tsunami wave impact on walls & beaches · 2014-06-30 · numerical free-surface models airy,...

30
Tsunami wave impact on walls & beaches Jannette B. Frandsen 27 Mar. 2014 http://lhe.ete.inrs.ca

Upload: others

Post on 08-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Tsunami wave impact on walls & beaches

Jannette B. Frandsen 27 Mar. 2014http://lhe.ete.inrs.ca

Page 2: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

• Numerical predictions

• Experiments – Small scale;– Large scale.

Tsunami wave impact on walls & beaches

Page 3: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Numerical Free-surface models

Airy, Stokes IIStokes III-V, stream functionFully nonlinearNLSW, Boussinesq3rd generation spectral

Large bodies: ships, FPU, fixed offshore platformsOffshore wind farms, tidal machines, WECsOscillations: harbours/Lakes, sloshing, runup/overtoppingMetOcean conditions & Resource assessment

RANS VOFSPH + subgrid scaleLattice Boltzmann

Commercial: Flow3D, Xflow, WAMIT, ANSYS Aqwa, WAM, SWAN.Research: COULWAVE, FUNWAVE, SWAN, MIKE

Inviscid models

Viscous models

Applications

Solvers

Page 4: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

• Numerical investigations of VIV & free surface water waves: continuum mechanics models.

• Bridge length/time scales btw. micro and continuum mechanics level.

• Identify numerical model approach aiming at:1. FSI/High Re problems;2. Fr > 1 problems;3. Nonlinear free surface

water wave problems;4. Wave-seabed interactions;5. Water wave bluff body

interactions?

VIV = Vortex Induced Vibrations;FSI = Fluid Structure Interaction.

Traditional research models:

Alternative research models:

Motivation & fundamental questions

Page 5: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Comparison of numerical methodsFD σ-method RANS VOF LBM SPH PFEM

Grid dependent soln. yes yes yes no yesWave continuous yes yes yes yes yesNonlinear waves yes yes yes yes yesFree-surface algorithm yes yes Yes/no no yesWave breaking no yes Yes (?) yes yesBubble break-up no no yes no noPoisson freedom yes no Yes (no) yes noViscosity ok ok challenge challenge okBC simple ok no yes no noFSI/arbitrary geometry/topologies

no yes yes yes yes

Efficient parallelization no no Yes/no ? ?CPU efficiency Ok/small domains no Ok so far no ?GPU efficiency ? ? Ok so far ? ?

Page 6: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

• Why….• Breaking wave predictions,• Local free-surface model and coupling effects.

• “….knowledge and methods established in gas dynamics can be transferred directly to long water waves.” Mei, “The applied dynamics of ocean surface waves”, 1989;• “…..impossible to doubt a close connection btw. mathematical analogy of gas dynamics and the structure underlying long surf on beaches”. Meyer, Physics of Fluids, 1986;

• Wehausen & Laitone, “Surface Waves”, 1960;

• Stoker, “Water Waves”, 1957;

• Courant & Friedrichs, “Supersonic flow and shock waves”, 1948.

• Einstein, H. & Baird, “…surface shock waves on liquids & shocks in compressible gases.” CalTech Report, 1946.

• Riabouchinsky, 1932.

L. Boltzmann

On the Analogy btw. Water waves and gas dynamics theory:

Kinetic modeling approach:

Page 7: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Non-breaking wave models – CPU based• Salmon 1999. Journal of Marine Research 57, 503-535. • Ghidaoui et al. 2001. Intl. J. for Num. Methods in Fluids 35. • Buick & Greated 2003. Physics of Fluids 10 (6), 1490-1511. • Zhou 2004. LB Methods for Shallow Water Flows. Springer. • Zhong et al. 2005. Advances in Atmos. Sciences 22(3). • Ghidaoui et al. 2006. J. Fluids Mechanics 548. • Frandsen 2006. Intl. Journal of CFD 20 (6). • Que & Xu 2006. Intl. J. Num. Meth. in Fluids 50. • Thommes et al. 2007. Intl. J. Num. Meth. in Fluids. • Frandsen 2008. Advanced Numerical Models for Simulating

Tsunami Waves & Runup. Advances in Coastal & Ocean Engrg. World Scientific (10).

• ...... • Parmigiani, A., et al. 2013. Intl. J. Modern Physics C.

Page 8: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Breaking wave models – CPU based

Page 9: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Observations

• Non-breaking wave model:1. NLSW equations;2. No free-surface algorithm.

• Breaking wave model:1. Navier-Stokes equations;2. Free-surface algorithm: Volume of Fluid method

Page 10: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Lattice Boltzmann Model• Fluid motion governed by Navier-Stokes eqn.;

• Particles move along lattice in collision process;

• Collisions allow particles to reach local equilibrium;

• Discretized particle velocity distribution function;

• 3D: ex. 19 or 27 velocities on a cubic lattice;

• Hydrodynamic fields: total depth, velocity and pressure.

ContinuumMolecular Meso

αβ

γ 12

13

7

10

8

9

17

16

18

15

04

11

3

6

2

1

5

14

y

z

x

k

j

i

Page 11: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Collision Integral

• Single time relaxation, - LBGK model, after Bhatnagar et al. (1954) ;

• Multi Relaxation Times, MRT models.

Approximations:

Original Boltzmann Equation

L. Boltzmann

Collisions Propagation

Page 12: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Lattice Boltzmann Model in Shallow water

i

Page 13: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

LBGK model example

2 2 20 0

0 0 2 2

( ) ( ) ( )2

eqi i i

g h t h tf h u ux x

2 2 2

0 0 01,2 2 2

( ) ( ) ( ) ( )4 2 2

eq ii i i i

g h t h tu h tf c u ux x x

2

00

ii

f h

Discrete velocity model (D1Q3)

The macroscopic variables

2

00

1( ) i i

iu c f

h

j

f1f

2

f1

f2

(1 − )α f1(1 − )α f

2

f2αf

x + xΔ

t + tΔ

t

+ c _ c

f2

f1(= c )

Δ(x + 2

x)j

x

t

(Soln.: 0. Initial conditions; 1. Calculate feq; 2. Compute fi.)

Page 14: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

• Free-surface: no algorithm is prescribed in non-overturning wave model;

• Wave run-up: dry/wet phase (h 0):Automatically handled (i.e., thin film: h~10-5m); Shoreline algorithm; “Slot method”.

z

x L

z0h0hb

h0/L0 0 , ε = a/h0 = O(1)

Z0 = 5000 m

∂hb/∂x = 1/10

L = 50 km

• Problem Set-up

Long Wave Run-up Studies

Page 15: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Initial Conditions & Boundaries

Page 16: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Near-shore view:

Domain view:

FDLB model 5,000 nodes

Page 17: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Validation

FDLB model 5,000 nodes

Page 18: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

−400 −200 0 200 400−20

−10

0

10

20

x [m]

u s [m/s

]

−400 −200 0 200 400−20

−10

0

10

20

x [m]

u s [m/s

]

Other initial wave forms

−400 −200 0 200 400−20

−10

0

10

20

x [m]

u s [m/s

]

−400 −200 0 200 400−20

−10

0

10

20

x [m]u s [m

/s]

A B

C D

−0.050 5 7

x 104

−4

0

10

x [m]

ζ [m

]

−0.050 5 7

x 104

−10

0

4

x [m]

ζ [m

]

−0.050 5 7

x 104

−4

0

10

x [m]

ζ [m

]

A

B

C

D

, FD LB model , Carrier et al., JFM (2003)

Page 19: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Experimental set-up and definitions

1 m

/4b

/4b

/2

l /2 l /2

x

y

1

3

2

Sway

Surge

1 m

b

b

1

h 2

U0h0

uy

ζ

h

Wave gauge

Small Scale Testing

Page 20: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Large sway motion

ah/b=0.02 ah/b=0.05 ah/b=0.1

h0/b=0.05

Fr1=1.1h1/h2=1.6

Fr1=1.3h1/h2=2.2

Fr1=1.4h1/h2=6.9

Page 21: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

sway

heave

heave +

sway

h0/b = 0.2:

Numerical simulations in Frandsen, JCP (2004)

Free-Surface experiments in small tanks

Page 22: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

0.8 1 1.2 0

0.2

0.4

ωh/ω

1

ζ max

/b

0.8 1 1.2 0

0.2

0.4

ωh/ω

1ζ m

ax/b

Horizontal moving tank with forcing frequency ωh-x -, Analytical 3rd order solution; -o-, numerical nonlinear potential flow soln,

ah/b = 0.003 (Frandsen, JCP’04); - - , experimental solution (ah/b = 0.003);

, experimental solution (ah/b = 0.006);.

h0/b = 0.2 h0/b = 0.6Sloshing in tank: physical vs. numerical test soln

2n1

n

ζ

hs

still water level

Δσ = 1

XΔ = 12

m1 m

(b)(a)

σ

X

mapping

b

z

Initial profile

x

●, wave breaking

Page 23: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Free-surface VOF LB model

• Free-surface algorithm using Volume of Fluid (VOF) method (Ginzburg & Steiner, 2002)

• D3Q27 lattice (recovers the Navier-Stokes equations)

• Mesh: Structured, Octree grids

• Adaptivity: mesh adapts to the wake while the flow develops. (constraints on the local dimensionless vorticity.)

• Large Eddy Simulation (local wall adapting eddy viscosity model)

• Multiple Relaxation Time

Commercially available

Page 24: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Wave runup on beaches

Wave tank: 37.7 m 0.61 m 0.39 mAfter Synolakis, JFM (1987)

LB solution:

Smooth Beach: 1:19.85

Runup height vs. wave height

H/d =0.5, R/d = 1.511

LB VOF solns

800-900 k elements

Page 25: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

ExpériencesLarge Scale Testing04

• Depth/width: 5 m; Length: 120 m • Water depth: 2.5 - 3.5 m • Wave period: 3 - 10 s.• Wavemaker (piston): max. stroke length/velocity: 4 m, 4 m/s.• Initial conditions:

Regular/ irregular waves & user-defined functions,e.g., landslide & earthquake-generated tsunami.

• The flume is designed for modeling the interactions of waves, tides, currents, and sediment transport.

• Instrumentation: ADP, ADV, Aquadopp, turbidity-, water level -and pressure sensors. multibeam system (bathymetry).

Page 26: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Expériences

Wave impact on walls04 octobre 2013

Large Scale Testing04

~ 10 m

~ 3 – 4 MPa in few ms.

Page 27: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Beach stability experiments

Page 28: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Beach Stability Experiments

Page 29: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Concluding thoughtsNear-shore

HydrodynamicModels

• Compatible with other nonlinear shallow water solvers;• Hybrid models to bridge length/time scales;• Assist in design of coastal/harbor structures;• Simplified models in the context of warning systems,

evacuation and inundation mapping.

Kinetic approaches when viscosity and complex fluid mixing and structural response as coupled interactions matters.

Page 30: Tsunami wave impact on walls & beaches · 2014-06-30 · Numerical Free-surface models Airy, Stokes II Stokes III-V, stream function Fully nonlinear NLSW, Boussinesq 3rd generation

Questions?

Jannette B. Frandsen 27 Mar. 2014http://lhe.ete.inrs.ca

What’s next?