tutorial fluent

862
FLUENT 6.3 Tutorial Guide September 2006

Upload: rames-alshehri

Post on 06-Jul-2016

764 views

Category:

Documents


12 download

TRANSCRIPT

  • FLUENT 6.3 Tutorial Guide

    September 2006

  • Copyright c 2006 by Fluent Inc.All Rights Reserved. No part of this document may be reproduced or otherwise used in

    any form without express written permission from Fluent Inc.

    Airpak, FIDAP, FLUENT, FLUENT for CATIA V5, FloWizard, GAMBIT, Icemax, Icepak,Icepro, Icewave, Icechip, MixSim, and POLYFLOW are registered trademarks of FluentInc. All other products or name brands are trademarks of their respective holders.

    CHEMKIN is a registered trademark of Reaction Design Inc.

    Portions of this program include material copyrighted by PathScale Corporation2003-2004.

    Fluent Inc.Centerra Resource Park

    10 Cavendish CourtLebanon, NH 03766

  • Volume 1

    1 Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow2 Modeling Periodic Flow and Heat Transfer3 Modeling External Compressible Flow4 Modeling Unsteady Compressible Flow5 Modeling Radiation and Natural Convection6 Using a Non-Conformal Mesh7 Using a Single Rotating Reference Frame8 Using Multiple Rotating Reference Frames9 Using the Mixing Plane Model10 Using Sliding Meshes11 Using Dynamic Meshes

    Volume 2

    12 Modeling Species Transport and Gaseous Combustion13 Using the Non-Premixed Combustion Model14 Modeling Surface Chemistry15 Modeling Evaporating Liquid Spray16 Using the VOF Model17 Modeling Cavitation18 Using the Mixture and Eulerian Multiphase Models19 Using the Eulerian Multiphase Model for Granular Flow20 Modeling Solidification21 Using the Eulerian Granular Multiphase Model with Heat Transfer22 Postprocessing23 Turbo Postprocessing24 Parallel Processing

  • Contents

    1 Introduction to Using FLUENT: Fluid Flow and Heat Transferin a Mixing Elbow 1-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 1-13

    Step 5: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19

    Step 6: Displaying the Preliminary Solution . . . . . . . . . . . . . . . . 1-28

    Step 7: Enabling Second-Order Discretization . . . . . . . . . . . . . . . 1-39

    Step 8: Adapting the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 1-46

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-58

    2 Modeling Periodic Flow and Heat Transfer 2-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

    c Fluent Inc. September 21, 2006 i

  • CONTENTS

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 2-10

    Step 5: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

    Step 6: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25

    3 Modeling External Compressible Flow 3-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

    Step 4: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 3-8

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 3-9

    Step 6: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

    Step 7: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

    4 Modeling Unsteady Compressible Flow 4-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

    ii c Fluent Inc. September 21, 2006

  • CONTENTS

    Step 2: Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

    Step 5: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 4-9

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 4-10

    Step 7: Solution: Steady Flow . . . . . . . . . . . . . . . . . . . . . . . . 4-12

    Step 8: Enable Time Dependence and Set Unsteady Conditions . . . . . 4-24

    Step 9: Solution: Unsteady Flow . . . . . . . . . . . . . . . . . . . . . . 4-27

    Step 10: Saving and Postprocessing Time-Dependent Data Sets . . . . . 4-30

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43

    5 Modeling Radiation and Natural Convection 5-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 5-9

    Step 5: Solution for the Rosseland Model . . . . . . . . . . . . . . . . . . 5-12

    Step 6: Postprocessing for the Rosseland Model . . . . . . . . . . . . . . 5-15

    Step 7: P-1 Model Setup, Solution, and Postprocessing . . . . . . . . . . 5-24

    Step 8: DTRM Setup, Solution, and Postprocessing . . . . . . . . . . . . 5-28

    Step 9: DO Model Setup, Solution, and Postprocessing . . . . . . . . . . 5-31

    Step 10: Comparison of y-Velocity Plots . . . . . . . . . . . . . . . . . . 5-34

    Step 11: Comparison of Radiation Models for an OpticallyThick Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36

    c Fluent Inc. September 21, 2006 iii

  • CONTENTS

    Step 12: S2S Setup, Solution, and Postprocessing for aNon-Participating Medium . . . . . . . . . . . . . . . . . . . . . 5-38

    Step 13: Comparison of Radiation Models for aNon-Participating Medium . . . . . . . . . . . . . . . . . . . . . 5-43

    Step 14: S2S Definition, Solution and Postprocessing withPartial Enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45

    Step 15: Comparison of S2S Models with and without Partial Enclosure . 5-49

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-50

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-50

    6 Using a Non-Conformal Mesh 6-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

    Step 1: Merging the Mesh Files . . . . . . . . . . . . . . . . . . . . . . . 6-3

    Step 2: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

    Step 5: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 6-10

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 6-10

    Step 7: Grid Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-33

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-33

    iv c Fluent Inc. September 21, 2006

  • CONTENTS

    7 Modeling Flow Through Porous Media 7-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 7-9

    Step 5: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14

    Step 6: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-32

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-32

    8 Using a Single Rotating Reference Frame 8-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

    Step 2: Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 8-9

    Step 6: Solution Using the Standard k- Model . . . . . . . . . . . . . . 8-13

    Step 7: Postprocessing for the Standard k- Solution . . . . . . . . . . . 8-19

    Step 8: Solution Using the RNG k- Model . . . . . . . . . . . . . . . . . 8-25

    c Fluent Inc. September 21, 2006 v

  • CONTENTS

    Step 9: Postprocessing for the RNG k- Solution . . . . . . . . . . . . . . 8-26

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30

    9 Using Multiple Rotating Reference Frames 9-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 9-8

    Step 5: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13

    Step 6: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20

    10 Using the Mixing Plane Model 10-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

    Step 2: Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5

    Step 4: Mixing Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7

    vi c Fluent Inc. September 21, 2006

  • CONTENTS

    Step 5: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 10-10

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-21

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-27

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-32

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-32

    11 Using Sliding Meshes 11-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9

    Step 4: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 11-10

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 11-11

    Step 6: Grid Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-31

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-37

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-37

    12 Using Dynamic Meshes 12-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

    c Fluent Inc. September 21, 2006 vii

  • CONTENTS

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 12-7

    Step 5: Solution: Steady Flow . . . . . . . . . . . . . . . . . . . . . . . . 12-10

    Step 6: Unsteady Solution Setup . . . . . . . . . . . . . . . . . . . . . . 12-12

    Step 7: Mesh Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13

    Step 8: Unsteady Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-26

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-29

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-29

    13 Modeling Species Transport and Gaseous Combustion 13-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

    Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 13-13

    Step 5: Initial Solution with Constant Heat Capacity . . . . . . . . . . . 13-21

    Step 6: Solution with Varying Heat Capacity . . . . . . . . . . . . . . . . 13-26

    Step 7: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29

    Step 8: NOx Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-37

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-47

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-47

    viii c Fluent Inc. September 21, 2006

  • CONTENTS

    14 Using the Non-Premixed Combustion Model 14-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8

    Step 3: Non Adiabatic PDF Table . . . . . . . . . . . . . . . . . . . . . . 14-12

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-16

    Step 5: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 14-17

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 14-18

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26

    Step 9: Energy Balances Reporting . . . . . . . . . . . . . . . . . . . . . 14-29

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-30

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-31

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-31

    15 Modeling Surface Chemistry 15-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9

    Step 4: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 15-16

    c Fluent Inc. September 21, 2006 ix

  • CONTENTS

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 15-17

    Step 6: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-22

    Step 7: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-26

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-32

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-32

    16 Modeling Evaporating Liquid Spray 16-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-7

    Step 3: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 16-10

    Step 4: Initial Solution Without Droplets . . . . . . . . . . . . . . . . . . 16-16

    Step 5: Create a Spray Injection . . . . . . . . . . . . . . . . . . . . . . . 16-25

    Step 6: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-32

    Step 7: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-34

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-38

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-38

    17 Using the VOF Model 17-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9

    x c Fluent Inc. September 21, 2006

  • CONTENTS

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11

    Step 4: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-13

    Step 5: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 17-15

    Step 6: User-Defined Function (UDF) . . . . . . . . . . . . . . . . . . . . 17-15

    Step 7: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 17-16

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-21

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-27

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-30

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-30

    18 Modeling Cavitation 18-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-5

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-8

    Step 4: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-11

    Step 5: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 18-13

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 18-14

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-18

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-22

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-26

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-26

    c Fluent Inc. September 21, 2006 xi

  • CONTENTS

    19 Using the Mixture and Eulerian Multiphase Models 19-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-4

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-8

    Step 4: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-9

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 19-12

    Step 6: Solution Using the Mixture Model . . . . . . . . . . . . . . . . . 19-16

    Step 7: Postprocessing for the Mixture Solution . . . . . . . . . . . . . . 19-20

    Step 8: Setup and Solution for the Eulerian Model . . . . . . . . . . . . . 19-23

    Step 9: Postprocessing for the Eulerian Model . . . . . . . . . . . . . . . 19-26

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-28

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-28

    20 Using the Eulerian Multiphase Model for Granular Flow 20-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-7

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-10

    Step 4: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-12

    Step 5: User-Defined Function (UDF) . . . . . . . . . . . . . . . . . . . . 20-14

    xii c Fluent Inc. September 21, 2006

  • CONTENTS

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 20-16

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-18

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-28

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-30

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-30

    21 Modeling Solidification 21-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-4

    Step 3: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-7

    Step 4: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 21-9

    Step 5: Solution: Steady Conduction . . . . . . . . . . . . . . . . . . . . 21-17

    Step 6: Solution: Unsteady Flow and Heat Transfer . . . . . . . . . . . . 21-25

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-31

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-31

    22 Using the Eulerian Granular Multiphase Model with Heat Transfer 22-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3

    Step 2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-5

    Step 3: UDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-7

    c Fluent Inc. September 21, 2006 xiii

  • CONTENTS

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-8

    Step 5: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-10

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 22-13

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-20

    Step 7: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-31

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-33

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-33

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-33

    23 Postprocessing 23-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-2

    Step 1: Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-3

    Step 2: Adding Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-5

    Step 3: Creating Isosurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 23-9

    Step 4: Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-10

    Step 5: Velocity Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-15

    Step 6: Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-20

    Step 7: Pathlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-24

    Step 8: Overlaying Velocity Vectors on the Pathline Display . . . . . . . 23-29

    Step 9: Exploded Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-32

    Step 10: Animating the Display of Results in SuccessiveStreamwise Planes . . . . . . . . . . . . . . . . . . . . . . . . . . 23-37

    Step 11: XY Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-39

    Step 12: Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-41

    xiv c Fluent Inc. September 21, 2006

  • CONTENTS

    Step 13: Saving Hardcopy Files . . . . . . . . . . . . . . . . . . . . . . . 23-44

    Step 14: Volume Integral Reports . . . . . . . . . . . . . . . . . . . . . . 23-45

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-45

    24 Turbo Postprocessing 24-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-3

    Step 1: Reading the Case and Data Files . . . . . . . . . . . . . . . . . . 24-3

    Step 2: Grid Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-3

    Step 3: Defining the Turbomachinery Topology . . . . . . . . . . . . . . 24-5

    Step 4: Isosurface Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 24-7

    Step 5: Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-9

    Step 6: Reporting Turbo Quantities . . . . . . . . . . . . . . . . . . . . . 24-14

    Step 7: Averaged Contours . . . . . . . . . . . . . . . . . . . . . . . . . . 24-15

    Step 8: 2D Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-16

    Step 9: Averaged XY Plots . . . . . . . . . . . . . . . . . . . . . . . . . 24-18

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-19

    25 Parallel Processing 25-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-3

    Step 1: Starting the Parallel Version of FLUENT . . . . . . . . . . . . . . 25-3

    Step 1A: Multiprocessor Windows, Linux, or UNIX Computer . . . . . . 25-3

    Step 1B: Network of Windows, Linux, or UNIX Computers . . . . . . . . 25-4

    c Fluent Inc. September 21, 2006 xv

  • CONTENTS

    Step 2: Reading and Partitioning the Grid . . . . . . . . . . . . . . . . . 25-7

    Step 3: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-12

    Step 4: Checking Parallel Performance . . . . . . . . . . . . . . . . . . . 25-13

    Step 5: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-14

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-16

    xvi c Fluent Inc. September 21, 2006

  • Using This Manual

    Whats In This Manual

    The FLUENT Tutorial Guide contains a number of tutorials that teach you how to useFLUENT to solve different types of problems. In each tutorial, features related to problemsetup and postprocessing are demonstrated.

    Tutorial 1 is a detailed tutorial designed to introduce the beginner to FLUENT. Thistutorial provides explicit instructions for all steps in the problem setup, solution, andpostprocessing. The remaining tutorials assume that you have read or solved Tutorial 1,or that you are already familiar with FLUENT and its interface. In these tutorials, somesteps will not be shown explicitly.

    All of the tutorials include some postprocessing instructions, but Tutorial 23 is devotedentirely to standard postprocessing, and Tutorial 24 is devoted to turbomachinery-specificpostprocessing.

    Where to Find the Files Used in the Tutorials

    Each of the tutorials uses an existing mesh file. (Tutorials for mesh generation areprovided with the mesh generator documentation.) You will find the appropriate meshfile (and any other relevant files used in the tutorial) on the FLUENT documentation CD.The Preparation step of each tutorial will tell you where to find the necessary files.(Note that Tutorials 23, 24, and 25 use existing case and data files.)

    Some of the more complex tutorials may require a significant amount of computationaltime. If you want to look at the results immediately, without waiting for the calcula-tion to finish, you can find the case and data files associated with the tutorial on thedocumentation CD (in the same directory where you found the mesh file).

    How To Use This Manual

    Depending on your familiarity with computational fluid dynamics and Fluent Inc. soft-ware, you can use this tutorial guide in a variety of ways.

    For the Beginner

    If you are a beginning user of FLUENT you should first read and solve Tutorial 1, in orderto familiarize yourself with the interface and with basic setup and solution procedures.

    c Fluent Inc. September 21, 2006 i

  • Using This Manual

    You may then want to try a tutorial that demonstrates features that you are going touse in your application. For example, if you are planning to solve a problem using thenon-premixed combustion model, you should look at Tutorial 14.

    You may want to refer to other tutorials for instructions on using specific features, suchas custom field functions, grid scaling, and so on, even if the problem solved in thetutorial is not of particular interest to you. To learn about postprocessing, you can lookat Tutorial 23, which is devoted entirely to postprocessing (although the other tutorialsall contain some postprocessing as well). For turbomachinery-specific postprocessing, seeTutorial 24.

    For the Experienced User

    If you are an experienced FLUENT user, you can read and/or solve the tutorial(s) thatdemonstrate features that you are going to use in your application. For example, if youare planning to solve a problem using the non-premixed combustion model, you shouldlook at Tutorial 14.

    You may want to refer to other tutorials for instructions on using specific features, suchas custom field functions, grid scaling, and so on, even if the problem solved in thetutorial is not of particular interest to you. To learn about postprocessing, you can lookat Tutorial 23, which is devoted entirely to postprocessing (although the other tutorialsall contain some postprocessing as well). For turbomachinery-specific postprocessing, seeTutorial 24.

    Typographical Conventions Used In This Manual

    Several typographical conventions are used in the text of the tutorials to facilitate yourlearning process.

    An informational icon ( i ) marks an important note. An warning icon ( ! ) marks a warning. Different type styles are used to indicate graphical user interface menu items and

    text interface menu items (e.g., Zone Surface panel, surface/zone-surface com-mand).

    The text interface type style is also used when illustrating exactly what appears onthe screen or exactly what you must type in the text window or in a panel.

    Instructions for performing each step in a tutorial will appear in standard type.Additional information about a step in a tutorial appears in italicized type.

    ii c Fluent Inc. September 21, 2006

  • Using This Manual

    A mini flow chart is used to indicate the menu selections that lead you to a specificcommand or panel. For example,

    Define Boundary Conditions...indicates that the Boundary Conditions... menu item can be selected from the Definepull-down menu.

    The words surrounded by boxes invoke menus (or submenus) and the arrows pointfrom a specific menu toward the item you should select from that menu.

    c Fluent Inc. September 21, 2006 iii

  • Using This Manual

    iv c Fluent Inc. September 21, 2006

  • Tutorial 1. Introduction to Using FLUENT: Fluid Flow andHeat Transfer in a Mixing Elbow

    Introduction

    This tutorial illustrates the setup and solution of a three-dimensional turbulent fluidflow and heat transfer problem in a mixing elbow. The mixing elbow configurationis encountered in piping systems in power plants and process industries. It is oftenimportant to predict the flow field and temperature field in the area of the mixing regionin order to properly design the junction.

    This tutorial demonstrates how to do the following:

    Read an existing grid file into FLUENT. Use mixed units to define the geometry and fluid properties. Set material properties and boundary conditions for a turbulent forced convection

    problem.

    Initiate the calculation with residual plotting. Calculate a solution using the pressure-based solver. Visually examine the flow and temperature fields using FLUENTs postprocessing

    tools.

    Enable the second-order discretization scheme for improved prediction of the tem-perature field.

    Adapt the grid based on the temperature gradient to further improve the predictionof the temperature field.

    Prerequisites

    This tutorial assumes that you have little to no experience with FLUENT, and so eachstep will be explicitly described.

    c Fluent Inc. September 21, 2006 1-1

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Problem Description

    The problem to be considered is shown schematically in Figure 1.1. A cold fluid at 20Cflows into the pipe through a large inlet, and mixes with a warmer fluid at 40C thatenters through a smaller inlet located at the elbow. The pipe dimensions are in inches,and the fluid properties and boundary conditions are given in SI units. The Reynoldsnumber for the flow at the larger inlet is 50,800, so a turbulent flow model will be required.

    = 4216 J/kgKpC

    = 8 x 10 Pas 4

    k = 0.677 W/mK

    = 0.4 m/sxU4" Dia.

    4"

    8"

    3"1" Dia.

    1"

    8"

    Viscosity:Conductivity:Specific Heat:

    T = 20 CI = 5%

    = 1.2 m/syUT = 40 CI = 5%

    Density: = 1000 kg/m3

    o

    o

    Figure 1.1: Problem Specification

    1-2 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Setup and Solution

    Preparation

    1. Download introduction.zip from the Fluent Inc. User Services Center(www.fluentusers.com) to your working folder. This file can be found by usingthe Documentation link on the FLUENT product page.

    OR,

    Copy introduction.zip from the FLUENT documentation CD to your workingfolder.

    For Linux / UNIX systems, you can find the file by inserting the CD into yourCD-ROM drive and going to the following directory:

    /cdrom/fluent6.3/help/tutfiles/

    where cdrom must be replaced by the name of your CD-ROM drive.

    For Windows systems, you can find the file by inserting the CD into your CD-ROMdrive and going to the following folder:

    cdrom:\fluent6.3\help\tutfiles\

    where cdrom must be replaced by the name of your CD-ROM drive (e.g., E).

    2. Unzip introduction.zip.

    The file elbow.msh can be found in the introduction folder created after unzippingthe file.

    3. Start the 3D (3d) version of FLUENT.

    c Fluent Inc. September 21, 2006 1-3

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 1: Grid

    1. Read the grid file elbow.msh.

    File Read Case...

    (a) Select the grid file by clicking elbow.msh in the introduction folder createdwhen you unzipped the original file.

    (b) Click OK to read the file and close the Select File dialog box.

    Note: As the grid file is read by FLUENT, messages will appear in the consolethat report the progress of the conversion. FLUENT will report that 13,852hexahedral fluid cells have been read, along with a number of boundary faceswith different zone identifiers.

    1-4 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    2. Check the grid.

    Grid Check

    Grid Check

    Grid Check

    Domain Extents:x-coordinate: min (m) = -8.000000e+000, max (m) = 8.000000e+000y-coordinate: min (m) = -9.134633e+000, max (m) = 8.000000e+000z-coordinate: min (m) = 0.000000e+000, max (m) = 2.000000e+000

    Volume statistics:minimum volume (m3): 5.098261e-004maximum volume (m3): 2.330738e-002

    total volume (m3): 1.607154e+002Face area statistics:

    minimum face area (m2): 4.865882e-003maximum face area (m2): 1.017924e-001

    Checking number of nodes per cell.Checking number of faces per cell.Checking thread pointers.Checking number of cells per face.Checking face cells.Checking bridge faces.Checking right-handed cells.Checking face handedness.Checking face node order.Checking element type consistency.Checking boundary types:Checking face pairs.Checking periodic boundaries.Checking node count.Checking nosolve cell count.Checking nosolve face count.Checking face children.Checking cell children.Checking storage.Done.

    Note: The minimum and maximum values may vary slightly when running ondifferent platforms. The grid check will list the minimum and maximum xand y values from the grid in the default SI unit of meters, and will reporta number of other grid features that are checked. Any errors in the grid willbe reported at this time. In particular, you should always make sure that theminimum volume is not negative, since FLUENT cannot begin a calculation

    c Fluent Inc. September 21, 2006 1-5

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    when this is the case. In the next step, you will scale the grid so that it is inthe correct unit of inches.

    3. Scale the grid.

    Grid Scale...

    (a) Select inches from the Grid Was Created In drop-down list in the Unit Conversiongroup box, by first clicking the down-arrow button and then clicking the initem from the list that appears.

    (b) Click Scale to scale the grid.

    ! Be sure to click the Scale button only once.

    The reported values of the Domain Extents will be reported in the default SIunit of meters.

    (c) Click the Change Length Units button to set inches as the working unit forlength.

    (d) Confirm that the domain extents are as shown in the previous panel.

    (e) Close the Scale Grid panel by clicking Close.

    The grid is now sized correctly, and the working unit for length has been set toinches.

    Note: Because the default SI units will be used for everything except length, therewill be no need to change any other units in this problem. The choice ofinches for the unit of length has been made by the actions you have just taken.If you wanted the working unit for length to be something other than inches

    1-6 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (e.g., millimeters), you would have to open the Set Units panel from the Definepull-down menu and make the appropriate change.

    4. Display the grid (Figure 1.2).

    Display Grid...

    (a) Retain the default selection of all the items in the Surfaces selection list exceptdefault-interior.

    Note: A list item is selected if it is highlighted, and deselected if it is nothighlighted. You can select and deselect items by clicking on the text.

    (b) Click Display to open a graphics window and display the grid.

    (c) Close the Grid Display panel.

    Extra: You can use the right mouse button to probe for grid information in thegraphics window. If you click the right mouse button on any node in the grid,information will be displayed in the FLUENT console about the associated zone,including the name of the zone. This feature is especially useful when youhave several zones of the same type and you want to distinguish between themquickly.

    For this 3D problem, you can make it easier to probe particular nodes by chang-ing the view. You can perform any of the following actions in the graphicswindow:

    Rotate the view.Drag the mouse while pressing the left mouse button. Release the mousebutton when the viewing angle is satisfactory.

    c Fluent Inc. September 21, 2006 1-7

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Translate the view.Click the middle mouse button once at any point in the display to centerthe view at that point.

    Zoom in to magnify a portion of the display.Drag the mouse to the right and either up or down while pressing themiddle mouse button. This action will cause a white rectangle to appearin the display. When you release the mouse button, a new view will bedisplayed which consists entirely of the contents of the white rectangle.

    Zoom out to reduce the magnification.Drag the mouse to the left and either up or down while pressing the middlemouse button. This action will cause a white rectangle to appear in thedisplay. When you release the mouse button, the magnification of the viewwill be reduced by an amount that is inversely proportional to the size ofthe white rectangle. The new view will be centered at the center of thewhite rectangle.

    ZY

    X

    GridFLUENT 6.3 (3d, pbns, lam)

    Figure 1.2: The Hexahedral Grid for the Mixing Elbow

    1-8 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 2: Models

    1. Retain the default solver settings.

    Define Models Solver...

    (a) Retain all of the default settings.

    (b) Click OK to close the Solver panel.

    c Fluent Inc. September 21, 2006 1-9

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    2. Turn on the k- turbulence model.

    Define Models Viscous...

    (a) Select k-epsilon from the Model list by clicking the radio button or the text,so that a black dot appears in the radio button.

    The Viscous Model panel will expand.

    (b) Select Realizable from the k-epsilon Model list.

    (c) Click OK to accept the model and close the Viscous Model panel.

    1-10 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    3. Enable heat transfer by activating the energy equation.

    Define Models Energy...

    (a) Enable the Energy Equation option by clicking the check box or the text.

    Note: An option is enabled when there is a check mark in the check box, anddisabled when the check box is empty.

    (b) Click OK to close the Energy panel.

    Step 3: Materials

    1. Create a new material called water.

    Define Materials...

    c Fluent Inc. September 21, 2006 1-11

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Enter water for Name by double-clicking in the text-entry box under Nameand typing with the keyboard.

    (b) Enter the following values in the Properties group box:

    Property Value

    Density 1000 kg/m3

    Cp 4216 J/kg KThermal Conductivity 0.677 W/mKViscosity 8e-04 kg/m s

    (c) Click Change/Create.

    A Question dialog box will open, asking if you want to overwrite air. Click Noso that the new material water is added to the list of materials which originallycontained only air.

    Extra: You could have copied the material water-liquid [h2o] from the ma-terials database (accessed by clicking the Fluent Database... button). If theproperties in the database are different from those you wish to use, youcan edit the values in the Properties group box in the Materials panel andclick Change/Create to update your local copy (the database copy will notbe affected).

    (d) Make sure that there are now two materials defined locally by examining theFluent Fluid Materials drop-down list.

    (e) Close the Materials panel.

    1-12 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 4: Boundary Conditions

    Define Boundary Conditions...

    1. Set the boundary conditions for the fluid (fluid).

    (a) Select fluid from the Zone selection list.

    c Fluent Inc. September 21, 2006 1-13

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (b) Click Set... to open the Fluid panel.

    i. Select water from the Material Name drop-down list.

    ii. Click OK to close the Fluid panel.

    You have just specified water as the working fluid for this simulation.

    2. Set the boundary conditions at the cold inlet (velocity-inlet-5).

    Hint: If you are unsure of which inlet zone corresponds to the cold inlet, you canprobe the grid display with the right mouse button as described in a previousstep. Not only will information be displayed in the FLUENT console, but thezone you probed will automatically be selected from the Zone selection list inthe Boundary Conditions panel.

    (a) Select velocity-inlet-5 from the Zone selection list.

    1-14 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (b) Click Set... to open the Velocity Inlet panel.

    i. Select Components from the Velocity Specification Method drop-down list.

    The Velocity Inlet panel will expand.

    ii. Enter 0.4 m/s for X-Velocity.

    iii. Retain the default value of 0 m/s for both Y-Velocity and Z-Velocity.

    iv. Select Intensity and Hydraulic Diameter from the Specification Method drop-down list in the Turbulence group box.

    v. Enter 5% for Turbulent Intensity.

    vi. Enter 4 inches for Hydraulic Diameter.

    The hydraulic diameter Dh is defined as:

    Dh =4A

    Pw

    where A is the cross-sectional area and Pw is the wetted perimeter.

    c Fluent Inc. September 21, 2006 1-15

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    vii. Click the Thermal tab.

    viii. Enter 293.15 K for Temperature.

    ix. Click OK to close the Velocity Inlet panel.

    3. In a similar manner, set the boundary conditions at the hot inlet (velocity-inlet-6),using the values in the following table:

    Velocity Specification Method ComponentsX-Velocity 0 m/sY-Velocity 1.2 m/sZ-Velocity 0 m/sSpecification Method Intensity & Hydraulic DiameterTurbulent Intensity 5%Hydraulic Diameter 1 inchTemperature 313.15 K

    1-16 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    4. Set the boundary conditions at the outlet (pressure-outlet-7), as shown in the fol-lowing panel.

    Note: FLUENT will use the backflow conditions only if the fluid is flowing intothe computational domain through the outlet. Since backflow might occur atsome point during the solution procedure, you should set reasonable backflowconditions to prevent convergence from being adversely affected.

    c Fluent Inc. September 21, 2006 1-17

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    5. For the wall of the pipe (wall), retain the default value of 0 W/m2 for Heat Flux inthe Thermal tab.

    6. Close the Boundary Conditions panel.

    1-18 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 5: Solution

    1. Initialize the flow field, using the boundary conditions settings at the cold inlet(velocity-inlet-5) as a starting point.

    Solve Initialize Initialize...

    (a) Select velocity-inlet-5 from the Compute From drop-down list.

    (b) Enter 1.2 m/s for Y Velocity in the Initial Values group box.

    Note: While an initial X Velocity is an appropriate guess for the horizontalsection, the addition of a Y Velocity component will give rise to a betterinitial guess throughout the entire elbow.

    (c) Click Init and close the Solution Initialization panel.

    c Fluent Inc. September 21, 2006 1-19

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    2. Enable the plotting of residuals during the calculation.

    Solve Monitors Residual...

    (a) Enable Plot in the Options group box.

    (b) Enter 1e-05 for the Absolute Criteria of continuity, as shown in the previouspanel.

    (c) Click OK to close the Residual Monitors panel.

    Note: By default, all variables will be monitored and checked by FLUENT as ameans to determine the convergence of the solution. Although residuals areuseful for checking convergence, a more reliable method is to define a surfacemonitor. You will do this in the next step.

    1-20 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    3. Define a surface monitor at the outlet (pressure-outlet-7).

    Solve Monitors Surface...

    (a) Set Surface Monitors to 1 by clicking once on the up-arrow button.

    (b) Enable the Plot and Write options for monitor-1.

    (c) Set Every to 3 for monitor-1.

    This setting instructs FLUENT to update the plot of the surface monitor andwrite data to a file after every 3 iterations during the solution.

    (d) Click the Define... button to open the Define Surface Monitor panel.

    i. Select Mass-Weighted Average from the Report Type drop-down list.

    ii. Retain the default entry of monitor-1.out for File Name.

    c Fluent Inc. September 21, 2006 1-21

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    iii. Select Temperature... and Static Temperature from the Report of drop-down lists.

    iv. Select pressure-outlet-7 from the Surfaces selection list.

    v. Click OK to close the Define Surface Monitor panel.

    (e) Click OK to close the Surface Monitors panel.

    4. Save the case file (elbow1.cas.gz).

    File Write Case...

    (a) (optional) Indicate the folder in which you would like the file to be saved.

    By default, the file will be saved in the folder from which you read in elbow.msh(i.e., the introduction folder). You can indicate a different folder by brows-ing to it or by creating a new folder.

    (b) Enter elbow1.cas.gz for Case File.

    Adding the extension .gz to the end of the file name extension instructs FLU-ENT to save the file in a compressed format. You do not have to include .casin the extension (e.g., if you enter elbow1.gz, FLUENT will automaticallysave the file as elbow1.cas.gz). The .gz extension can also be used to savedata files in a compressed format.

    (c) Make sure that the default Write Binary Files option is enabled, so that a binaryfile will be written.

    1-22 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (d) Click OK to close the Select File dialog box.

    Note: If you retained the default introduction folder in the Select File dialogbox, a Warning dialog box will open to alert you that the file elbow1.cas.gzalready exists. All of the files you will be instructed to save in this tutorialalready exist in the introduction folder, and can be overwritten. ClickOK in the Warning dialog box to proceed.

    5. Start the calculation by requesting 150 iterations.

    Solve Iterate...

    (a) Enter 150 for Number of Iterations.

    (b) Click Iterate.

    c Fluent Inc. September 21, 2006 1-23

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Note: By starting the calculation, you are also starting to save the surfacemonitor data at the rate specified in the Surface Monitors panel. If a filealready exists in your working folder with the name you specified in theDefine Surface Monitor panel, then a Question dialog box will open, askingif you would like append the new data to the existing file. Click No inthe Question dialog box, and then click OK in the Warning dialog box thatfollows to overwrite the existing file.

    As the calculation progresses, the residuals will be plotted in the graphics win-dow (Figure 1.3). An additional graphics window will open to display theconvergence history of the mass-weighted average temperature (Figure 1.4).The solution will reach convergence after approximately 140 iterations.

    Note: The number of iterations required for convergence varies according tothe platform used. Also, since the residual values are different for differentcomputers, the plot that appears on your screen may not be exactly thesame as the one shown here.

    (c) Close the Iterate panel when the calculation is complete.

    1-24 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    ZY

    X

    Scaled ResidualsFLUENT 6.3 (3d, pbns, rke)

    Iterations140120100806040200

    1e+01

    1e+00

    1e-01

    1e-02

    1e-03

    1e-04

    1e-05

    1e-06

    1e-07

    epsilonkenergyz-velocityy-velocityx-velocitycontinuity

    Residuals

    Figure 1.3: Residuals for the First 140 Iterations

    ZY

    X

    Convergence history of Static Temperature on pressure-outlet-7FLUENT 6.3 (3d, pbns, rke)

    Iteration

    (k)AverageWeighted

    Mass

    140120100806040200

    296.6000

    296.5000

    296.4000

    296.3000

    296.2000

    296.1000

    296.0000

    monitor-1

    Figure 1.4: Convergence History of the Mass-Weighted Average Temperature

    c Fluent Inc. September 21, 2006 1-25

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    6. Examine the plots for convergence (Figures 1.3 and 1.4).

    Note: There are no universal metrics for judging convergence. Residual definitionsthat are useful for one class of problem are sometimes misleading for otherclasses of problems. Therefore it is a good idea to judge convergence not only byexamining residual levels, but also by monitoring relevant integrated quantitiesand checking for mass and energy balances.

    When evaluating whether convergence has been reached, there are three indi-cators:

    The residuals have decreased to a sufficient degree.The solution has converged when the Convergence Criterion for each vari-able has been reached. The default criterion is that each residual will bereduced to a value of less than 103, except the energy residual, for whichthe default criterion is 106.

    The solution no longer changes with more iterations.Sometimes the residuals may not fall below the convergence criterion setin the case setup. However, monitoring the representative flow variablesthrough iterations may show that the residuals have stagnated and do notchange with further iterations. This could also be considered as conver-gence.

    The overall mass, momentum, energy, and scalar balances are obtained.You can examine the overall mass, momentum, energy and scalar balancesin the Flux Reports panel. The net imbalance should be less than 0.2% ofthe net flux through the domain when the solution has converged. In thenext step you will check to see if the mass balance indicates convergence.

    1-26 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    7. Examine the mass flux report for convergence.

    Report Fluxes...

    (a) Select pressure-outlet-7, velocity-inlet-5, and velocity-inlet-6 from the Boundariesselection list.

    (b) Click Compute.

    The sum of the flux for the inlets should be very close to the sum of the fluxfor the outlets. The difference will be displayed in the lower right field underkg/s, as well as in the console. Note that the imbalance is well below the 0.2%criteria suggested previously.

    (c) Close the Flux Reports panel.

    8. Save the data file (elbow1.dat.gz).

    File Write Data...In later steps of this tutorial you will save additional case and data files with dif-ferent prefixes.

    c Fluent Inc. September 21, 2006 1-27

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 6: Displaying the Preliminary Solution

    1. Display filled contours of velocity magnitude on the symmetry plane (Figure 1.5).

    Display Contours...

    (a) Enable Filled in the Options group box.

    (b) Make sure that Node Values is enabled in the Options group box.

    (c) Select Velocity... and Velocity Magnitude from the Contours of drop-down lists.

    (d) Select symmetry from the Surfaces selection list.

    (e) Click Display to display the contours in the graphics window.

    Extra: Clicking the right mouse button on a point in the displayed domain willcause the value of the corresponding contour to be reported in the console.

    1-28 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Contours of Velocity Magnitude (m/s)FLUENT 6.3 (3d, pbns, rke)

    1.42e+001.35e+001.28e+001.21e+001.14e+001.07e+009.95e-019.24e-018.53e-017.82e-017.11e-016.40e-015.69e-014.98e-014.26e-013.55e-012.84e-012.13e-011.42e-017.11e-020.00e+00

    ZY

    X

    Figure 1.5: Predicted Velocity Distribution after the Initial Calculation

    2. Display filled contours of temperature on the symmetry plane (Figure 1.6).

    Display Contours...

    (a) Select Temperature... and Static Temperature from the Contours of drop-downlists.

    c Fluent Inc. September 21, 2006 1-29

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (b) Click Display and close the Contours panel.

    Contours of Static Temperature (k)FLUENT 6.3 (3d, pbns, rke)

    3.13e+023.12e+023.11e+023.10e+023.09e+023.08e+023.07e+023.06e+023.05e+023.04e+023.03e+023.02e+023.01e+023.00e+022.99e+022.98e+022.97e+022.96e+022.95e+022.94e+022.93e+02

    ZY

    X

    Figure 1.6: Predicted Temperature Distribution after the Initial Calculation

    1-30 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    3. Display velocity vectors on the symmetry plane (Figures 1.7 and 1.8).

    Display Vectors...

    (a) Select symmetry from the Surfaces selection list.

    (b) Click Display to plot the velocity vectors.

    Note: The Auto Scale option is enabled by default in the Options group box.This scaling sometimes creates vectors that are too small or too large inthe majority of the domain.

    (c) Enter 4 for Scale to increase the display size of the vectors.

    (d) Set Skip to 2 to make the individual vectors easier to see.

    (e) Click Display again (Figure 1.7).

    (f) Zoom in on the vectors in the display.

    To do this, drag your mouse to the right and either up or down, while pressingthe middle mouse button. A rectangle will appear on the screen. Make surethat the rectangle frames the region that you wish to enlarge and let go of themiddle mouse button. The image will be redisplayed at a higher magnification(Figure 1.8).

    c Fluent Inc. September 21, 2006 1-31

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Velocity Vectors Colored By Velocity Magnitude (m/s)FLUENT 6.3 (3d, pbns, rke)

    1.48e+001.42e+001.35e+001.29e+001.23e+001.17e+001.11e+001.05e+009.85e-019.24e-018.62e-018.01e-017.39e-016.77e-016.16e-015.54e-014.93e-014.31e-013.69e-013.08e-012.46e-01

    ZY

    X

    Figure 1.7: Resized Velocity Vectors

    Velocity Vectors Colored By Velocity Magnitude (m/s)FLUENT 6.3 (3d, pbns, rke)

    1.48e+001.42e+001.35e+001.29e+001.23e+001.17e+001.11e+001.05e+009.85e-019.24e-018.62e-018.01e-017.39e-016.77e-016.16e-015.54e-014.93e-014.31e-013.69e-013.08e-012.46e-01

    ZY

    X

    Figure 1.8: Magnified View of Velocity Vectors

    1-32 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (g) Zoom out to the original view.

    To do this, drag your mouse to the left and either up or down, while pressingthe middle mouse button. A rectangle will appear on the screen. Make surethat the rectangle is approximately the same size as the rectangle you madewhile zooming in, and then let go of the middle mouse button. The image willbe redisplayed at a lower magnification (Figure 1.7). If the resulting imageis not centered, you can translate the view by clicking once with the middlemouse button near the center of the geometry.

    Alternatively, you can select the original view in the Views panel. Simply selectfront from the Views selection list and click Apply, as shown in the followingpanel.

    Display Views...

    (h) Close the Vectors panel.

    c Fluent Inc. September 21, 2006 1-33

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    4. Create a line surface at the centerline of the outlet.

    Surface Iso-Surface...

    (a) Select Grid... and Z-Coordinate from the Surface of Constant drop-down lists.

    (b) Click Compute.

    The range of values in the z direction will be displayed in the Min and Maxfields.

    (c) Retain the default value of 0 inches for Iso-Values.

    (d) Select pressure-outlet-7 from the From Surface selection list.

    (e) Enter z=0 outlet for New Surface Name.

    (f) Click Create.

    After the line surface z=0 outlet is created, a new entry will automaticallybe generated for New Surface Name, in case you would like to create anothersurface.

    (g) Close the Iso-Surface panel.

    1-34 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    5. Display and save an XY plot of the temperature profile across the centerline of theoutlet for the initial solution (Figure 1.9).

    Plot XY Plot...

    (a) Select Temperature... and Static Temperature from the Y Axis Function drop-down lists.

    (b) Select z=0 outlet from the Surfaces selection list.

    (c) Click Plot.

    (d) Enable Write to File in the Options group box.

    The button that was originally labeled Plot will change to Write....

    (e) Click Write... to open the Select File dialog box.

    i. Enter outlet temp1.xy for XY File.

    ii. Click OK to save the temperature data and close the Select File dialogbox.

    (f) Close the Solution XY Plot panel.

    c Fluent Inc. September 21, 2006 1-35

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    ZY

    X

    Static TemperatureFLUENT 6.3 (3d, pbns, rke)

    Position (in)

    (k)TemperatureStatic

    87.576.565.554.543.5

    3.02e+02

    3.01e+02

    3.00e+02

    2.99e+02

    2.98e+02

    2.97e+02

    2.96e+02

    2.95e+02

    2.94e+02

    2.93e+02

    z=0_outlet2

    Figure 1.9: Outlet Temperature Profile for the Initial Solution

    6. Define a custom field function for the dynamic head formula (|V |2/2).Define Custom Field Functions...

    (a) Select Density... and Density from the Field Functions drop-down lists, and clickthe Select button to add density to the Definition field.

    (b) Click the X button to add the multiplication symbol to the Definition field.

    (c) Select Velocity... and Velocity Magnitude from the Field Functions drop-downlists, and click the Select button to add |V| to the Definition field.

    1-36 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (d) Click y^x to raise the last entry in the Definition field to a power, and click 2for the power.

    (e) Click the / button to add the division symbol to the Definition field, and thenclick 2.

    (f) Enter dynamic-head for New Function Name.

    (g) Click Define and close the Custom Field Function Calculator panel.

    7. Display filled contours of the custom field function (Figure 1.10).

    Display Contours...

    (a) Select Custom Field Functions... and dynamic-head from the Contours of drop-down lists.

    Hint: Custom Field Functions... is at the top of the upper Contours of drop-down list. After you have opened the drop-down list, scroll up by clickingthe up-arrow button on the scroll bar on the right.

    (b) Make sure that symmetry is selected from the Surfaces selection list.

    (c) Click Display and close the Contours panel.

    Note: You may need to change the view by zooming out after the last vector display,if you have not already done so.

    c Fluent Inc. September 21, 2006 1-37

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Contours of dynamic-headFLUENT 6.3 (3d, pbns, rke)

    1.01e+039.60e+029.09e+028.59e+028.08e+027.58e+027.07e+026.57e+026.06e+025.56e+025.05e+024.55e+024.04e+023.54e+023.03e+022.53e+022.02e+021.52e+021.01e+025.05e+010.00e+00

    ZY

    X

    Figure 1.10: Contours of the Dynamic Head Custom Field Function

    8. Save the settings for the custom field function by writing the case and data files(elbow1.cas.gz and elbow1.dat.gz).

    File Write Case & Data...(a) Make sure that elbow1.cas.gz is entered for Case/Data File.

    Note: When you write the case and data file at the same time, it does notmatter whether you specify the file name with a .cas or .dat extension,as both will be saved.

    (b) Click OK to close the Select File dialog box.

    1-38 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 7: Enabling Second-Order Discretization

    The elbow solution computed in the first part of this tutorial uses first-order discretiza-tion. The resulting solution is very diffusive; mixing is overpredicted, as can be seenin the contour plots of temperature and velocity distribution. You will now change tosecond-order discretization for all listed equations, in order to improve the accuracy ofthe solution. With the second-order discretization, you will change the gradient option inthe solver from cell-based to node-based in order to optimize energy conservation.

    1. Change the solver settings.

    Define Models Solver...

    (a) Select Green-Gauss Node Based from the Gradient Option list.

    Note: This option is more suitable than the cell-based gradient option forunstructured meshes, as it will ensure better energy conservation.

    (b) Click OK to close the Solver panel.

    c Fluent Inc. September 21, 2006 1-39

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    2. Enable the second-order scheme for the calculation of all the listed equations.

    Solve Controls Solution...

    (a) Retain the default values in the Under-Relaxation Factors group box.

    (b) Select Second Order from the Pressure drop-down list in the Discretization groupbox.

    (c) Select Second Order Upwind from the Momentum, Turbulent Kinetic Energy,Turbulent Dissipation Rate, and Energy drop-down lists.

    Note: Scroll down the Discretization group box to find Energy.

    (d) Click OK to close the Solution Controls panel.

    3. Continue the calculation by requesting 150 more iterations.

    Solve Iterate...

    1-40 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Extra: To save the convergence history of the surface monitor for this set of itera-tions as a separate output file, you would need to change the File Name in theDefine Surface Monitor to monitor-2.out prior to running the calculation.

    (a) Make sure that 150 is entered for Number of Iterations.

    (b) Click Iterate and close the Iterate panel when the calculation is complete.

    The solution will converge in approximately 57 additional iterations (Fig-ure 1.11). The convergence history is shown in Figure 1.12.

    ZY

    X

    Scaled ResidualsFLUENT 6.3 (3d, pbns, rke)

    Iterations200180160140120100806040200

    1e+00

    1e-01

    1e-02

    1e-03

    1e-04

    1e-05

    1e-06

    1e-07

    epsilonkenergyz-velocityy-velocityx-velocitycontinuity

    Residuals

    Figure 1.11: Residuals for the Second-Order Energy Calculation

    Note: You should expect to see the residuals jump whenever you change the solutioncontrol parameters.

    c Fluent Inc. September 21, 2006 1-41

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    ZY

    X

    Convergence history of Static Temperature on pressure-outlet-7FLUENT 6.3 (3d, pbns, rke)

    Iteration

    (k)AverageWeighted

    Mass

    200180160140120100806040200

    296.6000

    296.5500

    296.5000

    296.4500

    296.4000

    296.3500

    296.3000

    296.2500

    296.2000

    296.1500

    296.1000

    monitor-1

    Figure 1.12: Convergence History of Mass-Weighted Average Temperature

    4. Save the case and data files for the second-order solution (elbow2.cas.gz andelbow2.dat.gz).

    File Write Case & Data...(a) Enter elbow2.gz for Case/Data File.

    (b) Click OK to close the Select File dialog box.

    The files elbow2.cas.gz and elbow2.dat.gz will be saved in your folder.

    1-42 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    5. Examine the revised temperature distribution (Figure 1.13).

    Display Contours...

    (a) Make sure that Filled is enabled in the Options group box.

    (b) Select Temperature... and Static Temperature from the Contours of drop-downlists.

    (c) Make sure that symmetry is selected from the Surfaces selection list.

    (d) Click Display and close the Contours panel.

    Figure 1.13 shows the thermal spreading of the warm fluid layer near the outer wallof the bend. Compare Figure 1.13 with Figure 1.6 to see the effects of second-orderdiscretization.

    c Fluent Inc. September 21, 2006 1-43

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Contours of Static Temperature (k)FLUENT 6.3 (3d, pbns, rke)

    3.13e+023.12e+023.11e+023.10e+023.09e+023.08e+023.07e+023.06e+023.05e+023.04e+023.03e+023.02e+023.01e+023.00e+022.99e+022.98e+022.97e+022.96e+022.95e+022.94e+022.93e+02

    ZY

    X

    Figure 1.13: Temperature Contours for the Second-Order Solution

    6. Display and save an XY plot of the temperature profile across the centerline of theoutlet for the second-order solution (Figure 1.14).

    Plot XY Plot...

    (a) Disable Write to File in the Options group box by clicking the check box or thetext.

    The button that was labeled Write... will change to Plot.

    1-44 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (b) Make sure that Temperature... and Static Temperature are selected from the YAxis Function drop-down lists.

    (c) Make sure that z=0 outlet is selected from the Surfaces selection list.

    (d) Click Plot.

    ZY

    X

    Static TemperatureFLUENT 6.3 (3d, pbns, rke)

    Position (in)

    (k)TemperatureStatic

    87.576.565.554.543.5

    3.00e+02

    2.99e+02

    2.98e+02

    2.97e+02

    2.96e+02

    2.95e+02

    2.94e+02

    2.93e+02

    z=0_outlet

    Figure 1.14: Outlet Temperature Profile for the Second-Order Solution

    (e) Enable Write to File in the Options group box.

    The button that was labeled Plot will change to Write....

    (f) Click Write... to open the Select File dialog box.

    i. Enter outlet temp2.xy for XY File.

    ii. Click OK to save the temperature data.

    (g) Close the Solution XY Plot panel.

    c Fluent Inc. September 21, 2006 1-45

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 8: Adapting the Grid

    The elbow solution can be improved further by refining the grid to better resolve the flowdetails. In the following steps, you will adapt the grid based on the temperature gradientsin the current solution. Once the grid has been refined, you will continue the calculation.

    1. Adapt the grid in the regions of high temperature gradient.

    Adapt Gradient...

    (a) Make sure that Refine is enabled in the Options group box.

    It is not necessary to deselect Coarsen in this instance, since FLUENT will notcoarsen beyond the original mesh for a 3D grid.

    (b) Select Temperature... and Static Temperature from the Gradients of drop-downlists.

    (c) Click Compute.

    FLUENT will update the Min and Max values to show the minimum and max-imum temperature gradient.

    (d) Enter 0.003 for Refine Threshold.

    It is a good rule of thumb to use 10% of the maximum gradient when settingthe value for Refine Threshold.

    (e) Click Mark.

    FLUENT will report in the console that approximately 1258 cells were markedfor adaption.

    1-46 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (f) Click the Manage... button to open the Manage Adaption Registers panel.

    i. Click Display.

    FLUENT will display the cells marked for adaption in the graphics window(Figure 1.15).

    ZY

    X

    Adaption Markings (gradient-r0)FLUENT 6.3 (3d, pbns, rke)

    Figure 1.15: Cells Marked for Adaption

    c Fluent Inc. September 21, 2006 1-47

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Extra: You can change the way FLUENT displays cells marked for adap-tion (Figure 1.16) by performing the following steps:

    A. Click the Options... button in the Manage Adaption Registers panelto open the Adaption Display Options panel.

    B. Enable Draw Grid in the Options group box.

    The Grid Display panel will open.

    C. Make sure that Edges is the only option enabled in the Options groupbox.

    D. Select Feature from the Edge Type list.

    E. Select all of the items except default-interior from the Surfaces selec-tion list.

    F. Click Display and close the Grid Display panel.

    1-48 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    G. Enable Filled in the Options group box in the Adaption Display Op-tions panel.

    H. Enable Wireframe in the Refine group box.

    I. Click OK to close the Adaption Display Options panel.

    J. Click Display in the Manage Adaption Registers panel.

    K. Rotate the view and zoom in to get the display shown in Figure 1.16.

    Adaption Markings (gradient-r0)FLUENT 6.3 (3d, pbns, rke)

    ZY

    X

    Figure 1.16: Alternate Display of Cells Marked for Adaption

    L. After you are finished viewing the marked cells, rotate the view backand zoom out again to return to the angle and magnification shownin Figure 1.13.

    ii. Click Adapt in the Manage Adaption Registers panel.

    A Question dialog box will open, asking whether it is acceptable to adaptthe grid by creating hanging nodes. Click Yes to proceed.

    Note: There are two different ways to adapt. You can click Adapt inthe Manage Adaption Registers panel as was just done, or close thispanel and perform the adaption using the Gradient Adaption panel. If

    c Fluent Inc. September 21, 2006 1-49

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    you use the Adapt button in the Gradient Adaption panel, FLUENT willrecreate an adaption register. Therefore, once you have the ManageAdaption Registers panel open, it saves time to use the Adapt buttonthere.

    iii. Close the Manage Adaption Registers panel.

    (g) Close the Gradient Adaption panel.

    2. Display the adapted grid (Figure 1.17).

    Display Grid...

    (a) Make sure that All is selected from the Edge Type list.

    (b) Deselect all of the highlighted items from the Surfaces selection list except forsymmetry.

    (c) Click Display and close the Grid Display panel.

    1-50 c Fluent Inc. September 21, 2006

  • Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    ZY

    X

    GridFLUENT 6.3 (3d, pbns, rke)

    Figure 1.17: The Adapted Grid

    3. Request an additional 150 iterations.

    Solve Iterate...

    The solution will converge after approximately 100 additional iterations (Figures 1.18and 1.19).

    4. Save the case and data files for the second-order solution with an adapted grid(elbow3.cas.gz and elbow3.dat.gz).