typical mechanisms in advanced soi mosfets and … · dielectric isolation: vertical and lateral...

33
Sorin Cristoloveanu - Almost no introduction - Operation of SOI transistors - Gate tunneling and floating-body effects - Fringing fields and short-channel effects - Narrow-channel effects - Extremely thin film effects - Self-heating - Double-gate operation - Multiple-gate MOSFETs - Next speaker Typical Mechanisms in Advanced SOI MOSFETs and Challenging Issues for Compact Modeling

Upload: vanhanh

Post on 14-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Sorin Cristoloveanu

- Almost no introduction- Operation of SOI transistors- Gate tunneling and floating-body effects- Fringing fields and short-channel effects - Narrow-channel effects- Extremely thin film effects- Self-heating- Double-gate operation- Multiple-gate MOSFETs- Next speaker

Typical Mechanisms in Advanced SOI MOSFETsand Challenging Issues for Compact Modeling

SOI Technology - Definition & Questions

� Is SOI really young ?Yes, 30-35 years onlyNo, twice as old as the lifetime left on ITRS

� Is SOI for the future ?(Yes)2 ! Bulk cannot make it. There is nothing left, but SOI !

� Is the future what it used to be ?No, because SOI allows expanding the frontiers !

Sorin 20-05

Definition: SOI is a young technologyfor the future of the microelectronics

Why SOI ?

Sorin 20-05

Dielectric isolation: vertical and lateral (no latch-up)Vertical junctions: reduced leakage and capacitanceExcellent tolerance of transient radiation effectsSimpler processing & high flexibility: no wells or trenchesIdeal structure for sensors, MEMS, high-temperature devices

Attenuated short-channel effects: enhanced scalingLow-voltage & low-power operation:

sharp subthreshold swing, reduced leakage, low VT

Floating-Body Effects in PD SOI MOSFETs

Sorin 20-05

Kink effect

Latch &related noise

Models available!

Fully Depleted MOSFETs : Coupling Effects

Sorin 20-05

Sorin 20-05

Sorin 20-05

Notes:� The front channel is sensitive to

back-gate bias and qualityof BOX and back interface

� Conventional models account for2-interface coupling

� MOSFETs with thin BOX require3-interface models andsubstrate depletion effects

Self-Heating in SOI MOSFETs

Sorin 20-05

Si

Si

Gate

oxideSource

Si

α

Drain

WireWireWire

BOX

Thermal Conductance: Analytical Model

� Thermal equivalent circuit� BOX contribution prevails

Change the BOX material !!

Al2O3 BOX

SiO2 BOX

Gate + S/D

Sorin 20-05

Solution: Thin Buried Alumina

0

50

100

150

200

0 50 100 150 200BOX (nm )

Latti

ce T

empe

ratu

re (C

)

(a)

(b)

o

SiO2 BOX

Al2O3 BOX

∆T=40°C

! Thinner BOX reduces the channel lattice temperature.! The advantage of Al2O3 BOX is maintained for thin BOX.

Sorin 20-05

0E+00

1E-05

2E-05

3E-05

4E-05

5E-05

6E-05

7E-05

8E-05

9E-05

1E-04

0.2 0.4 0.6 0.8 1 1.2 1.4

Gate Voltage [V]

Tran

scon

duct

ance

[S]

W = 10 µmL = 10 µmVD = 0.1 VHold time 30 s

200 ms

Step time 2 s20 ms

Gate-Induced Floating-Body Effects (GIFBE)

Sorin 20-05

A new scaling-related effect:FBE induced by gate tunneling

� second peak in transconductance� time & frequency dependent� decreases in shorter or narrowerchannels [Pretet et al�02]

0E+00

1E-06

2E-06

3E-06

4E-06

5E-06

6E-06

7E-06

8E-06

9E-06

1E-05

0 0.5 1 1.5

Gate Voltage [V]

Nor

mal

ized

tran

scon

duct

ance

[S.µ

m -1

]

W =10, 0.4, 0.32, 0.28, 0.24, 0.2, 0.18 µm

L = 10 µmVD = 0.2 V

0E+00

1E-04

2E-04

3E-04

4E-04

5E-04

6E-04

7E-04

0 0.5 1 1.5

Gate voltage (V)

Nor

mal

ized

tran

scon

duct

ance

[S.µ

m]

L = 10, 1, 2, 0.6, 0.16 µm

W = 10 µmVD = 0.2 V

GIFBE : Analysis

Sorin 20-05

� The body potential is defined by thebalance between gate-to-bodycurrent and recombination current

� Suppression of current transients(overshoot & undershoot)

� Impact on history effects in ICs

Gate

Substrate

S D

BOX

Body

1.00

1.02

1.04

1.06

1.08

1.10

0 5 10 15 20 25 30

Time [s]

Nor

mal

ized

Dra

in C

urre

nt

W = L = 10 µmVD = 0.1 V

VG1 : 0 -> 1.1 V

VG1 : 0 -> 0.9 V

VG1 : 0 -> 1.2 V

-0.7-0.6-0.5-0.4-0.3-0.2-0.1

00.10.20.30.40.5

-1.2 -0.8 -0.4 0 0.4 0.8 1.2Vgs (V)

Vbs

(V)

1E-12

1E-11

1E-10

1E-09

1E-08

Log

(|Ib|

(A))

L=20µm/W=20µmL=5µm/W=3µm

GIFBE : History Effects and Excess Noise

8

8.5

9

9.5

10

10.5

11

1 10 100 1000 10000 100000Pulse number

Prop

agat

ion

dela

y (p

s) 1st up1st up2nd up2nd up1st down1st down2nd down2nd downDashed lines : Without gate current

Plain lines : With gate current

1.9ns

0.1ns 0.1ns

1.2V

0V

Inverter Chain:

- 1st switch slowed down- 2nd switch accelerated- Steady-state reached faster

T.Poiroux et al., IEEE Internat. SOI Conf., pp. 99-100, Oct. 2002.

1.E -21

1.E -20

1.E -19

1.E -18

1.E -17

1.E -16

1.E -15

1 10 100 1000 10000 100000

Frequency ( Hz)

SId

(A²/H

z)

W/L=10/0.32 µm

Vd=50 mV

Vg1= 0.9 to 1.5 V

1/f + Lorentzian excess noise

Sorin 20-05

Surprising GIFBE in Fully Depleted MOSFETs

Sorin 20-05

� Second peak even for VG2 = 0� More accumulated back interface → higher peak

� Model :

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2

4

6

8

10

12

14

16

18

20

W=5µmL=10µm

Vg2=0 to -10V

g m1 (

µS)

Vg1 (V)

∆VT1 ≈ - ∆Ψs1 ≈ -Csi/(Csi + Cox1) ∆Ψs2 coupling

ID ~ (VG1 – VT1)

∆Ψ+

+×=G1

2

ox1si

si0∆V

.CC

C1 smm gg

Peak for ∆Ψs2 / ∆VG1 ≈ 1

Scaling of SOI MOSFETs

Sorin 20-05

ModelsIntrinsic length λ [Yan�92, Monroe �00]

λ = (tsi tox εsi/ εox)0.5 orλ = (tsi + tox εsi/εox)/π

Tolerable short-channel effects forLG ≈ 3 λ

Message:� worst case: transition from partial to full depletion� use ultra-thin FD films tsi = tox = 1 nm ⇒ LG = 5 nm !!� doping effect becomes irrelevant : high mobility

[Su�94]

No doping effect below 15 nm !

Fringing Fields in SOI

0

50

100

150

200

250

50 100 150 200 250 300 350

S ilico n thickness (Å)

DIB

L (m

V/V

) N o dop ing effect

D op ing effect

Gro u n dPlan e

Stan d ardN A=101 8cm-3

N A=101 5cm-3

Sorin 20-05

Medication :� Thin Si film� Thin BOX (not too thin!!)� Low-K BOX (SON?)� Ground-plane (genetics!!)

0

50

100

150

200

250

0 50 100 150 200 250 300 350

Film thickness (Å)

DIB

L (m

V/V

)

StandardtBOX=380nm

Low ktBOX=380nm

Ground plane + tBOX= 50 nm

tsi=160 Å

tsi=280 Å

Simulations

ModelExperiment

0

50

100

150

200

250

0 50 100 150 200 250 300 350

Film thickness (Å)

DIB

L (m

V/V

)

StandardtBOX=380nm

Low ktBOX=380nm

Ground plane + tBOX= 50 nm

tsi=160 Å

tsi=280 Å

Simulations

ModelExperiment

No doping effect below 15 nm ! Ground plane enables thicker films!Ernst et al�99

Sorin 20-05

Distribution of Fringing Fields in SOI MOSFETs

Analytical model based on conformal mappingErnst et al�99

Narrow-Channel Effects in SOI MOSFETs

Sorin 20-05

Special SOI Effects : FBE� Subthreshold swing increases

in narrow & thick (PD) channels� Attenuated floating-body effects� No models

Classical effects : VT, gm vs. W� Coupling between width, length and thickness� LOCOS : sidewall overdoping

less efficient in ultra-thin films� STI : corner effects� Models available

[Pretet�01]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

Channel width (µm)

Fron

t gat

e th

resh

old

volta

ge (V

)

VD = 50 mVLOCOS L = 10 µmSTI L = 10 µm

tsi = 15 nmtsi = 37 nm

tsi = 100 nm

STI tsi = 130

30

40

50

60

70

0 2 4 6 8 10Channel width (µm)

Sub

thre

shol

d sw

ing

(mV

/dec

)

tsi = 37 nm

tsi = 15 nm

VD = 2 VL = 10 µm

tsi = 100 nm

Floating-Body Effects in Narrow SOI MOSFETs

Sorin 20-05

Why are FBE attenuated ?� Degraded carrier lifetime on the sidewalls

- stress-induced defects ?� Dopant out-diffusion & segregation

into the lateral isolation oxide- reduced doping, lower S-body barrier- enhanced junction leakage current

� Breakdown and snapback voltagesincrease in narrow channels

� Transients effects are much shorter� Reduced history effects

[Pretet�01]

1E-07

1E-06

1E-05

1E-04

1E-03

4.25 4.5 4.75 5 5.25Drain Voltage (V)

Dra

in C

urre

nt (A

/µm

)

W = 0.37 µm

W = 0.31 µm

W = 0.28 µm

VG1 = 0 Vtsi = 130 nm

Wide devices

0E+00

2E-06

4E-06

6E-06

8E-06

0 1 2 3 4 5Drain voltage (V)

Dra

in c

urre

nt (A

/µm

)

Vg1 = 1.1 Vtsi = 37 nmL = 10 µm

W = 10, 5, 2, 1, 0.7 and 0.5 µm

5E-09

2E-08

3E-08

4E-08

0 10 20 30 40Time (s)

Dra

in c

urre

nt (A

)

VD = 0.1 VVG2 = 50 VVG1 = 0 -> -2VL = 10 µmtsi = 47 nm

W = 10 µm W = 5 µm

W = 0.7 µm

W = 0.3 µm

W =2 µm

Chopping the SOI MOSFET’s

S D +

Length ⇒ 10 nm

+ = Volume ?10�18 - 10�19 cm3 !

Thickness ⇒ 1 nm Width ⇒ 10 nm

� What is the meaning of 1017 cm-3 doping level ??

� Is the impurity location important ?

� A few thousands Si atoms, only. Call them by name!

� Modeling and simulation tools

� Statistical fluctuations

-40.00

0.05

0.10

0.15

0.20

0.25

-2 0 2 4Front gate voltage VG1 (V)

Dra

in c

urre

nt I D

(µA

)

6 8 10

VG2 = -5 to 5, step = 1 V

tsi = 1 nm

1 nm - MOSFET

Sorin 20-05

Ultra Thin Film Effects in SOI MOSFETs

Sorin 20-05

Sorin et al�03

1E-11

1E-09

1E-07

1E-05

1E-03

-3 -2 -1 0Gate Voltage [V]

Dra

in c

urre

nt [A

]

VG2 = 10, 12, 14, 16, 18, 25, 30 V

W = 10 µmL = 0.1 µmVD = 0.05 V

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

-50 0 50VG2, T2 [V]

VT1

,G1 [

V] W = 10 µmL = 10 µmVD = 0.1 Vtsi = 47 nm

B

C

D

A

VG1(VT2)VT1(VG2) -3

-2.5-2

-1.5-1

-0.50

0.51

1.52

-70 -50 -30 -10 10 30 50VG2, (T2) [V]

V T1,

(G1)

[V]

W = 10 µmL = 0.1 µmVD = 0.05 V

VG1(VT2)VT1(VG2)

Coupling curves VT1(VG2) and VT2(VG1)Thick film: the two curves interceptUltra-thin film: the curves are superposed

47 nm 8 nm

2G2ox

1ox1T V

ttV ∆−≅∆

111

22 G

oxSi

Si

ox

oxT V

CCC

ttV ∆

+−≅∆

11

22 G

ox

oxT V

ttV ∆−≅∆

Pseudo-Double-Gate Operation

Similar front and back inversion charges:

( )2T2G2ox

1ox1T1G VV

ttVV −=−

What is the correct value of VT1 and VT2 ?

� Thick film: intercept point� Thin film: any value on the common curve !� Wrong biasing: irrealistic mobility value

This relation does not apply to weak inversion :World record : swing 7 mV/dec !!

0.0E+005.0E-101.0E-091.5E-092.0E-092.5E-093.0E-093.5E-094.0E-094.5E-095.0E-09

0 0.2 0.4 0.6

Gate voltage [V]

Tran

scon

duct

ance

[S] W = 10 µm

L = 10 µmVD = 0.1 V

BC

D

A

tsi = 47 nm(a)

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

0.3 0.4 0.5 0.6 0.7 0.8

Gate voltage [V]

Dra

in c

urre

nt [A

]

VD = 0.1 Vtox2/tox1 = 10

PseudoDouble-Gate

Ultimately Thin Double-Gate MOSFETs

Sorin 20-05

� 3-nm-thick DG-MOSFET� simultaneous biasing of front and back gates: VG2 = 1.2 VG1

� outstanding transconductance gain: up to 400%� mobility effect rather than charge effect

Impact of volume inversion

Cristoloveanu et al�99

Impact of Volume Inversion on Mobility

Sorin 20-05

� Dimensional confinement: tsi < 10 nm� VT increases below 10 nm� Quantum charge distribution totally different

from classical profile (Poisson)� Enhanced volume inversion [Sangiorgi et al �98]

� SG: more carriers flow near interfaces� DG: most carriers flow far from interfaces

- lower vertical field- less roughness-induced scattering- empirical model showing mobility gain

[Cristoloveanu et al�99]

Carrier Mobility in Ultra Thin SOI MOSFETs

� Monte-Carlo simulations indicate [Gamiz�01] :(including phonon + Coulomb + surface roughness scattering)

- enhanced mobility in sub-10-nm thickness range- higher mobility in DG-MOSFETs

� Experiments in MOS-Hall devices demonstrate [Mastrapasqua�01] :- impoved mobility in recent SOI materials- good mobility in sub-10-nm thick MOSFETs- higher mobility in DG-MOSFETs

Compact models ??

Ultimate Scaling of DG-MOSFETs

� Acceptable short-channel effects if LG ≥ 3 λ

λ = [(k/2) tsi tox ]0.5 or λ = (tsi + 2ktox )/π with k = εsi/εox

� Ultra thin SOI films will be necessary for 10-nm-long DG-MOSFETs

Intrinsic length λ

Franck �01 L = 8 nm, Likharev�00

Transport Properties in FinFETs

G

FilmhFin

tFin

BOXN-channel P-channel

Lateral mobility

196 cm2/Vs Lateral interface 96 cm2/Vs

Front mobility

677 cm2/Vs Front interface 163 cm2/Vs

Back mobility

682 cm2/Vs Back interface 150 cm2/Vs

4 channels2 gatesCornersCouplingModels ??

Sorin 20-05

VD=1V

Field-Effect Junctions: Series Resistance Lowering

50-100 Centered

50-100 Drain 50-100 Source

Accumulation layers:

⇒ Low RS⇒ Low RD

Accumulationlayer:

⇒ Low RS

⇒ Improved gm

Accumulationlayer:⇒ Low RD

N N

N N N NPP

P

Allibert et al�01

Sorin 20-05

VBACKGATE

VPG

P+P+

VJG

Cross-section view

N -BODY

POLYTOX

The 4-Gate Transistor : G4-MOSFET� Maximum number of gates !� G4-MOSFET = MOSFET + JFET

2 lateral junction gates ⇒ JFET modeFront and back gates ⇒ MOSFET mode

� Standard partially-depleted SOI technology� Depletion/accumulation device� Drawn MOSFET length defines width� MOSFET width defines channel length

Sorin 20-05

Cristoloveanu et al�02

n+ D

p+

JG2

p+

JG1

G2 substrate

PolyG1

BOX

n+ S n-channel

n-channel

G4-FET

0.0 100

10 10-6

20 10-6

30 10-6

40 10-6

50 10-6

60 10-6

0 2 4 6 8 10

N-channel MOS-JFET (L = 1.5um, W = 0.35um) with VSUBSTRATE = 0V

I D (A

)

VDS (V)

VPG=3V, VJG=0V

VPG=0V, VJG=0V

VPG=0V, VJG= -2V

VPG=0V, VJG= -1V

VPG=1V, VJG=0V

VPG=2V, VJG=0V

fixed

VJG

fixed

VP

G

VPG = poly-gate voltageVJG = junction-gate voltage

Sorin 20-05

G4-MOSFET: Typical Characteristics

Front-gate modulationMOSFET action

Junction-gateJFET action

G4-MOSFET: Typical Characteristics

Sorin 20-05

10-10

10-9

10-8

10-7

10-6

10-5

-4 -3 -2 -1 0 1

Semilog Scale

I D (A

)

VJG (V)

VSUBSTRATE = 0VVDS = 100mV

VPG = -2V-1V0V

VPG = +1V

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

-2 -1.5 -1 -0.5 0 0.5 1

Semilog ScaleI D

(A)

VPG (V)

VJG = -4V

VJG = -3V

VJG = -2V-1V

VJG = 0V

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

-4 -3 -2 -1 0 1

Semilog Scale

I D (A

)

VJG (V)

VPG = -2V

-1V

VPG = 0V

VPG = +1V

VSUBSTRATE = -20VVDS = 100mV

� Current control by either front gate or junction gates� Back-gate depletion makes easier device cut-off (full depletion)� Top and back gate accumulation enables large currents� Applications: mixed signals, low-power modulation, RF mixers� New logic families: quaternary logic

Sorin 20-05

G4-FET: Modeling

Con

cent

ratio

n

Con

cent

ratio

n

−+=

D

DD

LWxth1

2N)x(n

α

How can a partially depleted body become fully depleted ?� The doping seen by one gate is lowered by the other gates� Concept of effective doping� The depletion region is expanded: the G4-FET can be turned off

Context:

Advanced SOI MOS scaling:• ultra-thin gate oxides =>=> new Gate Induced FBEs• the transistor body will be the thinnest layer• ultra-thin silicon films => new coupling effects• thin BOX or other types of BOX => relax self-heating• double gate transistors: new quantum and transport effects

Other modeling issues: series resistance, thickness fluctuations, quantum effects, mobility behavior, coupling and corner effects, transient and history effects, etc, etc

Join the SOI Club !!!

- SOI is no longer a promising technology- SOI is the necessary technology

Do we need a conclusion ??