tunka-133: cosmic ray mass composition at 10 16 – 10 18 ev

33
Tunka-133: Cosmic Ray Mass Composition at 10 16 – 10 18 eV Vasily Prosin (SINP MSU) For the Tunka Collaboration

Upload: kiefer

Post on 01-Feb-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Tunka-133: Cosmic Ray Mass Composition at 10 16 – 10 18 eV. Vasily Prosin (SINP MSU) For the Tunka Collaboration. Tunka Collaboration. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Tunka-133: Cosmic Ray Mass Composition at 1016 – 1018 eV

Vasily Prosin (SINP MSU)

For the Tunka Collaboration

Page 2: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Tunka Collaboration S.F. Beregnev, S.N. Epimakhov, N.N. Kalmykov, E.E. Korosteleva, N.I. Karpov, V.A. Kozhin, L.A. Kuzmichev, M.I. Panasyuk, E.G. Popova, V.V. Prosin, A.A. Silaev, A.A. Silaev(ju), A.V. Skurikhin, L.G. Sveshnikova, I.V. Yashin – Skobeltsyn Inst. of Nucl. Phys. of Lomonosov Moscow State Univ., Moscow, Russia;

N.M. Budnev, A.V. Dyachok , O.A. Chvalaev, O.A. Gress, A.V. Korobchenko, R.R. Mirgazov, L.V. Pan’kov, Yu.A. Semeney, A.V. Zagorodnikov– Inst. of Applied Phys. of Irkutsk State Univ., Irkutsk, Russia;

B.K. Lubsandorzhiev, B.A. Shaibonov(ju) – Inst. for Nucl. Res. of Russian Academy of Sciences, Moscow, Russia;

V.S. Ptuskin – IZMIRAN, Troitsk, Moscow Region, Russia;

Ch. Spiering, R. Wischnewski – DESY-Zeuthen, Zeuthen, Germany;

A. Chiavassa– Dip. di Fisica Generale Universita' di Torino and INFN, Torino, Italy.

D. Besson, J. Snyder, M. Stockham– Department of Physics and Astronomy, University of Kansas, USA

Page 3: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV
Page 4: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Tunka-133 (update 2011)

Page 5: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Rkn

Qkn

Q(R) = Qkn·exp((Rkn-R)·(1+3/(R+3))/R0)

Q(R) = Qkn·(Rkn/R)2.2

R0 = 102.95-0.245·P [m]

Rkn = 109 - 24.5·(P-4) [m]

b = 4.84 - 2.83∙log10(6.5-P)

CORSIKA: Simulated lateral distributions and fitting function (LDF)

LDF has a single variable parameter

of shape - steepness:

P=Q(100)/Q(200)

0 < R < 700 m

1 - P=5.0 2 – P=4.1 3 – P=3.2 Q(R) = Q(200)·((R/200+1)/2)-

b

Q175

E0 ~ Q1750.93

Page 6: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

An example of real shower of 16.03.2010

WDF

LDFP – analysisFWHM(400)

– analysis

The limits for distances used now to unify Xmax analysis for all energy range:

Page 7: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

3. The new methods of analysis for high core distances

LDF

LDF steepness analysis

Page 8: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

EXPERIMENT:Every event = 7 – 133 pairs of records:

The primary data record for each Cherenkov light detector containes 1024 points of amplitude vs. time with the 5 ns time step:

anode

dynode

1. Pulse selection 2. Apparatus distortions correction 3. Pulse waveform fitting

Page 9: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

EXPERIMENT:The main parameters determination – area (light flux) Qi, amplitude Ai, width FWHMi and front delay ti at 0.25Ai.(The more accurate FWHM = τeff/1.24, τeff = Qi/Ai)

anode

dynode

ti

FWHMi

Ai

Page 10: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

CORSIKA: Core location – LDF and ADF

Core location: Amplitude – Distance Function (ADF), ADF tail fit: A(R) = A(400)·((R/400+1)/2)-bA steepness: bA

LDF tail fit: Q(R) = Q(300)·((R/300+1)/2)-bQ steepness: bQ

bA > bQ

Page 11: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Accuracy of the EAS core reconstruction

For R< 450 m: ΔRcore ~ 10 mFor 450 m < R < 800 m: ΔRcore ~ 20 m for ADF methodand ΔRcore ~ 30 m for LDF method

Page 12: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

CORSIKA: EAS Cherenkov light front

tfront = (R+200)2/SΔθ < 0.5° for Nclusters > 4

Page 13: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Recalculation from Cherenkov light flux Q200 to

the primary energy E0

E0 = A·Q200g

g = 0.94

CORSIKA simulation:~ 500 protons~ 500 ironZenith angles: 0°, 30°, 45°

Page 14: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Zenith angular distribution for E0 > 2·1016 eV

Page 15: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

CORSIKA: Xmax reconstruction

∆Xmax = 2767 - 3437∙log10(bA-2), g∙cm-2

Page 16: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

PHENOMENOLOGICAL APPROACH:Experimental LDF steepness vs. zenith angle for

E0 = 3·1016 eV

~3500 events: 16.4 < log10(E0/eV) < 16.5

cosθ ΔXmax = X0/cosθ – Xmax

X0 = 965 g·cm-2

<Xmax> = 570 g·cm-2 for E0 = 3·1016 eV

Page 17: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

PHENOMENOLOGY: Xmax reconstruction

∆Xmax = 2870 – 3520∙log10(bA-2), g∙cm-2

Page 18: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Example of internal event

Page 19: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Shower front

Page 20: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Example of external event

Page 21: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Shower front

Page 22: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Plan

Light distribution

Shower front

Pulse width

Page 23: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Plan

Light distribution

Shower front

Pulse width

Page 24: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Plan

Light distribution

Shower front

Pulse width

Page 25: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

anode

dynode

Page 26: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

anode

dynode

Page 27: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

anode

dinode

Page 28: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Experimental data

3 winter seasons 2009-2010, 2010-2011 and 2011-2012165 clean moonless nights

~ 980 h of data acquisition with trigger rate ~ 2-3 Hz~7 000 000 events

Zenith angle θ ≤ 45°, Rcore < 450 m:~ 170 000 events with E0 > 6·1015 eV – 100% efficiency

~ 62 000 events with E0 > 1016 eV~ 590 events with E0 >1017 eV

Zenith angle θ ≤ 45°, Rcore < 800 m:~ 1800 events with E0 >1017 eV – 100% efficiency

~ 150 events with E0 > 3·1017 eV~ 8 events with E0 >1018 eV

Page 29: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Mean Depth of EAS maximum Xmax g·cm-2

PRELIMINARY

Page 30: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

EXPERIMENT:Mean logarithm of primary mass.PRELIMINARY

Page 31: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Mean logarithm of CR atomic numberBerezhko 2009

Experiment:

ATIC-2 (Panov et al. 2006)

JACEE (Asakimori et al. 1998)

KASKADE (QGSJET, SIBYLL) (Hörandel 2005)HiRes (QGSJET, SIBYLL) (Abbasi et al. 2005)

CRs from SNRs +CRs from AGNs

Yakutsk CRs from SNRs +reacceleration +Extragalactic CRs

Accurate determination of CR composition at ε = 1017- 1019 eV is neededto find transition from galactic to extragalactic CR component

Page 32: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

CONCLUSION

1. Primary mass composition changes from light (He) at the knee to heavy at 3·1016 eV

2. The mass composition is heavy till at least 1017 eV3. More statistics is needed at the energy range 1017 – 1018 eV

PLANS

1.More statistics.2.The new simulations. 3.Xmax distribution analysis.

Page 33: Tunka-133: Cosmic Ray Mass Composition  at 10 16  – 10 18  eV

Thank you!