triple photon quantum correlations benoît boulanger (1) audrey dot (1), kamel bencheikh (2), ariel...

36
Triple photon quantum correlations Benoît Boulanger (1) Audrey Dot (1) , Kamel Bencheikh (2) , Ariel Levenson (2) , Patricia Segonds (1) , Corinne Félix (1) (1)Institut Néel CNRS/UJF, Grenoble, France (2)Laboratoire de Photonique et Nanostructures CNRS, Marcoussis, France FRISNO - Aussois March 28 – April 1st, 2011 LPN

Post on 19-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Triple photon quantum correlations

Benoît Boulanger(1)

Audrey Dot(1), Kamel Bencheikh(2), Ariel Levenson(2), Patricia Segonds(1), Corinne Félix(1)

(1)Institut Néel CNRS/UJF, Grenoble, France(2)Laboratoire de Photonique et Nanostructures CNRS, Marcoussis,

France

FRISNO - AussoisMarch 28 – April 1st, 2011

LPN

OUT LINE

Introduction & motivation

Generation of triple photons

Coherence study of triple photons

Conclusion & perspectives

LPN

OUT LINE

Introduction & motivation

Generation of triple photons

Coherence study of triple photons

Conclusion & perspectives

LPN

PROBLEMATICS

Generation, study and manipulation of triple photons

Crystal non linear optics

Quantum optics

LPN

1

02

3

0 1 2 3

(3)

1

3

2

0

Four-Wave-MixingStimulated Raman ScatteringKerr effectTwo Photon Absorption

THIRD ORDER NON LINEAR PARAMETRIC INTERACTIONS

12

3

0

1 2 3 0

(3)

0 1

3

2

3

3

3(3)

Third Harmonic Generation

Triple Photons Generation

ħ0 + ħ1 = ħ2 + ħ3

ħ3 = ħ + ħ + ħ

ħ1 + ħ2 + ħ3 = ħ0

Third order Parametric Fluorescence

LPN

INTEREST OF GENERATING TRIPLE PHOTONS

Fundamental interest in quantum optics:New state of light (GHZ Greenberger, Horne, Shimony, Zeilinger,

Am. J. Phys. 1990 ) ; 3 photons created from the splitting of a single photon exhibit specific quantum correlations different than those of twin photons (Breitenbach, Schiller, Mlynek, Nature 1997).

Fundamental interest in non linear optics :Specific properties of triple photons generation.

Potential interest in quantum cryptography and information : possibility to use two keys instead of one (twin photons), protocole of announced pairs.

LPN

WIGNER FUNCTION OF TRIPLE PHOTONS

Banaszek, Knight, Phys. Rev. A (1997)

Bencheikh, Douady, Gravier, Levenson, Boulanger, Compt. Rend. Phys. Acad. Sciences (2007)

1ˆ( , ) 2 2

2ipxW q p e q x q x dx

.

The case of a degenerate three-photon quantum state:

2 1/ 2

,1 , 10 1 0

( ) ,3!

l

nn nir

l l kn l k

t e e u u n k kn

LPN

Simultaneous production of 2 pairs of photons(Pan, Daniell, Gasparoni, Weihs, Zeilinger, PRL, 2001)

New tests of Bell theorem, but : Observation by destructive selection

forbids any manipulation a posteriori Conditional protocol (small amount of events)

ALTERNATIVE FOR TRIPLE PHOTONS GENERATION

LPN

Interest in producing prepared triple photons states :

at first, a challenge in non linear optics !!!

OUT LINE

Introduction and motivation

Generation of triple photons

Coherence study of triple photons

Conclusion & perspectives

LPN

SPECTRAL SPREADING OF THIRD ORDER PARAMETRIC FLUORESCENCE

Energy conservationħ0 - ħ1 - ħ2 - ħ3 = 0

Momentum conservationħk0 - ħk1 - ħk2 - ħk3 = 0

2 equations and 3 quanta {ħ1, ħ2, ħ3}

Continuum of solutions

KTP crystalPump : 532 nmDirection of propagation : X

Fève, Boulanger, Douady, Phys. Rev. A (2002)

NB : 2 equations and two quanta to fixe for twin photons.

WEAK AMPLITUDE OF THE THIRD ORDER PARAMETRIC FLUORESCENCE

Rate of transition

2

12

3

00 1

3

2

2

321 0,0,0ˆ,,2

iHkkkW

0,0,0

321 ,, kkk

2 5 22(3) 1 2 2 2

2 02 2 3 60 0 3 1 2 3

288( )

8

n n d dcP P L F mismatch

n n

Radiated power in the mode k2

Oxide crystals 10-17 W 10-21 m2/V2 100 GW/cm2 1

Chalcogenide glasses 10-22 W 10-18 m2/V2 1 GW/cm2 10-6 Polymers

P2 Triple photons << 10-9 W of Twin photons

THE IDEAL CRYSTAL FOR TRIPLE PHOTONS GENERATION …

… IS NOT YET BORN!

Centrosymmetric structure

High damage threshold > 100 GW/cm2

High (3) nonlinearity > 10-17 m2/V2

Phase-matchable, i.e. birefringence n > 10-2

10-9 W of Third order parametric fluorescence

NECESSITY TO STIMULATE THE PHOTON SPLITTING

1

3

2

12

3

0

1 2 3 0

(3)

0

3

2

3

2

Choice of a double stimulation

One photon detected at λ1

One generated triple {λ1, λ2, λ3}

λ0- = 532 nm

λ1+

= 1449 nm

λ2+

= λ3- =1681 nm

Phase-matching in KTPfor the generation of triple photons

around 1500 nm

LPN

CLASSICAL THEORY OF TRIPLE PHOTONS GENERATION

Fève, Boulanger, Douady, Phys. Rev. A (2002)Interaction length (a.u.)

Inte

nsiti

es (

W/c

m²)

2 3I I

1I

0I

20 31 01 1 1

0

231 01 1 1

1

2 22,3 31 01 2,3 1 1 1 1

2,3

, 0 |1,

|1,

, 0 . |1 |1,

I Z cn a L mI Z L

sn a L mI Z L

I Z sn a L m cn a L mI Z L

sn(u/m), cn(u/m) : Jacobi elliptic functions

Energy transferbetween photons populations

LPN

Nd:YAG

20 ps -10 Hz x3 OPG

420 - 2300 nm

1679 nm

max = 100 µJ/pulse

32

x2532 nm

max = 1 mJ/impulsion

Optical Delay 0

Power Meter

lenses

Glan-Taylor

2

2

Power Meter prism

32

0

1

KTPx-cut

25 mm

filters

HTHR 532 nm

32

High intensities : 100 GW/cm² sub-nanosecond pulses, focalised beams

Perfect phase-matching tunability of the source

PIONEER EXPERIMENT OF TRIPLE PHOTONS GENERATION

LPN

LPN

1650 1655 1660 1665 1670 1675 16801450

1460

1470

1480

1490

1500 CalculMesures

Long

ueur

d'o

nde

géné

rée

1 (n

m)

Longueur d'onde d'injection 3=

2 (nm)

Accord de phase (pompe 4=532 nm)

1 20 3

1 1 1 1

Parametric signature

(nm)32

(nm

)

Phase-matching obtained at : 532 nm(o) 1473.5 nm(e) + 1665.2 nm(e) + 1665.2 nm(o)

SPECTRAL PROPERTIES

Gen

erat

ed e

nerg

y at

(a

.u)

(nm)

LPN

1665.21665.2((

-) -)

1665.21665.2((

+)+) 1473.51473.5((

+) +)

Number of pump photons (532 nm) : 2.0x1015

Number of stimulation photons (1665.2 nm) : 8.4x1014

First experiment of triple photons generation

NUMBER OF GENERATED TRIPLES

3.3x1013 triple photons per pulse

Douady & Boulanger, Optics Letters (2004)

LPN

NEW TRIPLE PHOTONS GENERATOR

Nd:YAG1064 nm-20 ps

x3

x2

OPG accordable420 – 2300 nm

KTPX-cut

λ0 = 532 nm

λ0

λ2=λ

3

λ1 λ1

1064 nm-150 ps

Home-made OPO (fixed wavelength)

L

ξ 1

ξ0

ξi=ξ2+ ξ3

1064 nm(2)

λ/2

(2) (2)F

KTP KTP KTP λ2=λ3=1665.2 nm

High intensities

Possibilityof resonant interactions

λ2=λ3=1665.2 nm

15/39

LPN

VALIDATION OF THE CLASSICAL MODEL

ξ0 = 4.5 mJξi = 182 μJ

ξ0 = 4.5 mJL = 13 mm

ξi = 182 μJL = 13 mm

Gravier & Boulanger, JOSA B (2008)

3 223 0 1 11 1

1

|1²( )

2 2

sn a L mwL

The calculation under the UPA gives a surestimation of a factor 500 !

2(3) 21 0 2 3( ) (0) (0) (0)effL L

<<

LPN

OUT LINE

Introduction & motivation

Generation of triple photons

Coherence study of triple photons

Conclusion & perspectives

LPN

PROTOCOL OF CORRELATIONS STUDIES

Recombinations @ 2 photons @ 3 photons

Delay 2

Delay 3

(3)(2)

1 1474e nm

2 1662e nm

3 1662o nm

1 2 3e e o 1 3

e o 2 3e o

Delay 1

G

Spectral analysis

( )GI f 1 2 3 0

2 31, , )(I f Temporal analysis

at

1 2 3 0

LPN

(3)Stimulated generation

Triple photons + stimulating fields

Sum field Sum field

Following Izo Abram et al in the case of twin photons PRL (1986)

• Quantum calculations Quantization of each electromagnetic field

LPNQUANTUM MODELISATION OF THE TRIPLE FIELDS

• Description of the photons evolution in the non linear crystal by their non linear momentum operator :ˆ

NLG

creation and destruction of a photon

LPN

Non linear momentum evolution of the operators and for all the fields in the crystal, since :

ˆ( , )a z

• Access to the 3 quantum field operators in each point of the crystal

ˆ ( , )a z

1 2 3ˆ ˆ ˆ, and

outgoing photons generated in each mode of the triplet

sum fields issued from the 2 and 3 fields recombination

QUANTUM EXPRESSION OF THE TRIPLE FIELDS

LPN

NUMBER OF GENERATED PHOTONS

np

(3)medium

n20

n30

n2(L)

z0 L

n1(L)

n3(L)

n20

n30

Quantified recombined field, given by the integration of its creation and annihilation operators at each frequency :

• 3-photons recombined field :

or

EXPRESSION OF THE RECOMBINED FIELD

Ap

(3)medium

z0 L1

n20

n30

1 1ˆ ( )L

2 1ˆ ( )L

3 1ˆ ( )L3ˆ (0)

2ˆ (0)

(3)medium

z0 L2

2ˆ ( )sum L

(2)medium

z0 L2

2ˆ ( )sum L

• 2-photons recombined field :

Hence the spectrum of the recombined field:

LPN

LPN

3-PHOTON RECOMBINATION

Outgoing photons spectra

(3)

nm

nm

nm

nm

nm

(3)

L L

N2=107

N3=107

N0=1015

Triple photons

Classical Background

Dot, Bencheikh, Boulanger, Levenson PRA, to be published

OUT LINE

Introduction & motivation

Generation of triple photons

Coherence study of triple photons

Conclusion & perspectives

LPN

CONCLUSION

Theory & experiments of triple photons generation from a third order parametric generation

Protocols & calculations showing the quantum correlations

Corresponding experiments in progress

LPN

PERSPECTIVES

Spontaneous triple photons generation in optical fiber using modal phase-matching

! Aaaaaaaaaaaaaaaaaaaaaaa

Measurement of the Wigner functions Quantum information based on triplets

LPN

Third order parametric fluorescence ratefrom 1 W input power at 532 nm

in a one-meter optical fiber

!

Twin photons

FROM TWIN TO TRIPLE PHOTONS

A new storyfor the next 30 years?

0

123

pq

2

Strong impact on :

-Classical nonlinear optics – OPO

-Quantum mechanics and cryptography Aspect, Grangier, Roger, PRL (1981)

Triple photons

An exciting storyover the past 30 years!

LPN

CALL FOR PAPER

Nonlinear Optics (NLO)17-22 July 2011

Marriott Kauai Beach ResortKauai, Hawaii, USA

Submission deadline 15 April 2011

Including a Symposium Celebrating the 50th Anniversary of Nonlinear Optics

Bloembergen, Harris, Yariv, Shen, Byer, …

General chairsDaniel Gautier & Takunori Taira

Program chairsBenoît Boulanger & Steven Cundiff

The Optical Society of America

(2)0 0

0 0

. . . ( )( ) effi E

n

22

4

k

0

2 22 2 2

2 2

22 42 2 2 4

2 4

2

| ( ) | sinh ( ) sinh ( )

sinh ( ) cosh ( ) sinh ( ) sinh ( )2

n m

n

n mn m

nn n n n

n n n

E L L

kL L L L

520 525 530 535 540 545 lambda (nm)

|E

|2 (a

.u.)

SAME PROTOCOLE PREVIOUSLY USED FOR TWIN PHOTONS

Dayan, Phys. Rev. A (2007)

Abram et al, PRL (1986)

ω1ω0 (2)

ω2

(2) ω

22

4

k

LPN

2(2) (2)

, ,

2(2),1

(3) (3)1

cos,

,

I IIeff i eff i

quadi ii i i

eff

knI Z L

I Z L

Cas

cad

ing

rate

(%

) ( . .)(3)

a ueff

Douady & Boulanger, J. Opt A, 2005

SUPPRESSION OF THE SECOND ORDER CASCADING IN KTP

.

Partially non degenerate three-photon quantum state : 1 ≠2=3

Photons in the mode at 1 Photons in the mode at 2=3

WIGNER FUNCTION OF TRIPLE PHOTONS

Bencheikh, Douady, Gravier, Levenson, Boulanger, Compt. Rend. Phys. Acad. Sciences (2007)

RUTILE TiO2 : A PROMISING CRYSTAL FOR TRIPLE PHOTONS GENERATION

Gravier & Boulanger, Optics Express (2006)

THG in KTP :

2

2 2

3 3/ 7.5eff eff

TiO KTPn n

1618 1618 1618 539.3o e e onm nm nm nm

THG in TiO2 : 1840 1840 1840 613.3o e e onm nm nm nm