tutorial sheet 04 answers 2014

Upload: checkmeout803

Post on 03-Jun-2018

246 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    1/23

    Tutorial Sheet No. 4: A nswers

    Process Equipment Design for Phase-Equilibria Systems.

    1) a) Calculate the bubble point pressure and composition of the vapour in equilibrium with aliquid at 40 C containing:

    5 mole % methane (CH 4)20 mole % ethane (C 2H6)25 mole % propane (C 3H8)20 mole % isobutane (C 4H10)30 mole % n-butane (C 4H10)

    Use an initial guess of 1000 kPa.[12.5 marks]

    b) Calculate the dew point pressure and composition of the liquid in equilibrium with avapour at 40 C containing:

    5 mole % methane (CH 4)20 mole % ethane (C 2H6)25 mole % propane (C 3H8)20 mole % isobutane (C 4H10)30 mole % n-butane (C 4H10)

    Use an initial guess of 1000 kPa.

    [12.5 marks]

    Answer:a) Use high temperature nomograph with: K i = yi / x i

    Therefore yi = xi K i

    Guess P until yi = 1.0

    P = 1000 kPa P = 2500 kPa P = 2700 kPa Component x i K i y i K i y i K i y i methane 0.05 18 0.90 7.8 0.39 7.2 0.36ethane 0.20 3.9 0.78 1.9 0.38 1.8 0.36

    propane 0.25 1.35 0.34 0.68 0.17 0.64 0.16isobutane 0.20 0.60 0.12 0.32 0.064 0.31 0.062nbutane 0.30 0.43 0.13 0.23 0.069 0.22 0.066

    1.00 2.27 1.07 1.01

    The bubble point pressure is 2700 kPa and the composition of the vapour is:

    36 mole % methane, 36 mole % ethane, 16 mole % propane, 6.2 mole % isobutane

    and 6.6 mole % n-butane[12.5 marks]

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    2/23

    2

    b) Use high temperature nomograph with: K i = yi / x i

    Therefore xi = yi / K i

    Guess P until xi = 1.0

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    3/23

    3

    P = 1000 kPa P = 820 kPa P = 760 kPa y i K i x i K i x i K i x i

    methane 0.05 18 0.00278 21.5 0.00233 23 0.00217ethane 0.20 3.9 0.05128 4.6 0.04348 5 0.04000

    propane 0.25 1.35 0.18519 1.6 0.15625 1.7 0.14706isobutane 0.20 0.60 0.33333 0.72 0.27778 0.76 0.26316nbutane 0.30 0.43 0.69767 0.52 0.57692 0.56 0.53571

    1.00 1.27 1.06 0.99

    The dew point pressure is 760 kPa and the composition of the liquid is:

    0.2 mole % methane, 4 mole % ethane, 14.7 mole % propane, 26.3 mole % isobutaneand 53.6 mole % n-butane

    [12.5 marks]

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    4/23

    4

    2) Many thermodynamic process engineering design problems consider a system in which

    either a vapour phase is just being formed from a boiling liquid phase, or a liquid phase is just

    being formed from a saturated vapour phase. In order to take into account molecular

    interactions in real systems, the liquid-vapour equilibrium constant, K i, can be used in some

    hydrocarbon systems.

    a) For a non-ideal system, show that the Design Performance Equation to predict thecomponent mole fraction xi in the liquid stream from a flash vessel processing a liquid

    feed stream of component mole fraction x Fi is:

    L)-(1 K L x

    xi

    Fii

    where L is the product liquor molar flow from the flash vessel operating at a system

    pressure P and a system temperature T . Identify the assumptions used in the

    derivation.

    [5 marks]

    b) A liquid stream containing 15 mol% ethane (C 2H6), 35 mol% propane (C 3H8) and 50mol% n-butane (C 4H10) enters a flash vessel at 40 C. If 40% of the stream remains as

    a liquid (based on the molar flow), calculate the pressure of the vessel and thecomposition of the exit streams.

    [10 marks]

    c) The vapour stream from a gas well is a mixture containing 50 mol% methane, 10mol% ethane, 20 mol% propane and 20 mol% n-butane. The stream is fed to a partial

    condenser at a pressure of 17.25 bar and a temperature of 27 C. Determine the mole

    fraction of the gas which condenses and the composition of the liquid and gas phases

    leaving the condenser.

    [10 marks]

    Data supplied:

    Data Sheet No. (1): De Priester Nomogram for Phase Equilibrium Constants for

    Hydrocarbons (High Temperature Range).

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    5/23

    5

    Answer: DIAGRAM

    Assumptions: No chemical reaction only physical division between binary phases. Steadystate system at constant temperature, T , and pressure, P . System is at phase equilibrium.

    Basis of calculation: F = 1.0 kmol feedstock.

    Mass Balance:

    0)( 0)(

    ONACCUMULATIREACTIONOUT-IN

    IN = OUT

    Overall Balance:

    F = V + L 1.0 = V + L then V = 1 L (1)

    Component Balance:

    L xV y F x ii Fi

    Substitute for basis, F = 1.0 and for V from Eq. (1) to give:

    L x L y x ii Fi )-(1 (2)

    At phase equilibrium,

    iii x K y

    Substitute for y i in Eq. (2) to give:

    L x L K x x iii Fi )-(1

    )-(1

    L K L

    x x

    i

    Fii (3)

    [5 marks]

    Feedstock F kmol

    Liquid Feed x Fi

    EQUILBRIUMUNIT

    OR STAGE

    V kmol yi

    L kmol xi

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    6/23

    6

    b) Now we know L = 0.4, so guess P and use;

    )1( L K L

    x x

    i

    Fii

    To calculate xi and then check for xi = 1.

    P = 600 kPa P = 820 kPaComponent x F i K i x i K i x i y i ethane 0.15 6 0.0375 4.7 0.0466 0.2190

    propane 0.35 2.1 0.2108 1.6 0.2574 0.4118n-butane 0.5 0.67 0.6234 0.54 0.6906 0.3729

    0.8717 0.9946 1.0037

    Iteration can be done from first guess on component contributing largest amount to xi using:

    K i new = K i old xi

    Using data P = 600 kPa K n-butane = 0.6234 0.8717 = 0.54

    Drawing a line through 40 C and K n-butane = 0.54, gives the second set of data at P = 820 kPaand the required result.

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    7/23

    7

    c) We know that: T = 27 C and P = 17.25 bar (= 17.25 10 5 Pa = 1725 kPa).

    Therefore we can draw a line on the nomograph to get the K i values.

    We know y Fi values coming in therefore we need to guess L and iterate until xi = 1.

    L = 0.5 L = 0.2 L = 0.1 L = 0.142Component y Fi K i x i x i x i x i y i

    methane 0.5 10.3 0.0885 0.0592 0.0534 0.0557 0.5737ethane 0.1 2.1 0.0645 0.0532 0.0503 0.0514 0.1079

    propane 0.2 0.69 0.2367 0.2660 0.2774 0.2725 0.1880n-butane 0.2 0.21 0.3306 0.5435 0.6920 0.6208 0.1304

    1.0 0.7203 0.9219 1.0731 1.0004 1.0000

    We know L is between 0 and 1 so iteration is straight forward (final result L = 0.142 and V =0.858 with compositions given in the table).

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    8/23

    8

    3) For a non-ideal system, show that the Design Performance Equation to predict thecomponent mole fraction xi in the liquid stream from a flash vessel processing a liquid feedstream of component mole fraction x Fi is:

    L)-(1 K L

    x

    x i Fi

    i

    where L is the product liquor molar flow from the flash vessel operating at a system pressure P and a system temperature T . Identify the assumptions used in the derivation.

    [5 marks]

    A liquid of composition 25 mole % ethane, 15 mole % n-butane and a third unknowncomponent enters a separation vessel which operates at a pressure of 750 kPa andtemperature of 6 C. If 87% of the solution leaves the vessel as the liquid stream, calculate:

    a)

    The equilibrium constant, K i, for the unknown component. [10 marks] b) The composition of the vapour and liquid leaving the separation unit.

    [7 marks]c) Determine the chemical name of the third remaining component in the liquid mixture.

    [3 marks]

    Answer: DIAGRAM

    Assumptions: No chemical reaction only physical division between binary phases. Steadystate system at constant temperature, T , and pressure, P . System is at phase equilibrium.

    Basis of calculation: F = 1.0 kmol feedstock.

    Mass Balance:

    0)( 0)(

    ONACCUMULATIREACTIONOUT-IN

    IN = OUT

    Overall Balance:

    Feedstock

    F kmol

    Liquid Feed x Fi

    EQUILBRIUMUNIT

    OR STAGEV kmol

    yi

    L kmol xi

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    9/23

    9

    F = V + L 1.0 = V + L

    then V = 1 L (1)

    Component Balance:

    L xV y F x ii Fi

    Substitute for basis, F = 1.0 and for V from Eq. (1) to give:

    L x L y x ii Fi )-(1 (2)

    At phase equilibrium,

    iii x K y

    Substitute for y i in Eq. (2) to give:

    L x L K x x iii Fi )-(1

    )-(1

    L K L x

    xi

    Fii (3)

    [5 marks]

    a) The mole fraction of the unknown component in the feed stream is:

    x Fi of unknown component = 1 0.25 0.15 = 0.6

    Next, draw a tie line on the De Priester Chart between P = 750 kPa and T = 6 C. Read off the K i values for ethane and n- butane. Knowing the K i values and that L = 0.87 we can calculatethe mole fractions of ethane and n-butane in the output liquid stream using:

    i

    Fi

    i

    Fii K .

    x.- K .

    x x

    0.13870)8701(870

    Component x F i K i x i

    ethane 0.25 2.6 0.207n-butane 0.15 0.18 0.168unknown 0.6 - -

    We know that: xi = 1

    Therefore xethane + xn-butane + xunknown = 1

    0.207 + 0.168 + xunknown = 1

    xunknown = 0.625

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    10/23

    10

    We can now calculate K i as:

    i K ..

    0.138706.0

    6250

    0.87 + 0.13 K i = 0.6/0.625

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    11/23

    11

    K i = [(0.6/0.625) 0.87]/0.13 = 0.69[10 marks]

    b) Using the calculated data we get:

    Component x F i K i x i y i ethane 0.25 2.60 0.207 0.538n-butane 0.15 0.18 0.168 0.030unknown 0.6 0.69 0.625 0.431Total 1.00 - 1.000 0.999

    Remember yi = K i xi

    Therefore, the stream compositions are:

    Liquid: 20.7 mole % ethane, 16.8 mole % n- butane, 62.5 mole % of the unknown compoundVapour: 53.8 mole % ethane, 3.0 mole % n- butane, 43.1 mole % of the unknown compound

    [7 marks]

    c) Looking on the De Priester chart, the compound which has a K i of 0.69 when P = 750 kPaand T = 6 C is propane.

    Therefore, the unknown compound is most likely propane.[3 marks]

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    12/23

    12

    4) Acetone (1) and methanol (2) form an azeotrope boiling at 55.7 C and 760 mmHg pressure, with a mole fraction of 80% acetone. Given the following Antoine equations, where

    oi p is in mmHg and T is in C:

    Acetone: 229.6641210.595

    -7.11714log 110 T po

    Methanol:239.726

    1582.271 -8.08097log 210 T

    p o

    a) Determine the Van Laar coefficients from the azeotrope data and the followingequations;

    1

    2

    11

    2212 lnln

    ln1

    x x

    A

    2

    2

    22

    1121 lnln

    ln1

    x x

    A

    [5 marks]

    b) Calculate the azeotropic boiling point and composition at P = 1520 mmHg. Use A12 and A21 as calculated above and:

    2

    2

    1

    21

    12

    121

    1

    ln

    x x

    A A

    A 2

    1

    2

    12

    21

    212

    1

    ln

    x x

    A A

    A

    [15 marks]

    c) Calculate the lowest pressure at which an azeotrope exists.[5 marks]

    Answer:a) When T = 55.7 C and P = 1 atm, we are at the azeotrope and oii P/p , therefore:

    Acetone:229.66455.7

    1210.595 -7.11714 plog o110

    mmHg749.65 p o1

    1.0138mmHg749.65

    mmHg760

    pP

    o1

    1

    Methanol:239.72655.7

    1582.271 -8.08097 plog o210

    mmHg530.97 p o2

    1.4313mmHg530.97mmHg760

    pP

    o1

    1

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    13/23

    13

    We know x1 = 0.8, x2 = 0.2, 1 = 1.0138 and 2 = 1.4313, therefore:

    2

    11

    22112 lnx

    lnx 1lnA

    0.77901.0138ln0.81.4313ln0.2

    11.0138lnA2

    12

    2

    22

    11221 lnx

    lnx 1lnA

    0.47671.4313ln0.21.0138ln0.8

    11.4313lnA2

    21

    [5 marks]

    b) At the azeotrope:

    o1

    o2

    o2

    o1

    2

    1

    p p

    P/pP/p

    Therefore:

    2

    1

    2

    12

    21

    212

    2

    1

    21

    12

    12212

    1o1

    o

    2

    11lnlnln p

    pln

    x x

    A A

    A

    x x

    A A

    A

    Let:2

    1

    21

    12

    x x

    A A

    Therefore:

    22

    21122

    212

    12o1

    o2

    1111 p p

    ln

    A A A A

    Need to guess T , calculate o1 p ,o2 p and solve for . Then calculate x1 and 1 and P = 1

    o1 p .

    Iterate until P = 1520 mmHg

    1 st guess: When T = 55.7 C, we know that mmHg749.65 p o1 and P = 760 mmHg, therefore

    oldo1

    old

    newnew

    o1 )(pP

    P )(p

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    14/23

    14

    mmHg1499.3749.65760

    1520 )(p new

    o1

    C77.507.11714-1499.3log

    1210.595 -229.664-T

    10

    new

    mmHg1239.00 p o2

    22

    14767.07790.0

    1499.31239.00

    ln

    096966.038138.0286042.0 2

    Giving: = 2.624803 which results in 1 = 1.0611

    mmHg87.15900611.13.1499 pP 1o1

    This is too high, therefore we need to iterate.

    1 st iteration:

    mmHg1432.5129.14991590.87

    1520 )(p new

    o1

    C75.967.11714-1432.51log

    1210.595 -229.664-T

    10new

    mmHg1171.72 p o2

    22

    14767.07790.0

    1432.511171.72

    ln

    097992.040191.0275779.0 2

    Giving: = 2.749636 which results in 1 = 1.0570

    mmHg11.15140570.151.1432 pP 1o1

    This is slightly too low so can iterate again:

    2nd iteration:

    mmHg1438.0851.14321514.11

    1520 )(p new

    o1

    C76.097.11714-1438.08log

    1210.595 -229.664-T10

    new

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    15/23

    15

    mmHg1177.31 p o2

    2

    2

    1

    4767.07790.0

    1438.08

    1177.31ln

    097905.040016.0276652.0 2

    Giving: = 2.738652 which results in 1 = 1.0573

    mmHg50.15200573.108.1438 pP 1o1

    Close enough, so T = 76.09 C.

    ===============================================================We could also have interpolated this value using the first 2 points we had already i.e.:

    C08.76)11.151487.1590(

    )96.755.77()11.15141520(96.75 oT

    ===============================================================

    Composition:

    )1( 1

    1

    21

    12

    2

    1

    21

    12

    x

    x

    A

    A

    x

    x

    A

    A

    Rearranging, gives:

    6263.0)1(

    1)1(

    1

    4767.0738652.27790.01

    2112

    A A

    x

    Therefore, the azeotrope at 1520 mmHg is at 62.63% Acetone.[15 marks]

    c) Since x1 decreases as P rises, it will increase as P falls and eventually reach a value of 1.0for P < 760 mmHg. When x 1 = 1.0 then:

    2

    1

    21

    12

    x x

    A A

    Therefore:

    21221

    212

    o1

    o2

    111 p p

    ln A A A

    This equation can be solved either by trial and error or analytically:

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    16/23

    16

    oioi plog30258.2 pln

    Therefore,

    21o1o2o1o2o1

    o2 plog plog30258.2 pln pln

    p p

    ln A

    30258.2229.6641210.595

    -7.11714239.726

    1582.271 -8.08097 21

    AT T

    229.664

    1210.595

    239.7261582.271

    30258.2 7.117148.08097 21

    T T A

    A21 = 0.4767, so:

    229.6641210.595

    239.726

    1582.271170873.1

    T T

    239.726)1210.595()229.664(271.1582)229.664)(239.726(170873.1 T T T T

    1.2902111210.5957.363390271.1582)55056.43469.39(170873.1 2 T T T T

    59.73179676.37164464.07549.60170873.1 2 T T T

    08715.52-92.177170873.1 2 T T

    Therefore: T = 38.98 C (or -190.94 C which is invalid)

    When T = 38.98 C;

    Acetone:229.66438.98

    1210.595 -7.11714 plog o110

    mmHg408.15 po1

    So mmHg15.408115.408 pP 1o1

    [5 marks]

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    17/23

    17

    5) Acetone (1) and Hexane (2) form an azeotrope containing 41 wt% of Hexane, boiling at

    49.8 C at a pressure of 760 mmHg. Pure component vapour pressures may be calculated

    using the following equation and Antoine coefficients:

    )(log *10 C T

    B A p i

    Antoine Coefficients RMM

    kg / kmolA B C

    Acetone (1) 7.1327 1219.97 230.653 58.08

    Hexane (2) 7.01051 1246.33 232.988 86.18

    with*i p in mmHg and T in C.

    a) Calculate the normal boiling points for Acetone and Hexane at 1 atm.[4 marks]

    b) Use the azeotropic data and the following equations to estimate the van Laar constantsA12 and A 21.

    2

    11

    22112 ln

    ln1ln

    x x A

    2

    22

    11221 ln

    ln1ln

    x x A

    [7 marks]

    c) Using the Antoine equations and Van Laar coefficients calculated in part (b), estimatethe boiling point and vapour composition at 760 mmHg of a liquid containing 20 %

    by mole of Acetone.

    2112221

    2

    2

    2

    21121 ][

    ln x A x A

    x A A 2221112

    2

    1

    2

    12212 ][

    ln x A x A

    x A A

    [8 marks]

    d) Find the dew point of a vapour containing 50 % by mole of Acetone.[6 marks]

    Answer:a) To find the boiling point substitute a pressure of 1 atm (=760 mmHg) into the Antoine

    equations:

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    18/23

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    19/23

    19

    8950.105.401

    7602

    Need to work out mole fractions at azeotrope, therefore taking a basis of 100 kg of themixture:

    Mass of Hexane = (41/100) 100 = 41 kgMass of Acetone = 100 41 = 59 kg

    Moles of Hexane = 41 / 86.18 = 0.4757 kmolsMoles of Acetone = 59 / 58.08 = 1.0158 kmols

    Mole fraction of Acetone ( x1) = 1.0158 / (0.4757 + 1.0158) = 0.681Mole fraction of Hexane ( x2) = 1 x1 = 1 0.681 = 0.319

    2

    11

    2112 ln

    ln1ln x x A

    2216.12535.1ln681.08950.1ln319.0

    12535.1ln2

    12 A

    2

    22

    1221 ln

    ln1ln

    x x

    A

    9678.18950.1ln319.02535.1ln681.0

    18950.1ln2

    21 A

    [7 marks]

    c) x1 = 0.2, x2 = 0.8 and P = 760 mmHg.

    2112221

    22

    22112

    1 ][ln

    x A x A x A A

    9154.0)]2.02216.1()8.09678.1[(

    8.09678.12216.1ln 222

    1

    4978.21

    2221112

    21

    21221

    2 ][ln

    x A x A x A A

    0355.0

    )]2.02216.1()8.09678.1[(

    2.02216.19678.1ln 2

    22

    2

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    20/23

    20

    0361.12

    Now we need to guess T , so as a first guess use the average boiling point, T = 62.6 C.

    Acetone: 9726.2)653.2306.62(97.1219

    1327.7log*1 p

    mmHg86.938*1 p

    Hexane: 7941.2)988.2326.62(

    33.124601051.7log *2 p

    mmHg44.622*2 p

    iiii p x p * and i p P

    So

    mmHg02.4694978.286.9382.01 p

    mmHg93.5150361.144.6228.02 p

    mmHg95.98493.51502.469 i p P

    This value is too high as we need P = 760 mmHg, so iterate temperature value as follows:

    iold new p

    p p760

    )()( *1*1

    mmHg44.72495.984

    76086.938)( *1 new p

    From Antoine equation for Acetone: C87.54 newT .

    Hexane: 6808.2)988.23287.54(

    33.124601051.7log *2 p

    mmHg51.479*2 p

    iiii p x p * and i p P

    So

    mmHg90.3614978.244.7242.01 p

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    21/23

    21

    mmHg46.3970361.151.4798.02 p

    mmHg36.75946.39790.361 i p P

    This value is slightly too low as we need P = 760 mmHg, so iterate again:

    iold new p

    p p760

    )()( *1*1

    mmHg725.0536.759

    76044.724)( *1 new p

    From Antoine equation for Acetone: C90.54 newT .

    Hexane: 6813.2)988.23290.54(

    33.124601051.7log *2 p

    mmHg06.480*2 p

    iiii p x p * and i p P

    So

    mmHg21.3624978.205.7252.01 p

    mmHg91.3970361.106.4808.02 p

    mmHg12.76091.39721.362 i p P

    Therefore: T = 54.90 C and the vapour composition is found from:

    P

    p x y iiii

    *

    477.0760

    05.7254978.22.01 y

    523.0760

    06.4800361.18.02 y

    [8 marks]

    d) y1 = 0.5, y2 = 0.5, P = 760 mmHg, 2216.112 A and 9678.121 A .

    Again guess T = 62.6 C.

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    22/23

    22

    Therefore mmHg86.938*1 p and mmHg44.622*2 p

    Also assume 1 = 2 = 1 then

    *ii

    ii p

    P y x

    4047.086.938

    7605.01 x

    6105.044.622

    7605.02 x

    Recalculatei values using Van Laar equations:

    8462.1)]4047.02216.1()6105.09678.1[(

    6105.09678.12216.1exp 2

    22

    1

    1821.1)]6105.09678.1()4047.02216.1[(

    4047.02216.19678.1exp 2

    22

    2

    Recalculate xi values:

    2192.09388462176050

    1 .

    x

    5165.044.622

    7605.02 x

    7357.0 i x

    Therefore: mmHg72.690

    0.1

    7357.086.938)( *1 new p

    From Antoine equation: C5.53 newT

    mmHg23.457)( *2 new p

    Recalculate i values using Van Laar equations:

    1495.2)]2192.02216.1()5165.09678.1[(

    5165.09678.12216.1exp 2

    22

    1

  • 8/12/2019 Tutorial Sheet 04 Answers 2014

    23/23

    0893.1)]5165.09678.1()2192.02216.1[(

    2192.02216.19678.1exp 2

    22

    2

    Recalculate xi values:

    2559.072.690

    7605.01 x

    7630.023.457

    7605.02 x

    0189.1 i x

    Therefore: mmHg77.7030.1

    0189.172.690)( *

    1

    new p

    From Antoine equation: C04.54 newT

    mmHg93.465)( *2 new p

    Again recalculate i values using Van Laar equations:

    3091.2

    )]2559.02216.1()7630.09678.1[(

    7630.09678.12216.1exp 2

    22

    1

    0602.1)]7630.09678.1()2559.02216.1[(

    2559.02216.19678.1exp 2

    22

    2

    Recalculate xi values:

    2338.077.703

    7605.01 x

    7693.093.465

    7605.02 x

    0031.1 i x

    Could recheck final values with another iteration.[6 marks]