/03

6/30

/05

1/2/

04

6/30

/04

2/25

/05 7/

1/05

Jul

Jan

Jul

Jan

Jul

Jan

Jul

Jan

Jul

Jan

Jul

Jan

Jul

Jan

Jul

Jan

Jul

997

1998

1999

2000

2001

2002

2003

2004

2005

W. S

mith

, U. W

isco

nsin

CM

S T

RIG

GE

R S

CH

ED

ULE

1/18

/99

Pag

e 1

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsin

Ex:

CS

C T

rig

ger

Sch

edu

leE

x: C

SC

Tri

gg

er S

ched

ule

Fin

ish

Initi

al D

esig

nM

ay 1

3

Beg

in P

roto

type

Des

ign

Oct

1

Fin

ish

Pro

toty

pe D

esig

nM

ay 1

3

Beg

in P

roto

type

Con

stru

ctio

nA

pr 2

Fin

ish

Pro

toty

pe C

onst

ruct

ion

Sep

30

Beg

in P

roto

type

Tes

tA

ug 2

0

FIn

ish

Pro

toty

pe T

est

Jul 2

1

Beg

in F

inal

Des

ign

Jun

12

Fin

ish

Fin

al D

esig

nJu

l 22

Beg

in P

rodu

ctio

nJa

n 22

Fin

ish

Pro

duct

ion

Nov

25

Beg

in In

stal

latio

nA

ug 2

0

Fin

ish

Inst

alla

tion

Apr

29

Beg

in T

rigge

r S

yste

m T

ests

Apr

30

Fin

ish

Trig

ger

Sys

tem

Tes

tsS

ep 9

Oct

Apr

Oct

Apr

Oct

Apr

Oct

Apr

Oct

Apr

Oct

Apr

Oct

Apr

Oct

Apr

Oct

Apr

Oct

Apr

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

Wesley Smith, U. Wisconsin January, 1999

Trigger Milestone ListTrigger Milestone List Level 1 (1998-2000)

• Nov. 1998 Complete Initial Trigger Design:• Algorithms finalized

• Functional blocks determined

• Numbers of ASICs, boards, cards and crates specified

• Interfaces specified

• Trigger geometry determined

• Nov. 1999 Complete Phase 1 Prototype Design:• Designs of boards, cards

• ASICs for prototype tests done

• Nov. 2000 Phase 1 Prototype Tests Finished:• All tests necessary to begin design of production electronics

are complete

• Nov. 2000 Technical Design Report

Level 2 (1998-2000)• Nov. 1998:

• Complete Initial Muon Trigger Design

• Complete Initial Calorimeter Trigger Design

• Complete Initial Global Trigger Design

• Nov. 1999:• Complete Prototype Muon Trigger Design

• Complete Prototype Calorimeter Trigger Design

• Complete Prototype Global Trigger Design

• Nov. 2000:• Prototype Muon Trigger Tests Finished

• Prototype Calorimeter Trigger Tests Finished

• Prototype Global Trigger Tests Finished

Wesley Smith, U. Wisconsin January, 1999

Trigger Milestone ProgressTrigger Milestone Progress 1998 L1 Milestone:

• Nov. 1998 Complete Initial Trigger Design:• Algorithms finalized• Functional blocks determined • Numbers of ASICs, boards, cards and

crates specified• Interfaces specified• Trigger geometry determined

• Status: Complete

1998 L2 Milestones:• Nov. 1998:

• Complete Initial Muon Trigger Design• http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/mutrig/html/

• Complete Initial Calorimeter Trigger Design• http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/caltrig/html/

CalTrig.html

• Complete Initial Global Trigger Design• http://sungraz.cern.ch/CMS/trigger/globalTrigger/

Welcome.html

• Status: Complete

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsinTri

gg

er P

roje

ct M

anag

emen

tT

rig

ger

Pro

ject

Man

agem

ent

CM

S A

nn

ual

Rev

iew

s•A

pri

l: T

riD

AS

Sta

tus

•Pro

gres

s, d

raft

R&

D p

lans

& e

xpen

ses

for

next

yea

r•N

ove

mb

er:

Tri

DA

S In

tern

al R

evie

w•R

&D

Pla

ns/P

rogr

ess,

Cos

t & S

ched

ule,

Mile

ston

es•F

inal

ize

R&

D p

lans

& e

xpen

ses

for

next

yea

r•I

nter

nal C

MS

Rev

iew

w/C

MS

ref

eree

s•I

nte

rnal

Ele

ctro

nic

s R

evie

ws

by

LH

C E

lect

ron

ics

Bo

ard

CM

S R

eps.

•G. H

all (

Impe

rial),

G. S

tefa

nini

(C

ER

N),

J. E

lias

(FN

AL)

sub

stitu

ting

for

W. S

mith

(W

isc.

)•R

epor

ts to

CM

S M

anag

emen

t Boa

rd (

last

trig

ger

revi

ew in

Fal

l '98

)

Janu

ary,

199

9W

esle

y S

mith

, U. W

isco

nsin

Co

ncl

usi

on

s -

Tri

gg

erC

on

clu

sio

ns

- T

rig

ger

Alg

ori

thm

s sa

tisf

y p

hys

ics

req

uir

emen

ts•A

ctiv

e si

mu

lati

on

pro

gra

m p

rod

uci

ng

res

ult

s H

ard

war

e d

esig

n t

o im

ple

men

t al

go

rith

ms

•Fu

ll co

nce

ptu

al d

esig

n w

ith

co

nsi

der

able

en

gin

eeri

ng

•Ext

ensi

ve p

roto

typ

ing

& t

est

pro

gra

m•"

Pro

of o

f prin

cipl

e" o

f crit

ical

item

s•N

umbe

r of

suc

cess

es a

lread

y

Pro

ject

Man

agem

ent

•Exp

erie

nce

d t

eam

in p

lace

wit

h a

ll ta

sks

assi

gn

ed•E

xten

sive

sys

tem

of

revi

ews

and

mo

nit

ori

ng

in p

lace

Det

aile

d d

ocu

men

tati

on

on

WW

W:

•htt

p:/

/cm

sdo

c.ce

rn.c

h/f

tp/a

fscm

s/T

RID

AS

/htm

l/le

vel1

.htm

l