tutorial on additive levy processes´ - mathdavar/ps-pdf-files/seattle06tutorial1.pdfintroduction...

83
Tutorial on Additive L´ evy Processes Lecture #1 Davar Khoshnevisan Department of Mathematics University of Utah http://www.math.utah.edu/˜davar International Conference on Stochastic Analysis and Its Applications August 7–11, 2006 D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 1 / 20

Upload: others

Post on 17-Jul-2020

24 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Tutorial on Additive Levy ProcessesLecture #1

Davar Khoshnevisan

Department of MathematicsUniversity of Utah

http://www.math.utah.edu/˜davar

International Conference on Stochastic Analysisand Its ApplicationsAugust 7–11, 2006

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 1 / 20

Page 2: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Introduction

Some Terminology

An “(N ,d) random field” X has N parameters and takes values inRd (Adler, 1981);i.e., X (t) ∈ Rd for all t := (t1 , . . . , tN) ∈ RN .

Could have RN+ in place of RN , etc.

X1, . . . ,XN independent Brownian motions in Rd .“Additive Brownian motion”:

X (t) := X1(t1) + · · ·+ XN(tN) for all t = (t1 , . . . , tN) ∈ RN+.

Likewise, can have “additive stable,” “additive Levy,” etc.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 2 / 20

Page 3: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Introduction

Some Terminology

An “(N ,d) random field” X has N parameters and takes values inRd (Adler, 1981);i.e., X (t) ∈ Rd for all t := (t1 , . . . , tN) ∈ RN .

Could have RN+ in place of RN , etc.

X1, . . . ,XN independent Brownian motions in Rd .“Additive Brownian motion”:

X (t) := X1(t1) + · · ·+ XN(tN) for all t = (t1 , . . . , tN) ∈ RN+.

Likewise, can have “additive stable,” “additive Levy,” etc.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 2 / 20

Page 4: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Introduction

Some Terminology

An “(N ,d) random field” X has N parameters and takes values inRd (Adler, 1981);i.e., X (t) ∈ Rd for all t := (t1 , . . . , tN) ∈ RN .

Could have RN+ in place of RN , etc.

X1, . . . ,XN independent Brownian motions in Rd .“Additive Brownian motion”:

X (t) := X1(t1) + · · ·+ XN(tN) for all t = (t1 , . . . , tN) ∈ RN+.

Likewise, can have “additive stable,” “additive Levy,” etc.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 2 / 20

Page 5: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Introduction

Some Terminology

An “(N ,d) random field” X has N parameters and takes values inRd (Adler, 1981);i.e., X (t) ∈ Rd for all t := (t1 , . . . , tN) ∈ RN .

Could have RN+ in place of RN , etc.

X1, . . . ,XN independent Brownian motions in Rd .“Additive Brownian motion”:

X (t) := X1(t1) + · · ·+ XN(tN) for all t = (t1 , . . . , tN) ∈ RN+.

Likewise, can have “additive stable,” “additive Levy,” etc.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 2 / 20

Page 6: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W := white noise on RN+.

I.e., Gaussian, and

If A∩B = ∅ then W (A) and W (B) are indept.

EW (A) = 0 and VarW (A) = meas(A).

Lemma

If A1,A2, . . . are nonrandom and disjoint then a.s.,

W

(∞[

n=1

An

)=

∞∑n=1

W (An),

as long as meas(An) <∞ for all n.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 3 / 20

Page 7: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W := white noise on RN+. I.e., Gaussian, and

If A∩B = ∅ then W (A) and W (B) are indept.

EW (A) = 0 and VarW (A) = meas(A).

Lemma

If A1,A2, . . . are nonrandom and disjoint then a.s.,

W

(∞[

n=1

An

)=

∞∑n=1

W (An),

as long as meas(An) <∞ for all n.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 3 / 20

Page 8: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W := white noise on RN+. I.e., Gaussian, and

If A∩B = ∅ then W (A) and W (B) are indept.

EW (A) = 0 and VarW (A) = meas(A).

Lemma

If A1,A2, . . . are nonrandom and disjoint then a.s.,

W

(∞[

n=1

An

)=

∞∑n=1

W (An),

as long as meas(An) <∞ for all n.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 3 / 20

Page 9: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W := white noise on RN+. I.e., Gaussian, and

If A∩B = ∅ then W (A) and W (B) are indept.

EW (A) = 0 and VarW (A) = meas(A).

Lemma

If A1,A2, . . . are nonrandom and disjoint then a.s.,

W

(∞[

n=1

An

)=

∞∑n=1

W (An),

as long as meas(An) <∞ for all n.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 3 / 20

Page 10: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W := white noise on RN+. I.e., Gaussian, and

If A∩B = ∅ then W (A) and W (B) are indept.

EW (A) = 0 and VarW (A) = meas(A).

Lemma

If A1,A2, . . . are nonrandom and disjoint then a.s.,

W

(∞[

n=1

An

)=

∞∑n=1

W (An),

as long as meas(An) <∞ for all n.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 3 / 20

Page 11: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(N ,1) “Brownian sheet” B := the dF of W ; i.e.,

B(t) := W ([0 , t1]× · · · × [0 , tN ]) for all t = (t1 , . . . , tN) ∈ RN+.

Could also index B by RN , etc.

B is the noise in many SPDEs.

In many cases, “SPDEs look like B.” [Girsanov]

(N ,d) Brownian sheet B(t) := (B1(t) , . . . ,Bd(t)), whereB1, . . . ,Bd are indept. (N ,1) Brownian sheets.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 4 / 20

Page 12: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(N ,1) “Brownian sheet” B := the dF of W ; i.e.,

B(t) := W ([0 , t1]× · · · × [0 , tN ]) for all t = (t1 , . . . , tN) ∈ RN+.

Could also index B by RN , etc.

B is the noise in many SPDEs.

In many cases, “SPDEs look like B.” [Girsanov]

(N ,d) Brownian sheet B(t) := (B1(t) , . . . ,Bd(t)), whereB1, . . . ,Bd are indept. (N ,1) Brownian sheets.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 4 / 20

Page 13: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(N ,1) “Brownian sheet” B := the dF of W ; i.e.,

B(t) := W ([0 , t1]× · · · × [0 , tN ]) for all t = (t1 , . . . , tN) ∈ RN+.

Could also index B by RN , etc.

B is the noise in many SPDEs.

In many cases, “SPDEs look like B.” [Girsanov]

(N ,d) Brownian sheet B(t) := (B1(t) , . . . ,Bd(t)), whereB1, . . . ,Bd are indept. (N ,1) Brownian sheets.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 4 / 20

Page 14: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(N ,1) “Brownian sheet” B := the dF of W ; i.e.,

B(t) := W ([0 , t1]× · · · × [0 , tN ]) for all t = (t1 , . . . , tN) ∈ RN+.

Could also index B by RN , etc.

B is the noise in many SPDEs.

In many cases, “SPDEs look like B.” [Girsanov]

(N ,d) Brownian sheet B(t) := (B1(t) , . . . ,Bd(t)), whereB1, . . . ,Bd are indept. (N ,1) Brownian sheets.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 4 / 20

Page 15: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(N ,1) “Brownian sheet” B := the dF of W ; i.e.,

B(t) := W ([0 , t1]× · · · × [0 , tN ]) for all t = (t1 , . . . , tN) ∈ RN+.

Could also index B by RN , etc.

B is the noise in many SPDEs.

In many cases, “SPDEs look like B.” [Girsanov]

(N ,d) Brownian sheet B(t) := (B1(t) , . . . ,Bd(t)), whereB1, . . . ,Bd are indept. (N ,1) Brownian sheets.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 4 / 20

Page 16: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(2 ,1) Brownian sheet

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 5 / 20

Page 17: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

Let B(t1 , t2) denote 2-parameter Brownian sheet in Rd .

B(t1 + ε , t2 + δ) = W (�) + W (�) + W (�) + W (�)

t

t1 t1

δ+

ε

2

+

t2

all four independentX (ε) := W (�) = BMY (δ) := W (�) = BMZ (ε , δ) := W (�) = BS

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 6 / 20

Page 18: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

Let B(t1 , t2) denote 2-parameter Brownian sheet in Rd .

B(t1 + ε , t2 + δ) = W (�) + W (�) + W (�) + W (�)

t

t1 t1

δ+

ε

2

+

t2

all four independentX (ε) := W (�) = BMY (δ) := W (�) = BMZ (ε , δ) := W (�) = BS

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 6 / 20

Page 19: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

Let B(t1 , t2) denote 2-parameter Brownian sheet in Rd .

B(t1 + ε , t2 + δ) = W (�) + W (�) + W (�) + W (�)

t

t1 t1

δ+

ε

2

+

t2

all four independent

X (ε) := W (�) = BMY (δ) := W (�) = BMZ (ε , δ) := W (�) = BS

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 6 / 20

Page 20: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

Let B(t1 , t2) denote 2-parameter Brownian sheet in Rd .

B(t1 + ε , t2 + δ) = W (�) + W (�) + W (�) + W (�)

t

t1 t1

δ+

ε

2

+

t2

all four independentX (ε) := W (�) = BM

Y (δ) := W (�) = BMZ (ε , δ) := W (�) = BS

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 6 / 20

Page 21: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

Let B(t1 , t2) denote 2-parameter Brownian sheet in Rd .

B(t1 + ε , t2 + δ) = W (�) + W (�) + W (�) + W (�)

t

t1 t1

δ+

ε

2

+

t2

all four independentX (ε) := W (�) = BMY (δ) := W (�) = BM

Z (ε , δ) := W (�) = BS

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 6 / 20

Page 22: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

Let B(t1 , t2) denote 2-parameter Brownian sheet in Rd .

B(t1 + ε , t2 + δ) = W (�) + W (�) + W (�) + W (�)

t

t1 t1

δ+

ε

2

+

t2

all four independentX (ε) := W (�) = BMY (δ) := W (�) = BMZ (ε , δ) := W (�) = BS

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 6 / 20

Page 23: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

B(1 + ε ,1 + δ)−W (�)︷ ︸︸ ︷

B(1 ,1) =

W (�)+W (�)=ABM︷ ︸︸ ︷X (ε) + Y (δ) +

W (�)=BS︷ ︸︸ ︷Z (ε , δ)

= ABM + indept BS

Var (X (ε) + Y (δ)) = ε + δ

VarZ (ε , δ) = εδ � ε + δ for small ε, δ

B(1 + ε ,1 + δ)−B(1 ,1) ≈ ABM for small ε, δ.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.Xiao (2005), Kh. Xiao, and Wu (2006) . . . .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 7 / 20

Page 24: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

B(1 + ε ,1 + δ)−W (�)︷ ︸︸ ︷

B(1 ,1) =

W (�)+W (�)=ABM︷ ︸︸ ︷X (ε) + Y (δ) +

W (�)=BS︷ ︸︸ ︷Z (ε , δ)

= ABM + indept BS

Var (X (ε) + Y (δ)) = ε + δ

VarZ (ε , δ) = εδ � ε + δ for small ε, δ

B(1 + ε ,1 + δ)−B(1 ,1) ≈ ABM for small ε, δ.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.Xiao (2005), Kh. Xiao, and Wu (2006) . . . .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 7 / 20

Page 25: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

B(1 + ε ,1 + δ)−W (�)︷ ︸︸ ︷

B(1 ,1) =

W (�)+W (�)=ABM︷ ︸︸ ︷X (ε) + Y (δ) +

W (�)=BS︷ ︸︸ ︷Z (ε , δ)

= ABM + indept BS

Var (X (ε) + Y (δ)) = ε + δ

VarZ (ε , δ) = εδ � ε + δ for small ε, δ

B(1 + ε ,1 + δ)−B(1 ,1) ≈ ABM for small ε, δ.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.Xiao (2005), Kh. Xiao, and Wu (2006) . . . .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 7 / 20

Page 26: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

B(1 + ε ,1 + δ)−W (�)︷ ︸︸ ︷

B(1 ,1) =

W (�)+W (�)=ABM︷ ︸︸ ︷X (ε) + Y (δ) +

W (�)=BS︷ ︸︸ ︷Z (ε , δ)

= ABM + indept BS

Var (X (ε) + Y (δ)) = ε + δ

VarZ (ε , δ) = εδ

� ε + δ for small ε, δ

B(1 + ε ,1 + δ)−B(1 ,1) ≈ ABM for small ε, δ.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.Xiao (2005), Kh. Xiao, and Wu (2006) . . . .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 7 / 20

Page 27: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

B(1 + ε ,1 + δ)−W (�)︷ ︸︸ ︷

B(1 ,1) =

W (�)+W (�)=ABM︷ ︸︸ ︷X (ε) + Y (δ) +

W (�)=BS︷ ︸︸ ︷Z (ε , δ)

= ABM + indept BS

Var (X (ε) + Y (δ)) = ε + δ

VarZ (ε , δ) = εδ � ε + δ for small ε, δ

B(1 + ε ,1 + δ)−B(1 ,1) ≈ ABM for small ε, δ.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.Xiao (2005), Kh. Xiao, and Wu (2006) . . . .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 7 / 20

Page 28: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

B(1 + ε ,1 + δ)−W (�)︷ ︸︸ ︷

B(1 ,1) =

W (�)+W (�)=ABM︷ ︸︸ ︷X (ε) + Y (δ) +

W (�)=BS︷ ︸︸ ︷Z (ε , δ)

= ABM + indept BS

Var (X (ε) + Y (δ)) = ε + δ

VarZ (ε , δ) = εδ � ε + δ for small ε, δ

B(1 + ε ,1 + δ)−B(1 ,1) ≈ ABM for small ε, δ.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.Xiao (2005), Kh. Xiao, and Wu (2006) . . . .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 7 / 20

Page 29: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

B(1 + ε ,1 + δ)−W (�)︷ ︸︸ ︷

B(1 ,1) =

W (�)+W (�)=ABM︷ ︸︸ ︷X (ε) + Y (δ) +

W (�)=BS︷ ︸︸ ︷Z (ε , δ)

= ABM + indept BS

Var (X (ε) + Y (δ)) = ε + δ

VarZ (ε , δ) = εδ � ε + δ for small ε, δ

B(1 + ε ,1 + δ)−B(1 ,1) ≈ ABM for small ε, δ.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.Xiao (2005), Kh. Xiao, and Wu (2006) . . . .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 7 / 20

Page 30: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem

Let B = (2 ,1) BS; choose and fix s, t > 0.

Theorem (Kendall, 1980)

The connected component of {(u ,v) : B(u ,v) = B(s , t)} that contains(s , t) is a.s. {(s , t)}.

“A.e. point in a.e. level-set is totally disconnected from the rest.”

WLOG s = t = 1.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 8 / 20

Page 31: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem

Let B = (2 ,1) BS; choose and fix s, t > 0.

Theorem (Kendall, 1980)

The connected component of {(u ,v) : B(u ,v) = B(s , t)} that contains(s , t) is a.s. {(s , t)}.

“A.e. point in a.e. level-set is totally disconnected from the rest.”

WLOG s = t = 1.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 8 / 20

Page 32: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem

Let B = (2 ,1) BS; choose and fix s, t > 0.

Theorem (Kendall, 1980)

The connected component of {(u ,v) : B(u ,v) = B(s , t)} that contains(s , t) is a.s. {(s , t)}.

“A.e. point in a.e. level-set is totally disconnected from the rest.”

WLOG s = t = 1.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 8 / 20

Page 33: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem

Let B = (2 ,1) BS; choose and fix s, t > 0.

Theorem (Kendall, 1980)

The connected component of {(u ,v) : B(u ,v) = B(s , t)} that contains(s , t) is a.s. {(s , t)}.

“A.e. point in a.e. level-set is totally disconnected from the rest.”

WLOG s = t = 1.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 8 / 20

Page 34: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C(r) := {(x ,y) ∈ R2 : |x − 1| ∨ |y − 1| ≤ r}.

J(r) := {B(1 ,1) > sup∂C(r) B}.Goal: lim infr↓0 P(J(r)) > 0.

0–1 law (Orey and Pruitt, 1973): J(r) infinitely often r ↓ 0 a.s.

I will sketch the proof of a slightly weaker variant. [In fact it isequivalent.]

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 9 / 20

Page 35: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C(r) := {(x ,y) ∈ R2 : |x − 1| ∨ |y − 1| ≤ r}.J(r) := {B(1 ,1) > sup∂C(r) B}.

Goal: lim infr↓0 P(J(r)) > 0.

0–1 law (Orey and Pruitt, 1973): J(r) infinitely often r ↓ 0 a.s.

I will sketch the proof of a slightly weaker variant. [In fact it isequivalent.]

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 9 / 20

Page 36: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C(r) := {(x ,y) ∈ R2 : |x − 1| ∨ |y − 1| ≤ r}.J(r) := {B(1 ,1) > sup∂C(r) B}.Goal: lim infr↓0 P(J(r)) > 0.

0–1 law (Orey and Pruitt, 1973): J(r) infinitely often r ↓ 0 a.s.

I will sketch the proof of a slightly weaker variant. [In fact it isequivalent.]

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 9 / 20

Page 37: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C(r) := {(x ,y) ∈ R2 : |x − 1| ∨ |y − 1| ≤ r}.J(r) := {B(1 ,1) > sup∂C(r) B}.Goal: lim infr↓0 P(J(r)) > 0.

0–1 law (Orey and Pruitt, 1973): J(r) infinitely often r ↓ 0 a.s.

I will sketch the proof of a slightly weaker variant. [In fact it isequivalent.]

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 9 / 20

Page 38: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C(r) := {(x ,y) ∈ R2 : |x − 1| ∨ |y − 1| ≤ r}.J(r) := {B(1 ,1) > sup∂C(r) B}.Goal: lim infr↓0 P(J(r)) > 0.

0–1 law (Orey and Pruitt, 1973): J(r) infinitely often r ↓ 0 a.s.

I will sketch the proof of a slightly weaker variant. [In fact it isequivalent.]

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 9 / 20

Page 39: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C ′(r) := ({1 + r}× [1 , r ])∪ ([1 , r ]×{1 + r}).

(1,1)

J ′(r) := {B(1 ,1) > supC ′(r) B}.Goal: limr↓0 P(J ′(r)) > 0.

Local dynamics + scaling ⇒

P(J ′(r))→ P

{X (1) + Y (1) > sup

(u,v)∈C ′(1)

(X (u) + Y (v))

}> 0.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 10 / 20

Page 40: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C ′(r) := ({1 + r}× [1 , r ])∪ ([1 , r ]×{1 + r}).

(1,1)

J ′(r) := {B(1 ,1) > supC ′(r) B}.Goal: limr↓0 P(J ′(r)) > 0.

Local dynamics + scaling ⇒

P(J ′(r))→ P

{X (1) + Y (1) > sup

(u,v)∈C ′(1)

(X (u) + Y (v))

}> 0.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 10 / 20

Page 41: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C ′(r) := ({1 + r}× [1 , r ])∪ ([1 , r ]×{1 + r}).

(1,1)

J ′(r) := {B(1 ,1) > supC ′(r) B}.Goal: limr↓0 P(J ′(r)) > 0.

Local dynamics + scaling ⇒

P(J ′(r))→ P

{X (1) + Y (1) > sup

(u,v)∈C ′(1)

(X (u) + Y (v))

}> 0.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 10 / 20

Page 42: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C ′(r) := ({1 + r}× [1 , r ])∪ ([1 , r ]×{1 + r}).

(1,1)

J ′(r) := {B(1 ,1) > supC ′(r) B}.

Goal: limr↓0 P(J ′(r)) > 0.

Local dynamics + scaling ⇒

P(J ′(r))→ P

{X (1) + Y (1) > sup

(u,v)∈C ′(1)

(X (u) + Y (v))

}> 0.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 10 / 20

Page 43: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C ′(r) := ({1 + r}× [1 , r ])∪ ([1 , r ]×{1 + r}).

(1,1)

J ′(r) := {B(1 ,1) > supC ′(r) B}.Goal: limr↓0 P(J ′(r)) > 0.

Local dynamics + scaling ⇒

P(J ′(r))→ P

{X (1) + Y (1) > sup

(u,v)∈C ′(1)

(X (u) + Y (v))

}> 0.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 10 / 20

Page 44: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

First Application: Contours of Brownian SheetKendall’s Theorem, Continued

C ′(r) := ({1 + r}× [1 , r ])∪ ([1 , r ]×{1 + r}).

(1,1)

J ′(r) := {B(1 ,1) > supC ′(r) B}.Goal: limr↓0 P(J ′(r)) > 0.

Local dynamics + scaling ⇒

P(J ′(r))→ P

{X (1) + Y (1) > sup

(u,v)∈C ′(1)

(X (u) + Y (v))

}> 0.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 10 / 20

Page 45: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

The Zero-Set of B

Kendall’s theorem holds for “most” points in the zero-set too.Can you see it?

(Kh., Revesz, and Shi, 2005)

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 11 / 20

Page 46: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of W. Kendall

The Zero-Set of B

Kendall’s theorem holds for “most” points in the zero-set too.Can you see it?

(Kh., Revesz, and Shi, 2005)

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 11 / 20

Page 47: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem

X and Y = independent BMs in Rd . Then:“Two BM paths can cross only in dim ≤ 3.”

Theorem (Dvoretzky, Erdos, and Kakutani, 1950)

TFAE:

1 X ((0 ,∞))∩Y ((0 ,∞)) 6= ∅;2 d ≤ 3.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 12 / 20

Page 48: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem

X and Y = independent BMs in Rd . Then:“Two BM paths can cross only in dim ≤ 3.”

Theorem (Dvoretzky, Erdos, and Kakutani, 1950)

TFAE:

1 X ((0 ,∞))∩Y ((0 ,∞)) 6= ∅;2 d ≤ 3.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 12 / 20

Page 49: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem

X and Y = independent BMs in Rd . Then:“Two BM paths can cross only in dim ≤ 3.”

Theorem (Dvoretzky, Erdos, and Kakutani, 1950)

TFAE:1 X ((0 ,∞))∩Y ((0 ,∞)) 6= ∅;

2 d ≤ 3.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 12 / 20

Page 50: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem

X and Y = independent BMs in Rd . Then:“Two BM paths can cross only in dim ≤ 3.”

Theorem (Dvoretzky, Erdos, and Kakutani, 1950)

TFAE:1 X ((0 ,∞))∩Y ((0 ,∞)) 6= ∅;2 d ≤ 3.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 12 / 20

Page 51: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Equivalently, TFAE:

X ([1 ,2])∩Y ([1 ,2]) 6= ∅ ⇔ d ≤ 3. (1)

There are now several proofs; most involve potential theory and/orPDEs. I will describe a relatively recent, very elementary, proof that isbased on ABM (Kh., 2003).Key idea: X ([1 ,2])∩Y ([1 ,2]) 6= ∅⇔

A(s ,t)=ABM︷ ︸︸ ︷X (s)−Y (t) = 0 for some (s , t) ∈ [1 ,2]2,

⇔0 ∈ A

([1 ,2]2

).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 13 / 20

Page 52: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Equivalently, TFAE:

X ([1 ,2])∩Y ([1 ,2]) 6= ∅ ⇔ d ≤ 3. (1)

There are now several proofs; most involve potential theory and/orPDEs. I will describe a relatively recent, very elementary, proof that isbased on ABM (Kh., 2003).

Key idea: X ([1 ,2])∩Y ([1 ,2]) 6= ∅⇔

A(s ,t)=ABM︷ ︸︸ ︷X (s)−Y (t) = 0 for some (s , t) ∈ [1 ,2]2,

⇔0 ∈ A

([1 ,2]2

).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 13 / 20

Page 53: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Equivalently, TFAE:

X ([1 ,2])∩Y ([1 ,2]) 6= ∅ ⇔ d ≤ 3. (1)

There are now several proofs; most involve potential theory and/orPDEs. I will describe a relatively recent, very elementary, proof that isbased on ABM (Kh., 2003).Key idea: X ([1 ,2])∩Y ([1 ,2]) 6= ∅⇔

A(s ,t)=ABM︷ ︸︸ ︷X (s)−Y (t) = 0 for some (s , t) ∈ [1 ,2]2,

⇔0 ∈ A

([1 ,2]2

).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 13 / 20

Page 54: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Equivalently, TFAE:

X ([1 ,2])∩Y ([1 ,2]) 6= ∅ ⇔ d ≤ 3. (1)

There are now several proofs; most involve potential theory and/orPDEs. I will describe a relatively recent, very elementary, proof that isbased on ABM (Kh., 2003).Key idea: X ([1 ,2])∩Y ([1 ,2]) 6= ∅⇔

A(s ,t)=ABM︷ ︸︸ ︷X (s)−Y (t) = 0 for some (s , t) ∈ [1 ,2]2,

⇔0 ∈ A

([1 ,2]2

).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 13 / 20

Page 55: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

When d ≤ 3 one can directly construct a “local time.” This is ana.s.-nontrivial random measure on the setA−1{0} = {(s , t) ∈ [1 ,2]2 : X (s) = Y (t)}. Therefore,0 ∈ A([1 ,2]2) a.s.

We prove that if d ≥ 5 then A(s , t) = X (s)−Y (t) 6= 0 for alls, t ∈ [1 ,2]. This proof can be pushed through when d = 4 butneeds more care; see the original paper (Kh., Expos. Math.,2003).

Exercise

Prove that A([1 ,2]2) = A(1 ,1) + A([0 ,1]2), where A is a copy of A,independent of A(1 ,1), and a + S = {a + s : s ∈ S} for all a ∈ Rd andS ⊂ Rd .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 14 / 20

Page 56: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

When d ≤ 3 one can directly construct a “local time.” This is ana.s.-nontrivial random measure on the setA−1{0} = {(s , t) ∈ [1 ,2]2 : X (s) = Y (t)}. Therefore,0 ∈ A([1 ,2]2) a.s.

We prove that if d ≥ 5 then A(s , t) = X (s)−Y (t) 6= 0 for alls, t ∈ [1 ,2]. This proof can be pushed through when d = 4 butneeds more care; see the original paper (Kh., Expos. Math.,2003).

Exercise

Prove that A([1 ,2]2) = A(1 ,1) + A([0 ,1]2), where A is a copy of A,independent of A(1 ,1), and a + S = {a + s : s ∈ S} for all a ∈ Rd andS ⊂ Rd .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 14 / 20

Page 57: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

When d ≤ 3 one can directly construct a “local time.” This is ana.s.-nontrivial random measure on the setA−1{0} = {(s , t) ∈ [1 ,2]2 : X (s) = Y (t)}. Therefore,0 ∈ A([1 ,2]2) a.s.

We prove that if d ≥ 5 then A(s , t) = X (s)−Y (t) 6= 0 for alls, t ∈ [1 ,2]. This proof can be pushed through when d = 4 butneeds more care; see the original paper (Kh., Expos. Math.,2003).

Exercise

Prove that A([1 ,2]2) = A(1 ,1) + A([0 ,1]2), where A is a copy of A,independent of A(1 ,1), and a + S = {a + s : s ∈ S} for all a ∈ Rd andS ⊂ Rd .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 14 / 20

Page 58: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

When d ≤ 3 one can directly construct a “local time.” This is ana.s.-nontrivial random measure on the setA−1{0} = {(s , t) ∈ [1 ,2]2 : X (s) = Y (t)}. Therefore,0 ∈ A([1 ,2]2) a.s.

We prove that if d ≥ 5 then A(s , t) = X (s)−Y (t) 6= 0 for alls, t ∈ [1 ,2]. This proof can be pushed through when d = 4 butneeds more care; see the original paper (Kh., Expos. Math.,2003).

Exercise

Prove that A([1 ,2]2) = A(1 ,1) + A([0 ,1]2), where A is a copy of A,independent of A(1 ,1), and a + S = {a + s : s ∈ S} for all a ∈ Rd andS ⊂ Rd .

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 14 / 20

Page 59: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .By the Exercise,

P{

0 ∈ A([1 ,2]2

)}

=Z

RdP{

x ∈ A([0 ,1]2

)}P {A(1 ,1) ∈ −dx}︸ ︷︷ ︸

=ϕ(x)dx , ϕ>0

�Z

RdP{

x ∈ A([0 ,1]2

)}dx

= E{

m(

A([0 ,1]2

))}.

(Levy, 1940; Kahane, 1983) “a � b” means “a > 0⇔ b > 0.”

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 15 / 20

Page 60: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .By the Exercise,

P{

0 ∈ A([1 ,2]2

)}=

ZRd

P{

x ∈ A([0 ,1]2

)}P {A(1 ,1) ∈ −dx}︸ ︷︷ ︸

=ϕ(x)dx , ϕ>0

�Z

RdP{

x ∈ A([0 ,1]2

)}dx

= E{

m(

A([0 ,1]2

))}.

(Levy, 1940; Kahane, 1983) “a � b” means “a > 0⇔ b > 0.”

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 15 / 20

Page 61: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .By the Exercise,

P{

0 ∈ A([1 ,2]2

)}=

ZRd

P{

x ∈ A([0 ,1]2

)}P {A(1 ,1) ∈ −dx}︸ ︷︷ ︸

=ϕ(x)dx , ϕ>0

�Z

RdP{

x ∈ A([0 ,1]2

)}dx

= E{

m(

A([0 ,1]2

))}.

(Levy, 1940; Kahane, 1983) “a � b” means “a > 0⇔ b > 0.”

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 15 / 20

Page 62: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .By the Exercise,

P{

0 ∈ A([1 ,2]2

)}=

ZRd

P{

x ∈ A([0 ,1]2

)}P {A(1 ,1) ∈ −dx}︸ ︷︷ ︸

=ϕ(x)dx , ϕ>0

�Z

RdP{

x ∈ A([0 ,1]2

)}dx

= E{

m(

A([0 ,1]2

))}.

(Levy, 1940; Kahane, 1983) “a � b” means “a > 0⇔ b > 0.”

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 15 / 20

Page 63: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .By the Exercise,

P{

0 ∈ A([1 ,2]2

)}=

ZRd

P{

x ∈ A([0 ,1]2

)}P {A(1 ,1) ∈ −dx}︸ ︷︷ ︸

=ϕ(x)dx , ϕ>0

�Z

RdP{

x ∈ A([0 ,1]2

)}dx

= E{

m(

A([0 ,1]2

))}.

(Levy, 1940; Kahane, 1983) “a � b” means “a > 0⇔ b > 0.”

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 15 / 20

Page 64: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .

Goal: Em(A([0,1]2)) = 0.

By Brownian scaling,

A([0 ,2]2)︸ ︷︷ ︸∼X(2s)−Y (2t)

D=√

2A([0 ,1]2)

⇔ m(A([0 ,2]2)D= 2d/2m(A[0 ,1]2)

⇔ Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 16 / 20

Page 65: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .Goal: Em(A([0,1]2)) = 0.

By Brownian scaling,

A([0 ,2]2)︸ ︷︷ ︸∼X(2s)−Y (2t)

D=√

2A([0 ,1]2)

⇔ m(A([0 ,2]2)D= 2d/2m(A[0 ,1]2)

⇔ Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 16 / 20

Page 66: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .Goal: Em(A([0,1]2)) = 0.

By Brownian scaling,

A([0 ,2]2)︸ ︷︷ ︸

∼X(2s)−Y (2t)

D=√

2A([0 ,1]2)

⇔ m(A([0 ,2]2)D= 2d/2m(A[0 ,1]2)

⇔ Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 16 / 20

Page 67: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .Goal: Em(A([0,1]2)) = 0.

By Brownian scaling,

A([0 ,2]2)︸ ︷︷ ︸∼X(2s)−Y (2t)

D=√

2A([0 ,1]2)

⇔ m(A([0 ,2]2)D= 2d/2m(A[0 ,1]2)

⇔ Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 16 / 20

Page 68: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .Goal: Em(A([0,1]2)) = 0.

By Brownian scaling,

A([0 ,2]2)︸ ︷︷ ︸∼X(2s)−Y (2t)

D=√

2A([0 ,1]2)

⇔ m(A([0 ,2]2)D= 2d/2m(A[0 ,1]2)

⇔ Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 16 / 20

Page 69: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .Goal: Em(A([0,1]2)) = 0.

By Brownian scaling,

A([0 ,2]2)︸ ︷︷ ︸∼X(2s)−Y (2t)

D=√

2A([0 ,1]2)

⇔ m(A([0 ,2]2)D= 2d/2m(A[0 ,1]2)

⇔ Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 16 / 20

Page 70: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .Goal: Em(A([0,1]2)) = 0.

By Brownian scaling,

A([0 ,2]2)︸ ︷︷ ︸∼X(2s)−Y (2t)

D=√

2A([0 ,1]2)

⇔ m(A([0 ,2]2)D= 2d/2m(A[0 ,1]2)

⇔ Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 16 / 20

Page 71: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .

We know: Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).We want: Em(A([0 ,1]2) = 0.Note that

A([0 ,2]2

)= A

([0 ,1]2

)∪A ([0 ,1]× [1 ,2])

∪A ([1 ,2]× [0 ,1])∪A([1 ,2]2

).

Therefore,

m(

A([0 ,2]2

))≤ m

(A([0 ,1]2

))+ m (A ([0 ,1]× [1 ,2]))

+m (A ([1 ,2]× [0 ,1])) + m(

A([1 ,2]2

)).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 17 / 20

Page 72: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .We know: Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).

We want: Em(A([0 ,1]2) = 0.Note that

A([0 ,2]2

)= A

([0 ,1]2

)∪A ([0 ,1]× [1 ,2])

∪A ([1 ,2]× [0 ,1])∪A([1 ,2]2

).

Therefore,

m(

A([0 ,2]2

))≤ m

(A([0 ,1]2

))+ m (A ([0 ,1]× [1 ,2]))

+m (A ([1 ,2]× [0 ,1])) + m(

A([1 ,2]2

)).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 17 / 20

Page 73: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .We know: Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).We want: Em(A([0 ,1]2) = 0.

Note that

A([0 ,2]2

)= A

([0 ,1]2

)∪A ([0 ,1]× [1 ,2])

∪A ([1 ,2]× [0 ,1])∪A([1 ,2]2

).

Therefore,

m(

A([0 ,2]2

))≤ m

(A([0 ,1]2

))+ m (A ([0 ,1]× [1 ,2]))

+m (A ([1 ,2]× [0 ,1])) + m(

A([1 ,2]2

)).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 17 / 20

Page 74: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .We know: Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).We want: Em(A([0 ,1]2) = 0.Note that

A([0 ,2]2

)= A

([0 ,1]2

)∪A ([0 ,1]× [1 ,2])

∪A ([1 ,2]× [0 ,1])∪A([1 ,2]2

).

Therefore,

m(

A([0 ,2]2

))≤ m

(A([0 ,1]2

))+ m (A ([0 ,1]× [1 ,2]))

+m (A ([1 ,2]× [0 ,1])) + m(

A([1 ,2]2

)).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 17 / 20

Page 75: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Let A(s , t) := X (s)−Y (t), d ≥ 5; m := Leb. meas. on Rd .We know: Em(A([0 ,2]2) = 2d/2Em(A([0 ,1]2).We want: Em(A([0 ,1]2) = 0.Note that

A([0 ,2]2

)= A

([0 ,1]2

)∪A ([0 ,1]× [1 ,2])

∪A ([1 ,2]× [0 ,1])∪A([1 ,2]2

).

Therefore,

m(

A([0 ,2]2

))≤ m

(A([0 ,1]2

))+ m (A ([0 ,1]× [1 ,2]))

+m (A ([1 ,2]× [0 ,1])) + m(

A([1 ,2]2

)).

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 17 / 20

Page 76: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

We know:

m(

A([0 ,2]2

))≤ m

(A([0 ,1]2

))+ m (A ([0 ,1]× [1 ,2]))

+m (A ([1 ,2]× [0 ,1])) + m(

A([1 ,2]2

)).

By the Exercise,

⇒ m(

A([1 ,2]2

))D= m

(A([0 ,1]2

)).

Same with the other terms in the first display.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 18 / 20

Page 77: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

We know:

m(

A([0 ,2]2

))≤ m

(A([0 ,1]2

))+ m (A ([0 ,1]× [1 ,2]))

+m (A ([1 ,2]× [0 ,1])) + m(

A([1 ,2]2

)).

By the Exercise,

⇒ m(

A([1 ,2]2

))D= m

(A([0 ,1]2

)).

Same with the other terms in the first display.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 18 / 20

Page 78: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Thus,Em

(A([0 ,2]2

))≤ 4Em

(A([0 ,1]2

))

⇒2d/2Em

(A([0 ,1]2

))≤ 4Em

(A([0 ,1]2

)).

d ≥ 5⇒ Em(A([0 ,1]2)) = 0, as desired.

Exercise

Prove that Em(A([0 ,1]2) <∞.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 19 / 20

Page 79: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Thus,Em

(A([0 ,2]2

))≤ 4Em

(A([0 ,1]2

))⇒

2d/2Em(

A([0 ,1]2

))

≤ 4Em(

A([0 ,1]2

)).

d ≥ 5⇒ Em(A([0 ,1]2)) = 0, as desired.

Exercise

Prove that Em(A([0 ,1]2) <∞.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 19 / 20

Page 80: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Thus,Em

(A([0 ,2]2

))≤ 4Em

(A([0 ,1]2

))⇒

2d/2Em(

A([0 ,1]2

))≤ 4Em

(A([0 ,1]2

)).

d ≥ 5⇒ Em(A([0 ,1]2)) = 0, as desired.

Exercise

Prove that Em(A([0 ,1]2) <∞.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 19 / 20

Page 81: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Thus,Em

(A([0 ,2]2

))≤ 4Em

(A([0 ,1]2

))⇒

2d/2Em(

A([0 ,1]2

))≤ 4Em

(A([0 ,1]2

)).

d ≥ 5⇒ Em(A([0 ,1]2)) = 0, as desired.

Exercise

Prove that Em(A([0 ,1]2) <∞.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 19 / 20

Page 82: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

Second Application: Intersections of Brownian MotionsThe Dvoretzky–Erdos–Kakutani Theorem, Continued

Thus,Em

(A([0 ,2]2

))≤ 4Em

(A([0 ,1]2

))⇒

2d/2Em(

A([0 ,1]2

))≤ 4Em

(A([0 ,1]2

)).

d ≥ 5⇒ Em(A([0 ,1]2)) = 0, as desired.

Exercise

Prove that Em(A([0 ,1]2) <∞.

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 19 / 20

Page 83: Tutorial on Additive Levy Processes´ - Mathdavar/ps-pdf-files/Seattle06Tutorial1.pdfIntroduction Some Terminology An “(N ,d) random field” X has N parameters and takes values

A Theorem of A. Dvoretzky, P. Erdos, and S. Kakutani

In Memory of Ron Pyke (1931–2005)

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle ’06 20 / 20